A Quick Introduction to Khovanov
Homology
Dror Bar-Natan,
Hamburg, August 2012
Abstract. I will tell the Kauffman bracket story of the Jones polynomial as Kauffman told it in 1987, then the Khovanov homology story as Khovanov told it in 1999, and finally the "local Khovanov homology" story as I understood it in 2003. At the end of our 90 minutes we will understand what is a "Jones homology", how to generalize it to tangles and to cobordisms between tangles, and why it is computable relatively efficiently. But we will say nothing about more modern stuff Alexander and HOMFLYPT Alexander and HOMFLYPT
knot homologies, and the categorification of $s l_{2}$ and other Lie algebras.

Why Bother?

What is Categorification=Concretization=deabstraction? " 3 " is \{cow, cow, cow $\}$ and: \{pig, pig, pig\} and many other things... . categorification is choosing which 3 it is!! N. Natural numbers \mapsto finite sets, equalities \mapsto bi-:
ections, inequalities \mapsto injections and surjections: jections, inequalities
$\binom{2 n}{n}=\sum\binom{n}{k}^{2} \mapsto$

$$
\binom{X \times\{1,2\}}{|X|} \leftrightarrow \bigcup\binom{X}{k} \times\binom{ X}{k} .
$$

Weaker Categorification. Do the same in the category of vector spaces: " 3 " becomes V s.t. $\operatorname{dim} V=3$, or better, $V^{\bullet}=\left(\cdots V^{r-1} \rightarrow V^{r} \rightarrow V^{r+1} \cdots\right)$ s.t. $d^{2}=0$ and

Khovanov: $K(L)$ is a chain complex of graded \mathbb{Z}-modules;
$V=\operatorname{span}\left\langle v_{+}, v_{-}\right\rangle ; \quad \operatorname{deg} v_{ \pm}= \pm 1 ; \quad q \operatorname{dim} V=q+q^{-1} ;$
$K\left(\bigcirc^{k}\right)=V^{\otimes k} ; \quad K(\circledast)=\operatorname{Flatten}(0 \rightarrow \underset{\text { height } 0}{K()()\{1\}} \rightarrow \underset{\text { height } 1}{K(\asymp)}\{2\} \rightarrow 0) ;$
$K\left(\chi^{\star}\right)=$ Flatten $(0 \rightarrow \underset{\text { height }-1}{K(\asymp)}\{-2\} \rightarrow \underset{\text { height } 0}{K()()\{-1\} \rightarrow 0) ;}$,
$\chi\left(V^{\bullet}\right):=\sum(-1)^{r} \operatorname{dim} V^{r}=3=\sum(-1)^{r} \operatorname{dim} H^{r}$. Equalities become homotopies between complexes.

$$
\text { Categorifying } \mathbb{Z}\left[q^{ \pm 1}\right] \quad f=\sum_{j} a_{j} q^{j} \text { be- }
$$ comes $V=\bigoplus V_{j}$ s.t. $q \operatorname{dim} V$:= $\sum q^{j} \operatorname{dim} V_{j}=f, \quad$ or better, $V^{\bullet}=\left(\cdots V^{r-1} \rightarrow V^{r} \rightarrow V^{r+1} \cdots\right)$ s.t. $d^{2}=0, \quad \operatorname{deg} d=0$, and $\chi_{q}\left(V^{\bullet}\right):=\sum(-1)^{r} q \operatorname{dim} V^{r}=f=$ $V\{l\}_{j}:=V_{j-l}$, we get $q \operatorname{dim} V\{l\}=$ $q^{l} q \operatorname{dim} V$.

$$
=q+q^{3}+q^{5}-q^{9} .
$$

$$
3 q^{5}\left(q+q^{-1}\right)^{2}
$$

$$
q^{6}\left(q+q^{-1}\right)^{3}
$$

(here $(-1)^{\xi}:=(-1)^{\sum_{i<j} \xi_{i}}$ if $\xi_{j}=\star$)

$$
=K(®) .
$$

Theorem 1. The graded Euler characteristic of $K(L)$ is $J(L)$.
Theorem 2. The homology $\operatorname{Kh}(L)$ of $K(L)$ is a link invariant.
Theorem 3. $\operatorname{Kh}(L)$ is strictly stronger than $J(L): J\left(\overline{5}_{1}\right)=J\left(10_{132}\right)$ yet $\operatorname{Kh}\left(\overline{5}_{1}\right) \neq \operatorname{Kh}\left(10_{132}\right)$.
References. Khovanov's arXiv:math.QA/9908171 and arXiv:math.QA/0103190 and my
http://www.math.toronto.edu/~drorbn/papers/Categorification/.

$$
\begin{aligned}
& \bigcirc \bigcirc \rightarrow(V \otimes V \xrightarrow{\rightarrow} V) \quad m:\left\{\begin{array}{l}
v_{+} \otimes v_{-} \mapsto v_{-} \\
v_{-} \otimes v_{+} \otimes v_{+} \mapsto v_{-} \\
v_{-} \otimes v_{-} \mapsto 0
\end{array}\right. \\
& (\bigcirc) \longrightarrow(V \otimes V \xrightarrow{m} V) \quad m:\left\{\begin{array}{lll}
v_{+} \otimes v_{-} \mapsto v_{-} & v_{+} \otimes v_{+} \mapsto v_{+} & \begin{array}{l}
\sum_{\text {N }}(-1)^{r} q \operatorname{dim} H^{r} . \\
v_{-} \otimes v_{+} \mapsto v_{-} \\
v_{-} \otimes v_{-} \mapsto 0
\end{array} \\
\text { Note. } & \text { Setting }
\end{array}\right.
\end{aligned}
$$

