Meta-Groups, Meta-Bicrossed-Products, and the Alexander Polynomial, 2

A Meta-Bicrossed-Product is a collection of sets $\beta(\eta, \tau)$ and

$$
\begin{array}{c|cc}
\\
s w_{u x}^{t h}
\end{array}: \begin{array}{c|cc|cc}
\omega & h_{x} & \cdots \\
\hline t_{u} & \alpha & \beta \\
\vdots & \gamma & \delta
\end{array} \quad \begin{gathered}
\omega \epsilon \\
t_{u} \\
\\
\vdots
\end{gathered} \quad \alpha(1+\langle\gamma\rangle / \epsilon) \quad \beta(1+\langle\gamma\rangle / \epsilon),
$$

where $\epsilon:=1+\alpha$ and $\langle c\rangle:=\sum_{i} c_{i}$, and let

$$
R_{a b}^{p}:=\begin{array}{c|cc}
1 & h_{a} & h_{b} \\
\hline t_{a} & 0 & X-1 \\
t_{b} & 0 & 0
\end{array} \quad R_{a b}^{m}:=\begin{array}{c|cc}
1 & h_{a} & h_{b} \\
\hline t_{a} & 0 & X^{-1}-1 \\
t_{b} & 0 & 0
\end{array} .
$$

Theorem. Z^{β} is a tangle invariant (and more). Restricted to

$\beta=\mathrm{Rm}_{12,1} \mathrm{Rm}_{27} \mathrm{Rm}_{83} \mathrm{Rm}_{4,11} \mathrm{Rp}_{16,5} \mathrm{Rp}_{6,13} \mathrm{Rp}_{14,9} \mathrm{Rp}_{10,15} \quad \square$									8_{17}
1	h_{1}	h_{3}	h_{5}	h_{7}	h_{9}	h_{11}	h_{13}	h_{15}	
t_{2}	0	0	0	$-\frac{-1+x}{x}$	0	0	0	0	
t_{4}	0	0	0	0	0	$-\frac{-1+x}{x}$	0	0	
t_{6}	0	0	0	0	0	0	$-1+\mathrm{X}$	0	
t_{8}	0	$-\frac{-1+x}{x}$	0	0	0	0	0	0	
t_{10}	0	0	0	0	0	0	0	$-1+\mathrm{X}$	
t_{12}	$-\frac{-1+x}{x}$	0	0	0	0	0	0	0	
t_{14}	0	0	0	0	$-1+\mathrm{X}$	0	0	0	
t_{16}	0	0	-1+X	0	0	0	0	0	

is equivalent to the Burau representation. A variant for links contains the multivariable Alexander polynomial.
Why Happy? • Applications to w-knots.

- Everything that I know about the Alexander polynomial can be expressed cleanly in this language (even if without proof), except HF, but including genus, ribbonness, cabling, v-knots, knotted graphs, etc., and there's potential for vast generalizations.
- The least wasteful "Alexander for tangles"

I'm aware of.

- Every step along the computation is the invariant of something.
- Fits on one sheet, including implementation
\& propaganda.

Further meta-monoids. Π (and variants), \mathcal{A} (and quotients), 5
A Partial To Do List. 1. Where does it more simply come from?
2. Remove all the denominators.
3. How do determinants arise in this context?
4. Understand links ("meta-conjugacy classes").
$v T, \ldots$
5. Find the "reality condition".

Further meta-bicrossed-products. Π (and variants), $\overrightarrow{\mathcal{A}}$ (and7. Categorify.
quotients), $M_{0}, M, \mathcal{K}^{b h}, \mathcal{K}^{r b h}, \ldots$
Meta-Lie-algebras. \mathcal{A} (and quotients) $, \mathcal{S}, \ldots$
Meta-Lie-bialgebras. $\overrightarrow{\mathcal{A}}$ (and quotients),
8. Do the same in other natural quotients of the

I don't understand the relationship between gr and H, as it

"God created the knots, all else in
topology is the work of mortals."
Leopold Kronecker (modified)
www.katlas.org The knot 1 thas

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Newton-1301/, see also .../Sheffield-130206/ and .../Regina-1206/

