Meta-Groups, Meta-Bicrossed-Products, and the Alexander Polynomial, 1

Alexander Issues.

- Quick to compute, but computation departs from topology
- Extends to tangles, but at an exponential cost.

Abstract. I will define "meta-groups" and explain how one specific• Hard to categorify.
meta-group, which in itself is a "meta-bicrossed-product", gives rise Idea. Given a group G and two "YB" to an "ultimate Alexander invariant" of tangles, that contains the pairs $R^{ \pm}=\left(g_{o}^{ \pm}, g_{u}^{ \pm}\right) \in G^{2}$, map them Alexander polynomial (multivariable, if you wish), has extremely good composition properties, is evaluated in a topologically meaningful way, and is least-wasteful in a computational sense. If you believe in categorification, that's a wonderful playground.
This work is closely related to work by Le Dimet (Comment. Math. Helv. 67 (1992) 306-315), Kirk, Livingston and Wang (arXiv:math/9806035) and Cimasoni and Turaev (arXiv:math.GT/0406269).

A Standard Alexander Formula. Label the arcs 1 through $(n+1)=1$, make an $n \times n$ matrix as below, delete one row and one column, and compute the determinant:

This Fails! R2 implies that $g_{o}^{ \pm} g_{o}^{\mp}=e=g_{u}^{ \pm} g_{u}^{\mp}$ and then R3 implies that g_{o}^{+}and g_{u}^{+}commute, so the result is a simple counting invariant.
A Group Computer. Given G, can store group elements and perform operations on them:

Also has S_{x} for inversion, e_{x} for unit insertion, d_{x} for register deletion, $\Delta_{x y}^{z}$ for element cloning, ρ_{y}^{x} for renamings, and $\left(D_{1}, D_{2}\right) \mapsto$ $D_{1} \cup D_{2}$ for merging, and many obvious composition axioms relat ing those. $P=\left\{x: g_{1}, y: g_{2}\right\} \Rightarrow P=\left\{d_{y} P\right\} \cup\left\{d_{x} P\right\}$
A Meta-Group. Is a similar "computer", only its internal structure is unknown to us. Namely it is a collection of sets $\left\{G_{\gamma}\right\}$ indexed by all finite sets γ, and a collection of operations $m_{z}^{x y}, S_{x}, e_{x}, d_{x}, \Delta_{x y}^{z}$ (sometimes), ρ_{y}^{x}, and \cup, satisfying the exact same linear properties.
Example 0. The non-meta example, $G_{\gamma}:=G^{\gamma}$.
Example 1. $\quad G_{\gamma}:=M_{\gamma \times \gamma}(\mathbb{Z})$, with simultaneous row and column operations, and "block diagonal" merges. Here if $P=\left(\begin{array}{lll}x: & a & b \\ y: & c & d\end{array}\right)$ then $d_{y} P=(x: a)$ and $d_{x} P=(y: d)$ so $\left\{d_{y} P\right\} \cup\left\{d_{x} P\right\}=\left(\begin{array}{lll}x: & a & 0 \\ y: & 0 & d\end{array}\right) \neq P$. So this G is truly meta. Claim. From a meta-group G and YB elements $R^{ \pm} \in G_{2}$ we can construct a knot/tangle invariant.
Bicrossed Products. If $G=H T$ is a group presented as a product of two of its subgroups, with $H \cap T=\{e\}$, then also $G=T H$ and G is determined by H, T, and the "swap" map $s w^{t h}:(t, h) \mapsto\left(h^{\prime}, t^{\prime}\right)$ defined by $t h=h^{\prime} t^{\prime}$. The map sw satisfies (1) and (2) below; conversely, if $s w: T \times H \rightarrow H \times T$ satisfies (1) and (2) (+ lesser conditions), then (3) defines a group structure on $H \times T$, the "bicrossed product".

