Meta–Groups, Meta–Bicrossed–Products, and the Alexander Polynomial, 1

Dror Bar-Natan at Sheffield, February 2013.

http://www.math.toronto.edu/~drorbn/Talks/Sheffield

Abstract. I will define "meta-groups" and explain how one specific Hard to categorify. meta-group, which in itself is a "meta-bicrossed-product", gives rise Idea. Given a group G and two "YB" to an "ultimate Alexander invariant" of tangles, that contains the pairs $R^{\pm} = (g_o^{\pm}, g_u^{\pm}) \in G^2$, map them Alexander polynomial (multivariable, if you wish), has extremely to xings and "multiply along", so that good composition properties, is evaluated in a topologically meaningful way, and is least-wasteful in a computational sense. If you

believe in categorification, that's a wonderful playground. This work is closely related to work by Le Dimet (Com-

ment. Math. Helv. 67 (1992) 306–315), Kirk, Livingston and Wang (arXiv:math/9806035) and Cimasoni and Turaev (arXiv:math.GT/0406269)

Alexander Issues. • Quick to compute, but computation departs from topology • Extends to tangles, but at an exponential cost.

This Fails! R2 implies that $g_o^{\pm}g_o^{\mp} = e = g_u^{\pm}g_u^{\mp}$ and then R3 implies that g_o^+ and g_u^+ commute, so the result is a simple counting invariant.

A Group Computer. Given G, can store group elements and perform operations on them:

Also has S_x for inversion, e_x for unit insertion, d_x for register deletion, Δ_{xy}^z for element cloning, ρ_y^x for renamings, and $(D_1, D_2) \mapsto$ $D_1 \cup D_2$ for merging, and many obvious composition axioms relating those. $P = \{x : g_1, y : g_2\} \Rightarrow P = \{d_y P\} \cup \{d_x P\}$

A Meta-Group. Is a similar "computer", only its internal structure is unknown to us. Namely it is a collection of sets $\{G_{\gamma}\}$ indexed by all finite sets γ , and a collection of operations m_z^{xy} , S_x , e_x , d_x , Δ_{xy}^z (sometimes), ρ_y^x , and \cup , satisfying the exact same *linear* properties.

Example 0. The non-meta example, $G_{\gamma} := G^{\gamma}$.

Example 1. $G_{\gamma} := M_{\gamma \times \gamma}(\mathbb{Z})$, with simultaneous row and column operations, and "block diagonal" merges. Here if $P = \begin{pmatrix} x : a & b \\ y : c & d \end{pmatrix} \text{ then } d_y P = (x : a) \text{ and } d_x P = (y : d) \text{ so}$ $\{d_yP\} \cup \{d_xP\} = \begin{pmatrix} x : a & 0\\ y : & 0 & d \end{pmatrix} \neq P$. So this G is truly meta.

A Standard Alexander Formula. Label the arcs 1 through Claim. From a meta-group G and YB elements $R^{\pm} \in G_2$ we (n+1) = 1, make an $n \times n$ matrix as below, delete one row can construct a knot/tangle invariant.

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Newton-1301/, see also .../Sheffield-130206/ and .../Regina-1206/