Łet x_{c} denote the path on which $\mathcal{L}(x)$ attains its minimum value, write $x=x_{c}+x_{q}$ with $x_{q} \in W_{00}$, and get

$$
\psi(T, x)=c \int d x_{0} \psi_{0}\left(x_{0}\right) \int_{W_{00}} \mathcal{D} x_{q} e^{i \mathcal{L}\left(x_{c}+x_{q}\right)} .
$$

In our particular case \mathcal{L} is quadratic in x, and therefore $\mathcal{L}\left(x_{c}+x_{q}\right)=\mathcal{L}\left(x_{c}\right)+\mathcal{L}\left(x_{q}\right)$ (this uses the fact that x_{c} is an extremal of \mathcal{L}, of course). Plugging this into what we already have, we get

$$
\begin{aligned}
\psi(T, x) & =c \int d x_{0} \psi_{0}\left(x_{0}\right) \int_{W_{00}} \mathcal{D} x_{q} e^{i \mathcal{L}\left(x_{c}\right)+i \mathcal{L}\left(x_{q}\right)} \\
& =c \int d x_{0} \psi_{0}\left(x_{0}\right) e^{i \mathcal{L}\left(x_{c}\right)} \int_{W_{00}} \mathcal{D} x_{q} e^{i \mathcal{L}\left(x_{q}\right)} .
\end{aligned}
$$

Now this is excellent news, because the remaining path integral over W_{00} does not depend on x_{0} or x_{n}, and hence it is a constant! Allowing c to change its value from line to line, we get

$$
\psi(T, x)=c \int d x_{0} \psi_{0}\left(x_{0}\right) e^{i \mathcal{L}\left(x_{c}\right)} .
$$

Lemma 3.4 now shows us that $x_{c}(t)=x_{0} \cos t+$ $x_{n} \sin t$. An easy explicit computation gives $\mathcal{L}\left(x_{c}\right)=$ $-x_{0} x_{n}$, and we arrive at our final result,

$$
\psi\left(\frac{\pi}{2}, x\right)=c \int d x_{0} \psi_{0}\left(x_{0}\right) e^{-i x_{0} x_{n}}
$$

Notice that this is precisely the formula for the Fourier transform of ψ_{0} ! That is, the answer to the question in the title of this document is "the particle gets Fourier transformed", whatever that may mean.

3. The Lemmas

Lemma 3.1. For any two matrices A and B,

$$
e^{A+B}=\lim _{n \rightarrow \infty}\left(e^{A / n} e^{B / n}\right)^{n} .
$$

Proof. (sketch) Using Taylor expansions, we see that $e^{\frac{A+B}{n}}$ and $e^{A / n} e^{B / n}$ differ by terms at most proportional to c / n^{2}. Raising to the nth power, the two sides differ by at most $O(1 / n)$, and thus

$$
e^{A+B}=\lim _{n \rightarrow \infty}\left(e^{\frac{A+B}{n}}\right)^{n}=\lim _{n \rightarrow \infty}\left(e^{A / n} e^{B / n}\right)^{n}
$$

as required.

Lemma 3.2.

$$
\left(e^{i t V} \psi_{0}\right)(x)=e^{i t V(x)} \psi_{0}(x)
$$

Lemma 3.3.

$$
\left(e^{i \frac{t}{2} \Delta} \psi_{0}\right)(x)=c \int d x^{\prime} e^{i \frac{\left(x-x^{\prime}\right)^{2}}{2 t}} \psi_{0}\left(x^{\prime}\right)
$$

Proof. In fact, the left hand side of this equality is just a solution $\psi(t, x)$ of Schrödinger's equation with $V=0:$

$$
\frac{\partial \psi}{\partial t}=\frac{i}{2} \Delta_{x} \psi,\left.\quad \psi\right|_{t=0}=\psi_{0} .
$$

Taking the Fourier transform $\tilde{\psi}(t, p)=$ $\frac{1}{\sqrt{2 \pi}} \int e^{-i p x} \psi(t, x) d x$, we get the equation

$$
\frac{\partial \tilde{\psi}}{\partial t}=-i \frac{p^{2}}{2} \tilde{\psi},\left.\quad \tilde{\psi}\right|_{t=0}=\tilde{\psi}_{0}
$$

For a fixed p, this is a simple first order linear differential equation with respect to t, and thus,

$$
\tilde{\psi}(t, p)=e^{-i \frac{t p^{2}}{2}} \tilde{\psi}_{0}(p)
$$

Taking the inverse Fourier transform, which takes products to convolutions and Gaussians to other Gaussians, we get what we wanted to prove.

Lemma 3.4. With the notation of Section 2 and at the specific case of $V(x)=\frac{1}{2} x^{2}$ and $T=\frac{\pi}{2}$, we have

$$
x_{c}(t)=x_{0} \cos t+x_{n} \sin t
$$

Proof. If x_{c} is a critical point of \mathcal{L} on $W_{x_{0} x_{n}}$, then for any $x_{q} \in W_{00}$ there should be no term in $\mathcal{L}\left(x_{c}+\epsilon x_{q}\right)$ which is linear in ϵ. Now recall that

$$
\mathcal{L}(x)=\int_{0}^{T} d t\left(\frac{1}{2} \dot{x}^{2}(t)-V(x(t))\right)
$$

so using $V\left(x_{c}+\epsilon x_{q}\right) \sim V\left(x_{c}\right)+\epsilon x_{q} V^{\prime}\left(x_{c}\right)$ we find that the linear term in ϵ in $\mathcal{L}\left(x_{c}+\epsilon x_{q}\right)$ is

$$
\int_{0}^{T} d t\left(\dot{x}_{c} \dot{x}_{q}-V^{\prime}\left(x_{c}\right) x_{q}\right)
$$

Integrating by parts and using $x_{q}(0)=x_{q}(T)=0$, this becomes

$$
\int_{0}^{T} d t\left(-\ddot{x}_{c}-V^{\prime}\left(x_{c}\right)\right) x_{q} .
$$

For this integral to vanish independently of x_{q}, we must have $-\ddot{x}_{c}-V^{\prime}\left(x_{c}\right) \equiv 0$, or
$\ddot{x}_{c}=-V^{\prime}\left(x_{c}\right)$.

In our particular case this boils down to the equation

$$
\ddot{x}_{c}=-x_{c}, \quad x_{c}(0)=x_{0}, \quad x_{c}(\pi / 2)=x_{n},
$$

whose unique solution is displayed in the statement of this lemma.

