What happens to a quantum particle on a pendulum at $T=\frac{\pi}{2}$?

Abstract. This subject is the best one-hour introduction I know for the mathematical techniques that appear in quantum mechanics - in one short lecture we start with a meaningful question, visit Schrödinger's equation, operators and exponentiation of operators, Fourier analysis, path integrals, the least action principle, and Gaussian integration, and at the end we land with a meaningful and interesting answer.

Based a lecture given by the author in the "trivial notions" seminar in Harvard on April 29, 1989. This edition, January 10, 2014.

1. The Question

Let the complex valued function $\psi=\psi(t, x)$ be a solution of the Schrödinger equation
$\frac{\partial \psi}{\partial t}=-i\left(-\frac{1}{2} \Delta_{x}+\frac{1}{2} x^{2}\right) \psi \quad$ with $\left.\quad \psi\right|_{t=0}=\psi_{0}$.
What is $\left.\psi\right|_{t=T=\frac{\pi}{2}}$?
In fact, the major part of our discussion will work just as well for the general Schrödinger equation,

$$
\begin{gathered}
\frac{\partial \psi}{\partial t}=-i H \psi, \quad H=-\frac{1}{2} \Delta_{x}+V(x), \\
\left.\psi\right|_{t=0}=\psi_{0}, \quad \operatorname{arbitrary} T
\end{gathered}
$$

where,

- ψ is the "wave function", with $|\psi(t, x)|^{2}$ representing the probability of finding our particle at time t in position x.
- H is the "energy", or the "Hamiltonian".
- $-\frac{1}{2} \Delta_{x}$ is the "kinetic energy".
- $V(x)$ is the "potential energy at x ".

2. The Solution

The equation $\frac{\partial \psi}{\partial t}=-i H \psi$ with $\left.\psi\right|_{t=0}=\psi_{0}$ formally implies

$$
\psi(T, x)=\left(e^{-i T H} \psi_{0}\right)(x)=\left(e^{i \frac{T}{2} \Delta-i T V} \psi_{0}\right)(x) .
$$

By Lemma 3.1 with $n=10^{58}+17$ and setting $x_{n}=x$ we find that $\psi(T, x)$ is

$$
\left(e^{i \frac{T}{2 n} \Delta} e^{-i \frac{T}{n} V} e^{i \frac{T}{2 n} \Delta} e^{-i \frac{T}{n} V} \ldots e^{i \frac{T}{2 n} \Delta} e^{-i \frac{T}{n} V} \psi_{0}\right)\left(x_{n}\right)
$$

Now using Lemmas 3.2 and 3.3 we find that this is: (c denotes the ever-changing universal fixed numerical constant)

$$
\begin{aligned}
& c \int d x_{n-1} e^{\frac{i\left(x_{n}-x_{n-1}\right)^{2}}{2 T / n}} e^{-i \frac{T}{N} V\left(x_{n-1}\right)} \cdots \\
& \int d x_{1} e^{i \frac{\left(x_{2}-x_{1}\right)^{2}}{2 T / n}} e^{-i \frac{T}{N} V\left(x_{1}\right)} \\
& \quad \int d x_{0} e^{i \frac{\left(x_{1}-x_{0}\right)^{2}}{2 T / n}} e^{-i \frac{T}{N} V\left(x_{0}\right)} \psi_{0}\left(x_{0}\right) .
\end{aligned}
$$

Repackaging, we get

$$
\begin{aligned}
& c \int d x_{0} \ldots d x_{n-1} \\
& \exp \left(i \frac{T}{2 n} \sum_{k=1}^{n}\left(\frac{x_{k}-x_{k-1}}{T / n}\right)^{2}-i \frac{T}{n} \sum_{k=0}^{n-1} V\left(x_{k}\right)\right) \\
& \psi_{0}\left(x_{0}\right) .
\end{aligned}
$$

Now comes the novelty. keeping in mind the picture

and replacing Riemann sums by integrals, we can write

$$
\begin{aligned}
& \psi(T, x)=c \int d x_{0} \int_{W_{x_{0} x_{n}}} \mathcal{D} x \\
& \quad \exp \left(i \int_{0}^{T} d t\left(\frac{1}{2} \dot{x}^{2}(t)-V(x(t))\right)\right) \psi_{0}\left(x_{0}\right)
\end{aligned}
$$

where $W_{x_{0} x_{n}}$ denotes the space of paths that begin at x_{0} and end at x_{n},

$$
W_{x_{0} x_{n}}=\left\{x:[0, T] \rightarrow \mathbb{R}: x(0)=x_{0}, x(T)=x_{n}\right\},
$$

and $\mathcal{D} x$ is the formal "path integral measure".
This is a good time to introduce the "action" \mathcal{L} :

$$
\mathcal{L}(x):=\int_{0}^{T} d t\left(\frac{1}{2} \dot{x}^{2}(t)-V(x(t))\right)
$$

With this notation,

$$
\psi(T, x)=c \int d x_{0} \psi_{0}\left(x_{0}\right) \int_{W_{x_{0} x_{n}}} \mathcal{D} x e^{i \mathcal{L}(x)}
$$

Video and more at http://drorbn.net/?title=AKT-14 (Jan 10 and Jan 17 classes)

