Dror Bar-Natan: Academic Pensieve: 2014-04: BF2C:
Abstract. I will describe a semi-rigorous reduction of perturbative BF theory (Cattaneo-Rossi [CR]) to computable combinatorics, in the case of ribbon 2 -links. Also, I will explain how and why my approach may or may not work in the non-ribbon case. Weak this result is, and at least partially already known (Watanabe [Wa]). Yet in the ribbon case, the resulting invariant is a universal finite type invariant, a gadget that significantly generalizes and clarifies the Alexander polynomial and that is closely related to the Kashiwara-Vergne problem. I cannot rule out the possibility that the corresponding gadget in the non-ribbon case will be as interesting.
BF Following [CR]. $A \in \Omega^{1}\left(M=\mathbb{R}^{4}, \mathfrak{g}\right), B \in \Omega^{2}\left(M, \mathfrak{g}^{*}\right)$,

$$
S(A, B):=\int_{M}\left\langle B, F_{A}\right\rangle .
$$

With $\kappa:\left(S=\mathbb{R}^{2}\right) \rightarrow M, \beta \in \Omega^{0}(S, \mathfrak{g}), \alpha \in \Omega^{1}\left(S, \mathrm{~g}^{*}\right)$, set
The BF Feynman Rules. For an edge e, let Φ_{e} be its direction, in S^{3} or S^{1}. Let ω_{3} and ω_{1} be volume forms on S^{3} and S_{1}. Then for a 2-link

Cattaneo

Rossi

$$
\left(\kappa_{t}\right)_{t \in T}
$$

is an invariant in $C W(F L(T)) \rightarrow C W(T) / \sim$, "symmetrized cyclic

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Vienna-1402/

