Abstract. To break a week of deep thinking with a nice colourful light dessert, we will present the Kolmogorov-Arnold solution of Hilbert's 13th problem with lots of computer-generated rainbowpainted 3D pictures.
In short, Hilbert asked if a certain specific function of three variables can be written as a multiple (yet finite) composition of continuous functions of just two variables. Kolmogorov and Arnold showed him silly (ok, it took about 60 years, so it was a bit tricky) by showing that any continuous function f of any finite number of variables is a finite composition of continuous functions of a single variable and several instances of the binary function "+" (addition). For $f(x, y)=x y$, this may be $x y=\exp (\log x+\log y)$. For $f(x, y, z)=x^{y} / z$, this may be $\exp (\exp (\log y+\log \log x)+(-\log z))$. What might it be for (say) the real part of the Riemann zeta function?

$\frac{1}{3} \operatorname{Re}(\zeta(x+i y))$ on $[0,1] \times[13,17]$

Fix an irrational $\lambda>0$, say $\lambda=(\sqrt{5}-1) / 2$. All
functions are continuous.
Theorem. There exist five $\phi_{i}:[0,1] \rightarrow[0,1](1 \leq$ $i \leq 5)$ so that for every $f:[0,1] \times[0,1] \rightarrow \mathbb{R}$ there exists a $g:[0,1+\lambda] \rightarrow \mathbb{R}$ so that

$$
f(x, y)=\sum_{i=1}^{5} g\left(\phi_{i}(x)+\lambda \phi_{i}(y)\right)
$$

for every $x, y \in[0,1]$.
Step 1. If $\epsilon>0$ and $f:[0,1] \times[0,1] \rightarrow \mathbb{R}$, then there exists $\phi:[0,1] \rightarrow[0,1]$ and $g:[0,1+\lambda] \rightarrow \mathbb{R}$ so that $|f(x, y)-g(\phi(x)+\lambda \phi(y))|<\epsilon$ on at least 98% of the area of $[0,1] \times[0,1]$.

