Abstract. I will describe my former student's Jonathan Zung work on finite type invariants of "doodles", plane curves modulo the second Reidemeister move but not modulo the third. We use a definition of "finite type" different from Arnold's
 and more along the lines of Goussarov's "Interdependent Modifications", and come to a conjectural combinatorial description of the set of all such invariants. We then describe how to construct many such invariants (though perhaps not all) using a certain class of 2-dimensional "configuration space integrals".

An unfinished project!

Prior Art. Arnold [Ar] first studied doodles within his study of plane curves and the "strangeness" St invariant. Vassiliev [Va1, Va2] defined finite type invariants in a differ- Merkov and Vassiliev ent way, and Merkov [Me] proved that they separate doodles.

Def. V is of type n if it vanishes on $\mathcal{K}_{n+1} . \quad\left(\mathcal{K}_{0} / \mathcal{K}_{n+1}\right)^{\star} \leadsto \mathcal{K}_{n} / \mathcal{K}_{n+1}$ Knots in 3D.

2-Knots in 4D.

Goals. • Describe $\mathcal{A}_{n}:=\mathcal{K}_{n} / \mathcal{K}_{n+1}$ using diagrams/relations. \bullet Get many or all finite type invariants of doodles using configurations space integrals. • Do these come from a TQFT? • See if \mathcal{A}_{n} has a "Lie theoretic" (tensors/relations) meaning. - See if/how Arnold's St and the Merkov invariants integrate in.

Easy

Chord Diagrams and an Upper Bound on $\mathcal{K}_{n} / \mathcal{K}_{n+1}$
The Rayman Principle. $\bar{\prime} \overline{\mathcal{K}}_{n} / \overline{\mathcal{K}}_{n+1}$,

Rayman by Ubisoft

"joins are irrelevant"

The ' Subdivision Relations. $\overline{\text { In }} \overline{\mathcal{K}_{n}} \overline{\mathcal{K}}_{n} / \overline{\mathcal{K}}_{n+1}^{-}$,

Figure 3. A non-trivial 1-doodle and its arrow diagram

