

A Big Open Problem. δ maps w-knots onto simple 2-knots. To what extent is it a bijection? What other relations are required? In other words, find a simple description of simple 2-knots.

Question. Does it all extend to arbitrary 2-knots (not necessarily "simple")? To arbitrary codimension- 2 knots? BF Following [CR]. $A \in \Omega^{1}\left(M=\mathbb{R}^{4}, \mathfrak{g}\right), B \in \Omega^{2}\left(M, \mathfrak{g}^{*}\right)$,

$$
S(A, B):=\int_{M}\left\langle B, F_{A}\right\rangle
$$

With $\kappa:\left(S=\mathbb{R}^{2}\right) \rightarrow M, \beta \in \Omega^{0}(S, \mathfrak{g}), \alpha \in \Omega^{1}\left(S, \mathfrak{g}^{*}\right)$, set $O(A, B, \kappa):=\int \mathcal{D} \beta \mathcal{D} \alpha \exp \left(\frac{i}{\hbar} \int_{S}\left\langle\beta, d_{\kappa^{*} A} \alpha+\kappa^{*} B\right\rangle\right)$. The BF Feynman Rules. For an edge e, let Φ_{e} be its direction, in S^{3} or S^{1}. Let ω_{3} and ω_{1} be volume forms on S^{3} and S_{1}. Then

Cattaneo
 (modulo some IHX-like relations).

See also [Wa]

Issues. - Signs don't quite work out, and BF seems to reproduce only "half" of the wheels invariant on simple 2-knots.

- There are many more configuration space integrals than BF Feynman diagrams and than just trees and wheels.
- I don't know how to define / analyze "finite type" for general 2-knots.
- I don't know how to reduce $Z_{B F}$ to combinatorics / algebra.

References.
[BN] D. Bar-Natan, Balloons and Hoops and their Universal Finite Type Invariant, BF Theory, and an Ultimate Alexander Invariant, $\omega \varepsilon \beta / \mathrm{KBH}$, arXiv:1308.1721.
[BND1] D. Bar-Natan and Z. Dancso, Finite Type Invariants of WKnotted Objects I: W-Knots and the Alexander Polynomial, $\omega \varepsilon \beta / \mathrm{WKO1}$, arXiv:1405.1956.
[BND2] D. Bar-Natan and Z. Dancso, Finite Type Invariants of W-Knotted Objects II: Tangles and the Kashiwara-Vergne Problem, $\omega \approx \beta / \mathrm{WKO} 2$, arXiv:1405.1955.
[BNS] D. Bar-Natan and S. Selmani, Meta-Monoids, Meta-Bicrossed Products, and the Alexander Polynomial, J. of Knot Theory and its Ramifications 22-10 (2013), arXiv:1302.5689.
[CS] J. S. Carter and M. Saito, Knotted surfaces and their diagrams, Math. Surv. and Mono. 55, Amer. Math. Soc., Providence 1998.
[CR] A. S. Cattaneo and C. A. Rossi, Wilson Surfaces and Higher Dimensional Knot Invariants, Commun. in Math. Phys. 256-3 (2005) 513-537, arXiv:math-ph/0210037.
[Fa] M. Farber, Noncommutative Rational Functions and Boundary Links, Math. Ann. 293 (1992) 543-568.
[Le] J. Levine, A Factorization of the Conway Polynomial, Comment. Math. Helv. 74 (1999) 27-53, arXiv:q-alg/9711007.
[Wa] T. Watanabe, Configuration Space Integrals for Long n-Knots, the Alexander Polynomial and Knot Space Cohomology, Alg. and Geom. Top. 7 (2007) 47-92, arXiv:math/0609742.
"God created the knots, all else in topology is the work of mortals."
Leopold Kronecker (modified)

