Abstract. I will describe a computable, non-commutative invariant of tangles with values in wheels, almost generalize it to some balloons, and then tell you why I care. Spoilers: tangles are you know what, wheels are linear combinations of cyclic words in some alphabet, balloons are 2 -knots, and one reason I care is because quantum field theory predicts more than I can actually get (but also less).
Why I like "non-commutative"? With $F A\left(x_{i}\right)$ the free associative non-commutative algebra,

$$
\operatorname{dim} \mathbb{Q}[x, y]_{d} \sim d \ll 2^{d} \sim \operatorname{dim} F A(x, y)_{d}
$$

Why I like "computable"?

- Because I'm weird.
- Note that π_{1} isn't computable.

Preliminaries from Algebra. $F L\left(x_{i}\right)$ denotes the free Lie algebra in $\left(x_{i}\right)$; $F L\left(x_{i}\right)=$ (binary trees with AS vertices and coloured leafs)/(IHX relations). There an obvious map $F A\left(F L\left(x_{i}\right)\right) \rightarrow F A\left(x_{i}\right)$ defined by $[a, b] \rightarrow a b-b a$, which in itself, is IHX.

$C W\left(x_{i}\right)$ denotes the vector space of cyclic words in $\left(x_{i}\right): C W\left(x_{i}\right)=$ $F A\left(x_{i}\right) /\left(x_{i} w=w x_{i}\right)$. There an obvious map $C W\left(F L\left(x_{i}\right)\right) \rightarrow$ $C W\left(x_{i}\right)$. In fact, connected uni-trivalent 2-in-1-out graphs with univalents with colours in $\{1, \ldots, n\}$, modulo AS and IHX, is precisely $C W\left(x_{i}\right)$:

Most important. $e^{x}=\sum \frac{x^{d}}{d!}$ and $e^{x+y}=e^{x} e^{y}$.
Preliminaries from Knot Theory.

Theorem. ω, the connected part of the procedure below, is an invariant of S-component tangles with values in $C W(S)$:

 ω is practically computable! For the Borromean tangle, to degree 5, the result is:

Proof of Invariance.

Indeed,

(thanks, Ester Dalvit)

- ω is really the second part of a (trees,wheels)-valued Further invariant $\zeta=(\lambda, \omega)$. The tree part λ is just a repa- Facts ckaging of the Milnor μ-invariants.
- On u-tangles, ζ is equivalent to the trees\&wheels part of the Kontsevich integral, except it is computable and is defined with no need for a choice of parenthesization.
- On long/round u-knots, ω is equivalent to the Alexander polynomial.
- The multivariable Alexander polynomial (and Levine's factorization thereof [Le]) is contained in the Abelianization of
ζ [BNS].
- ω vanishes on braids.
- Related to / extends Farber's [Fa]?
- Should be summed and categorified.

Does ω extend
to balloons?

- Extends to v and descends to w : meaning, ζ satisfies ω also satisfies so ω 's "true domain" is

- Agrees with BN-Dancso [BND1, BND2] and with [BN].
- ζ, ω are universal finite type invariants.
- Using \nless : $v \mathcal{K}_{n} \rightarrow w \mathcal{K}_{n+1}$, defines a strong invariant of $v-$ tangles / long v-knots.
(K K in $\mathrm{ET}_{\mathrm{E}} \mathrm{X}: \omega \in \beta /$ zhe)

