Tangles, Wheels, Balloons

Abstract. I will describe a computable, non-commutative invariant of tangles with values in wheels, almost generalize it to some balloons, and then tell you why I care. Spoilers: tangles are you know what, wheels are linear combinations of cyclic words in some alphabet, balloons are 2-knots, and one reason I care is because quantum field theory predicts more than I can actually

get (but also less).

Why I like "non-commutative"? With $FA(x_i)$ the free associative non-commutative algebra,

$$\dim \mathbb{Q}[x, y]_d \sim d \ll 2^d \sim \dim FA(x, y)_d$$
.

Why I like "computable"?

Because I'm weird.

• Note that π_1 isn't computable.

Preliminaries from Algebra. $FL(x_i)$ denotes the free Lie algebra in (x_i) ; $FL(x_i)$ = (binary trees with AS ver-

tices and coloured leafs)/(IHX relations). There an obvious map $FA(FL(x_i)) \to FA(x_i)$ defined by $[a, b] \to ab - ba$, which in itself, is IHX.

 $CW(x_i)$ denotes the vector space of cyclic words in (x_i) : $CW(x_i) =$ $FA(x_i)/(x_i w = w x_i)$. There an obvious map $CW(FL(x_i)) \rightarrow$ $CW(x_i)$. In fact, connected uni-trivalent 2-in-1-out graphs with univalents with colours in $\{1, \ldots, n\}$, modulo AS and IHX, is precisely $CW(x_i)$:

Most important. $e^x = \sum \frac{x^d}{d!}$ and $e^{x+y} = e^x e^y$.

Preliminaries from Knot Theory.

Theorem. ω , the connected part of the procedure below, is an invariant of S-component tangles with values in CW(S):

 ω is practically computable! For the Borromean tangle, to degree 5, the result is: (see [BN])

Proof of Invariance.

Need to show:

Indeed,

- ω is really the second part of a (trees, wheels)-valued invariant $\zeta = (\lambda, \omega)$. The tree part λ is just a repackaging of the Milnor μ -invariants.
- On u-tangles, ζ is equivalent to the trees&wheels part of the Kontsevich integral, except it is computable and is defined with no need for a choice of parenthesization.
- On long/round u-knots, ω is equivalent to the Alexander polynomial.
- The multivariable Alexander polynomial (and Levine's factorization thereof [Le]) is contained in the Abelianization of ζ [BNS].
- ω vanishes on braids.
- Related to / extends Farber's [Fa]?
- Should be summed and categorified.
- Extends to v and descends to w: to balloons? meaning, ζ satisfies ω also satisfies so ω 's "true domain" is

- Agrees with BN-Dancso [BND1, BND2] and with [BN].
- ζ , ω are universal finite type invariants.
- Using \mathbb{M} : $v\mathcal{K}_n \to w\mathcal{K}_{n+1}$, defines a strong invariant of vtangles / long v-knots. (\mathbb{X} in $\mathbb{E}_{\mathbf{Z}}$: $\omega \varepsilon \beta / \mathbf{z} h e$)