Abstract．It is insufficiently well known that the good old Taylor expansion has a comple－ tely algebraic characterization，which generali－ zes to arbitrary groups（and even far beyond）． Thus one may ask：Does the braid group have a Taylor expansion？（Yes，using iterated inte－ grals and／or associators）．Do braids on a torus （＂elliptic braids＂）have Taylor expansions？（Yes，

When does a group have a Taylor expansion？回宸回 Pure Braids．Take $G=P B_{n}=\pi_{1}\left(C_{n}=\mathbb{C}^{n} \backslash\right.$ diags $)$ ．It is generated by the love－behind－the－bars braids $\sigma_{i j}$ ， modulo＂Reidemeister moves＂．I is generated by $\left\{\sigma_{i j}-1\right\}$ and \mathcal{A} by $\left\{t_{i j}\right\}$ ，the clas－ ses of the $\sigma_{i j}-1$ in $\mathcal{A}_{1}=I / I^{2}$ ． Reidemeister becomes $\left[t_{i j}+t_{i k}, t_{j k}\right]=0$ and $\left[t_{i j}, t_{k l}\right]=0$ ．
 using more sophisticated iterated integrals／associators）．Do vir tual braids have Taylor expansions？（No，yet for nearby objects the deep answer is Probably Yes）．Do groups of flying rings（braid groups one dimension up）have Taylor expansions？（Yes，easily， yet the link to TQFT is yet to be fully explored）．
Disclaimer．I＇m asked to talk in a meeting on＂iterated integrals＂， and that＇s my best．Many of you may think it all trivial．Sorry．
Expansions for Groups．Let G be a group， $\mathcal{K}=\mathbb{Q} G=$ $\left\{\sum a_{i} g_{i}: a_{i} \in \mathbb{Q}, g_{i} \in G\right\}$ its group－ring， $\mathcal{I}=\left\{\sum a_{i} g_{i}: \sum a_{i}=0\right\}$ its augmentation ideal．Let

$$
\mathcal{A}=\operatorname{gr} \mathcal{K}:=\widehat{\bigoplus}_{m \geq 0} I^{m} / I^{m+1}
$$

P．S．$\left(\mathcal{K} / I^{m+1}\right)^{*}$ is Vassiliev／finite－
Theorem．For $\gamma:[0,1] \rightarrow$ C_{n} ，with z_{i} its i th coordi－ nate，the iterated integral $Z(\gamma)=\sum_{m \geq 0} \prod_{\alpha=1}^{m} \frac{t_{i_{\alpha} j_{\alpha}}}{2 \pi i} d \log \left(z_{i_{\alpha}}-z_{j_{\alpha}}\right)$,

$$
0<t_{1}<\ldots<t_{m}<1
$$

Note that \mathcal{A} inherits a product from G ． Definition．A linear $Z: \mathcal{K} \rightarrow \mathcal{A}$ is an ＂expansion＂if for any $\gamma \in I^{m}, Z(\gamma)=$ $\left(0, \ldots, 0, \gamma / I^{m+1}, *, \ldots\right)$ ，a＂multiplicati－ ve expansion＂if in addition it preserves the product，and a＂Taylor expansion＂if
 it also preserves the co－product，induced from the diagonal map $G \rightarrow G \times G$ ．
Example．Let $\mathcal{K}=C^{\infty}\left(\mathbb{R}^{n}\right)$ and $\mathcal{I}=\{f: f(0)=0\}$ ．Then $I^{m}=\left\{f: f\right.$ vanishes like $\left.|x|^{m}\right\}$ so I^{m} / I^{m+1} degree m homoge－ neous polynomials and $\mathcal{A}=$ \｛power series $\}$ ．The Taylor series is the unique Taylor expansion！
Comment．Unlike lower central series constructions，this genera－ lizes effortlessly to arbitrary algebraic structures．

Elliptic Braids．$P B_{n}^{1}:=\pi_{1}\left(C_{n}^{1}\right)$ is generated by $\sigma_{i j}, X_{i}, Y_{j}$ ，wi－ th $P B_{n}$ relations and $\left(X_{i}, X_{j}\right)=1=\left(Y_{i}, Y_{j}\right),\left(X_{i}, Y_{j}\right)=\sigma_{i j}^{-1}$ ， $\left(X_{i} X_{j}, \sigma_{i j}\right)=1=\left(Y_{i} Y_{j}, \sigma_{i j}\right)$ ，and ΠX_{i} and ΠY_{j} are central．［Bez］ implies $\mathcal{A}\left(P B_{n}^{1}\right)=\left\langle x_{i}, y_{j}\right\rangle /\left(\left[x_{i}, x_{j}\right]=\left[y_{i}, y_{j}\right]=\left[x_{i}+x_{j},\left[x_{i}, y_{j}\right]\right]=\right.$ $\left.\left[y_{i}+y_{j},\left[x_{i}, y_{j}\right]\right]=\left[x_{i}, \sum y_{j}\right]=\left[y_{j}, \sum x_{i}\right]=0,\left[x_{i}, y_{j}\right]=\left[x_{j}, y_{i}\right]\right)$ ， and［CEE］construct a Taylor expansion using sophisticated ite－ rated integrals．［En2］relates this to Elliptic Associators．

Virtual Braids．$P v B_{n}$ is given by the＂braids for dummies＂presentation：
$\left\langle\sigma_{i j} \mid \sigma_{i j} \sigma_{i k} \sigma_{j k}=\sigma_{j k} \sigma_{i k} \sigma_{i j}, \sigma_{i j} \sigma_{k l}=\sigma_{k l} \sigma_{i j}\right\rangle$ （every quantum invariant extends to $P \vee B_{n}$ ！）．
By［Lee］， $\mathcal{A}\left(P v B_{n}\right)$ is
$\left\langle a_{i j} \mid\left[a_{i j}, a_{i k}\right]+\left[a_{i j}, a_{j k}\right]+\left[a_{i k}, a_{j k}\right]=0=\left[a_{i j}, a_{k l}\right]\right\rangle$
Theorem［Lee］．While quadratic，$P v B_{n}$ does not have a Taylor expansion．
Comment．By the tough theory of quantization of so－ lutions of the classical Young－Baxter equation［EK，Peter Lee En1］，$P T_{n}$ does have a Taylor expansion．But $P T_{n}$ is not a group．

［BP］B．Berceanu and S．Papadima，Universal Representations of Braid and Braid－Permutation Groups，J．of Knot Theory and its Ramifications 18－7 （2009）973－983，arXiv：0708．0634．
［Bez］R．Bezrukavnikov，Koszul DG－Algebras Arising from Configuration Spa－ ces，Geom．Func．Anal．4－2（1994）119－135．
［CEE］D．Calaque，B．Enriquez，and P．Etingof，Universal KZB Equations I： The Elliptic Case，Prog．in Math． 269 （2009）165－266，arXiv：math／0702670．
［CR］A．S．Cattaneo and C．A．Rossi，Wilson Surfaces and Higher Dimen－ sional Knot Invariants，Commun．in Math．Phys．256－3（2005）513－537， arXiv：math－ph／0210037．
［En1］B．Enriquez，A Cohomological Construction of Quantization Functors of Lie Bialgebras，Adv．in Math．197－2（2005）430－479，arXiv：math／0212325．
［En2］B．Enriquez，Elliptic Associators，Selecta Mathematica 20 （2014）491－ 584，arXiv：1003．1012．
［EK］P．Etingof and D．Kazhdan，Quantization of Lie Bialgebras，I，Selecta Mathematica 2 （1996）1－41，arXiv：q－alg／9506005．
［Lee］P．Lee，The Pure Virtual Braid Group Is Quadratic，Selecta Mathematica 19－2（2013）461－508，arXiv：1110．2356．

