Abstract. We will repeat the 3D story of the previous 3 talks The Finite Type Story. one dimension up, in 4D. Surprisingly, there's more room in 4D, and things get easier, at least when we restrict our attention to "w-knots", or to "simply-knotted 2 -knots". But even then there are intricacies, and we try to go beyond simply-knotted, we are completely confused.

$\underset{a b}{\neq} \rightarrow ン-X \sim \underset{a}{\sim} \quad \underset{a}{\mid}$

The Bracket-Rise Theorem. \mathcal{A}^{w} is isomorphic to

Corollaries. (1) Only wheels and isolated arrows persist:
$\mathcal{F}^{w}\left(\uparrow_{n}\right) \cong \mathcal{U}\left(F L(n)_{t b}^{n} \ltimes C W(n)\right) \quad$ and $\quad \zeta:=\log Z \in F L(n)^{n} \times C W(n)$
has completely explicit formulas using natural $F L / C W$ operations [BN]. (2) Related to f.d. Lie algebras!

Low Algebra. With $\left(x_{i}\right)$ and $\left(\varphi^{j}\right)$ dual bases of \mathfrak{g} and \mathfrak{g}^{*} and with $\left[x_{i}, x_{j}\right]=\sum b_{i j}^{k} x_{k}$, we have $\mathcal{A}^{w} \rightarrow \mathcal{U}$ via

The Double Inflation Procedure δ.

A Big Open Problem. δ maps w-knots onto simple 2-knots. To what extent is it a bijection? What other relations are required? In other words, find a simple description of simple 2-knots. Kawauchi [Ka] may already know the answer.

