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The Finite Type Story.

Penrose Cvitanovic

Abstract. We will repeat the 3D story of the previous 3 talks
one dimension up, in 4D. Surprisingly, there’s more room in 4D,
and things get easier, at least when we restrict our attention to
"w-knots", or to "simply-knotted 2-knots". But even then there
are intricacies, and we try to go beyond simply-knotted, we are
completely confused.
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Too easy so far!Yet once you add “foam vertices”, it gets related to the
Kashiwara-Vergne problem [KV] as told by Alekseev-Torossian [AT]:
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A Big Open Problem.δ maps w-knots onto simple 2-knots. To
what extent is it a bijection? What other relations are required? In
other words,find a simple description of simple 2-knots. Kaw-
auchi [Ka] may already know the answer.

A 4D knot by Carter and Saito [CS]

“broken surface diagram”

Simple 2-Knots.

Recall.
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The Bracket-Rise Theorem.Aw is isomorphic to
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Corollaries.(1) Only wheels and isolated arrows persist:

Aw(↑n) �U(FL(n)n
tb ⋉ CW(n)) and ζ ≔ logZ ∈ FL(n)n × CW(n)

has completely explicit formulas using naturalFL/CWoperations [BN].
(2) Related to f.d. Lie algebras!
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Low Algebra. With (xi) and (ϕ j) dual bases ofg and g∗ and with
[xi , x j] =

∑
bk

i j xk, we haveAw →U via
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Differential Ops.We can also interpret̂U(Ig) as tangential differential
operators on Fun(g): ϕ ∈ g∗ becomes a multiplication operator, and
x ∈ g becomes a tangential derivation, in the direction of the action of
adx: (xϕ)(y) := ϕ([x, y]).
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Video and more at http://www.math.toronto.edu/~drorbn/Talks/Louvain-1506/
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