momorphic universal finite type invariant Z^{w} of pure w-tangles. $z^{w}:=\log Z^{w}$ takes values in $F L(S)^{S} \times C W(S)$.
z is computable. z of the Borromean tangle, to degree $5[\mathrm{BN}]$:

Proposition [BN]. Modulo all relations that universally hold for the 2D non-Abelian Lie algebra and after some changes-ofvariable, z^{w} reduces to z_{0}. $[u, v]=b_{u} v-b_{v} u$ Back to v - the 2D "Jones Quotient".

Contains the Jones and Alexander polynomials,

References.
[ADO] Y. Akutsu, T. Deguchi, and T. Ohtsuki, Invariants of Colored Links, J. of Knot Theory and its Ramifications 1-2 (1992) 161-184.
[BN] D. Bar-Natan, Balloons and Hoops and their Universal Finite Type Invariant, BF Theory, and an Ultimate Alexander Invariant, $\omega \varepsilon \beta / \mathrm{KBH}$, arXiv:1308.1721.
[BND] D. Bar-Natan and Z. Dancso, Finite Type Invariants of W-Knotted Objects I-II, $\omega ๔ \beta / \mathrm{WKO} 1, \omega \varepsilon \beta / \mathrm{WKO} 2$, arXiv:1405.1956, arXiv:1405.1955.
[BNS] D. Bar-Natan and S. Selmani, Meta-Monoids, Meta-Bicrossed Products, and the Alexander Polynomial, J. of Knot Theory and its Ramifications 22-10 (2013), arXiv:1302.5689.
[CT] D. Cimasoni and V. Turaev, A Lagrangian Representation of Tangles, Topology 44 (2005) 747-767, arXiv:math.GT/0406269.
[En] B. Enriquez, A Cohomological Construction of Quantization Functors of Lie Bialgebras, Adv. in Math. 197-2 (2005) 430-479, arXiv:math/0212325.
[EK] P. Etingof and D. Kazhdan, Quantization of Lie Bialgebras, I, Selecta Mathematica 2 (1996) 1-41, arXiv:q-alg/9506005.
[GST] R. E. Gompf, M. Scharlemann, and A. Thompson, Fibered Knots and Potential Counterexamples to the Property 2 R and Slice-Ribbon Conjectures, Geom. and Top. 14 (2010) 2305-2347, arXiv:1103.1601.
[KLW] P. Kirk, C. Livingston, and Z. Wang, The Gassner Representation for String Links, Comm. Cont. Math. 3 (2001) 87-136, arXiv:math/9806035.
[LD] J. Y. Le Dimet, Enlacements d'Intervalles et Représentation de Gassner, Comment. Math. Helv. 67 (1992) 306-315.
Ne Help Needed!
injections) \rightarrow (sets) (think " $M(S)$ is quantum G^{S} ", for G a group) along with natural operations $*: M\left(S_{1}\right) \times M\left(S_{2}\right) \rightarrow M\left(S_{1} \sqcup S_{2}\right)$ whenever $S_{1} \cap S_{2}=\emptyset$ and $m_{c}^{a b}: M(S) \rightarrow M((S \backslash\{a, b\}) \sqcup\{c\})$ whenever $a \neq b \in S$ and $c \notin S \backslash\{a, b\}$, such that

$$
\text { meta-associativity: } \quad m_{a}^{a b} / / m_{a}^{a c}=m_{b}^{b c} / / m_{a}^{a b}
$$

and, with $\epsilon_{b}=M(S \hookrightarrow S \sqcup\{b\})$,

$$
\text { meta-locality: } \quad m_{c}^{a b} / / m_{f}^{d e}=m_{f}^{d e} / / m_{c}^{a b}
$$

$$
\text { meta-unit: } \quad \epsilon_{b} / / m_{a}^{a b}=I d=\epsilon_{b} / / m_{a}^{b a}
$$

${ }_{6}$ Claim. Pure virtual tangles $P T$ form a meta-monoid.
Theorem. $S \mapsto \Gamma_{0}(S)$ is a meta-monoid and $z_{0}: P T \rightarrow \Gamma_{0}$ is a morphism of meta-monoids.
Strong Conviction. There exists an extension of Γ_{0} to a bigger meta-monoid $\Gamma_{01}(S)=\Gamma_{0}(S) \times \Gamma_{1}(S)$, along with an extension of z_{0} to $z_{01}: P T \rightarrow \Gamma_{01}$, with

$$
\left.\Gamma_{1}(S)=V \oplus V^{\otimes 2} \oplus V^{\otimes 3} \oplus \mathcal{S}^{2}(V)^{\otimes 2} \quad \text { (with } V:=R_{S}\langle S\rangle\right)
$$

Furthermore, upon reducing to a single variable everything is polynomial size and polynomial time.
Furthermore, Γ_{01} is given using a "meta-2-cocycle $\rho_{c}^{a b}$ over Γ_{0} ": In addition to $m_{c}^{a b} \rightarrow m_{0 c}^{a b}$, there are R_{S}-linear $m_{1 c}^{a b}: \Gamma_{1}(S \sqcup$ $\{a, b\}) \rightarrow \Gamma_{1}(S \sqcup\{c\})$, a meta-right-action $\alpha^{a b}: \Gamma_{1}(S) \times \Gamma_{0}(S) \rightarrow$ $\Gamma_{1}(S) R_{S}$-linear in the first variable, and a first order differential operator (over $\left.R_{S}\right) \rho_{c}^{a b}: \Gamma_{0}(S \sqcup\{a, b\}) \rightarrow \Gamma_{1}(S \sqcup\{c\})$ such that

$$
\left(\zeta_{0}, \zeta_{1}\right) / / m_{c}^{a b}=\left(\zeta_{0} / / m_{0 c}^{a b},\left(\zeta_{1}, \zeta_{0}\right) / / \alpha^{a b} / / m_{1 c}^{a b}+\zeta_{0} / / \rho_{c}^{a b}\right)
$$

What's done? The braid part, with still-ugly formulas.
What's missing? A lot of concept- and detail-sensitive work towards $m_{1 c}^{a b}, \alpha^{a b}$, and $\rho_{c}^{a b}$. The "ribbon element".

A bit about ribbon knots. A "ribbon knot" is a knot that can be presented as the boundary of a disk that has "ribbon singularities", but no "clasp singularities". A "slice knot" is a knot in $S^{3}=\partial B^{4}$ which is the boundary of a non-singular disk in B^{4}. Every ribbon knots is clearly slice, yet,
Conjecture. Some slice knots are not ribbon.
Fox-Milnor. The Alexander polynomial of a ribbon knot is always of the form $A(t)=f(t) f(1 / t)$.
(also for slice)

[^0]
[^0]: (3 "God created the knots, all else in "God created the knots, all else in
 topology is the work of mortals."
 Leopold Kronecker (modified)

