四品品Dror Bar－Natan：Talks：LesDiablerets－1508： $\omega \varepsilon \beta:=h t t p: / / w w w . m a t h . t o r o n t o . e d u / \sim d r o r b n / T a l k s / L e s D i a b l e r e t s-1508 /$

Work in Progress on Polynomial Time Knot Polynomials，A Abstrant．The value of things is inversely correlated with their Meta－Associativity $\quad\left(\begin{array}{llll}\alpha_{11} & \alpha_{12} & \alpha_{13} & \theta_{1} \\ \alpha_{21} & \alpha_{22} & \alpha_{23} & \theta_{2}\end{array}\right)$ Runs． computational complexity．＂Real time＂machines，such as our brains，only run linear time algorithms，and there＇s still a lot we don＇t know．Anything we learn about things doable in linear time is truly va－ luable．Polynomial time we can in－practice run，even if we have to wait；these things are still valuable．Exponential time we can play with，but just a little，and exponential things must be beautiful or philosophically compelling to deserve attention．Values further diminish and the aesthetic－or－philosophical bar fur－ ther rises as we go further slower，or un－computable，or ZFC－style intrinsically infinite，or large－cardinalish，or beyond．
I will explain some things I know about polynomial time knot polynomials and explain where there＇s more，within reach．
 are also definable properties）．

Faster is better，leaner is meaner！
Theorem 1．\exists ！an invariant z_{0} ：\｛pure framed S－component tangles $\} \rightarrow \Gamma_{0}(S):=R \times M_{S \times S}(R)$ ，where $R=R_{S}=\mathbb{Z}\left(\left(T_{a}\right)_{a \in S}\right)$ is the ring of rational functions in S variables，intertwining
\(\left(\begin{array}{c|l}\omega_{1} \& S_{1} \\

\hline S_{1} \& A_{1}\end{array}, \left.\frac{\omega_{2}}{} S_{2} S_{2} \right\rvert\, A_{2}\right) \xrightarrow{\sqcup} \xrightarrow{\omega_{1} \omega_{2}}\)| S_{1} | S_{2} |
| :---: | :---: |
| S_{1} | A_{1} |
| | 0 |
| S_{2} | 0 |
| | A_{2} |,

$\left.\begin{array}{c|ccc}\omega & a & b & S \\ \hline a & \alpha & \beta & \theta \\ b & \gamma & \delta & \epsilon \\ S & \phi & \psi & \Xi \\ T_{a}, T_{b} \rightarrow T_{c} \\ \mu:=1-\beta\end{array}\right)\left(\begin{array}{c|ccc}\mu \omega & c & S \\ \hline c & \gamma+\alpha \delta / \mu & \epsilon+\delta \theta / \mu \\ S & \phi+\alpha \psi / \mu & \Xi+\psi \theta / \mu\end{array}\right)$,

In Addition • The matrix part is just a stitching formula for Burau／Gassner［LD，KLW，CT］．
－$K \mapsto \omega$ is Alexander，mod units．
－$L \mapsto(\omega, A) \mapsto \omega \operatorname{det}^{\prime}(A-I) /\left(1-T^{\prime}\right)$ is the MVA，mod units．
－The fastest Alexander algorithm I know．
－There are also formulas for strand deletion， reversal，and doubling．

－Every step along the computation is the invariant of something．
－Extends to and more naturally defined on v / w－tangles．
－Fits in one column，including propaganda \＆implementation．
Implementation key idea：

$\left.\mathrm{r}[\mu=1-\beta) \omega,\left\{\mathrm{t}_{\mathrm{c}}, 1\right\} \cdot\binom{\gamma+\alpha \delta / \mu \epsilon+\delta \theta / \mu}{+\alpha \psi / \mu \varepsilon+\psi \theta / \mu} \cdot\left\{\mathrm{h}_{\mathrm{c}}, 1\right]\right]$
1．$\left\{\mathbb{T}_{a} \rightarrow \mathbf{T}_{c}, \mathbf{T}_{b} \rightarrow \mathrm{~T}_{c}\right\} / /$ rcollect $]$ ；
$M=\operatorname{Prepend}\left[\mathrm{M}, \mathrm{t}_{\|} \& / @ \mathrm{~s}\right] / /$ Transpose ；
$M=\operatorname{Prepend}[M, \operatorname{Pr}$
$M / /$ MatrixForm］；
Meta－Associativity
$\zeta=\Gamma\left[\omega, \quad\left\{t_{1}, t_{2}, t_{3}, t_{s}\right\} .\left(\begin{array}{cccc}\alpha_{11} & \alpha_{12} & \alpha_{13} & \theta_{1} \\ \alpha_{21} & \alpha_{22} & \alpha_{23} & \theta_{2} \\ \alpha_{31} & \alpha_{32} & \alpha_{33} & \theta_{3} \\ \phi_{1} & \phi_{2} & \phi_{3} & \Xi\end{array}\right) \cdot\left\{h_{1}, h_{2}, h_{3}, h_{s}\right\}\right] ;$

$\left\{\mathrm{Rm}_{51} \mathrm{Rm}_{62} \mathrm{Rp}_{34} / / \mathrm{m}_{14 \rightarrow 1} / / \mathrm{m}_{25 \rightarrow 2} / / \mathrm{m}_{36 \rightarrow 3}\right.$ ，
$\left.\mathrm{Rp}_{61} \mathrm{Rm}_{24} \mathrm{Rm}_{35} / / \mathrm{m}_{14 \rightarrow 1} / / \mathrm{m}_{25 \rightarrow 2} / / \mathrm{m}_{36 \rightarrow 3}\right\}$
$\square \pi_{4}^{2}-\frac{1}{4}$

Do $\left[z=z / / m_{1 k \rightarrow 1}, \quad\{k, 2,16\}\right] ;$
\mathbf{z}
$\left(\begin{array}{cc}11-\frac{1}{T_{1}^{3}}+\frac{4}{T_{1}^{2}}-\frac{8}{T_{1}}-8 \mathrm{~T}_{1}+4 \mathrm{~T}_{1}^{2}-\mathrm{T}_{1}^{3} & \mathrm{~h}_{1} \\ \mathrm{t}_{1} & 1\end{array}\right)$

Closed Components．The Halacheva trace tr_{c} satisfies $m_{c}^{a b} / / \operatorname{tr}_{c}=$ $m_{c}^{b a} / / \mathrm{tr}_{c}$ and computes the MVA for all links in the atlas，but its domain is not understood：

ω	c	S				
c	α	θ				
S	ψ	Ξ	$\xrightarrow{\mu:=1-\alpha}$	tr_{c}	$\mu \omega$	S
:---	:---	:---:				
S	$\Xi+\psi \theta / \mu$					

$\operatorname{tr}_{\mathrm{c}_{-}}\left[\mathrm{F}\left[\omega_{-}, \lambda_{-}\right]\right]:=\operatorname{Module}[\{\alpha, \theta, \psi, \Xi\}$,
$\left(\begin{array}{c}\alpha \\ \psi \\ \psi \\ \mathrm{\Xi}\end{array}\right)=\left(\begin{array}{cc}\partial_{\mathrm{t}_{\mathrm{c}}, \mathrm{he}_{\mathrm{c}}} \lambda & \partial_{\mathrm{t}_{\mathrm{t}}} \lambda \\ \partial_{\mathrm{h}_{\mathrm{c}}} \lambda & \lambda\end{array}\right) / \cdot(\mathrm{t} \mid \mathrm{h})_{\mathrm{c}} \rightarrow 0 ;$
$\Gamma[\omega(1-\alpha), \Xi+\psi * \theta /(1-\alpha)] / /$ rcollect $] ;$
$\Gamma[\omega(1-\alpha), \Xi+\psi * \theta /(1-\alpha)] / /$ rCollect $] ;$
$\left(\zeta / / \mathrm{m}_{12 \rightarrow 1} / / \operatorname{tr}_{1}\right)=\left(5 / / \mathrm{m}_{21 \rightarrow 1} / / \operatorname{tr}_{1}\right)$

$c l_{2}$ ：ribbon

Halacheva

example
Weaknesses．－$m_{c}^{a b}$ and tr_{c} are non－linear．－The product ωA is always Laurent，but my current proof takes induction with expo－ nentially many conditions．－I still don＇t understand tr_{c} ，＂unita－ rity＂，the algebra for ribbon knots．Where does it come from？

Let $\mathcal{I}:=\langle 久-X\rangle$ ．Then $\mathcal{A}^{v}:=\Pi I^{n} / I^{n+1}=$＂universal $\mathcal{U}(D \mathfrak{g})^{\otimes S "}=$

Fine print：No sources no sinks，AS vertices，internally acyclic，deg＝（\＃vertices）$/ 2$ ．
Likely Theorem．［EK，En］There exists a homomorphic expan－ sion（universal finite type invariant）$Z: v T \rightarrow \mathcal{A}^{v}$ ．（issues suppressed） Too hard！Let＇s look for＂meta－monoid＂quotients．

Video and more at http：／／www．math．toronto．edu／～drorbn／Talks／LesDiablerets－1508／

