Theorem. Every 2-knot can be represented by a "broken surface diagram" made of the following basic ingredients,

\ldots and any two representations of the same knot differ by a sequence of the following "Roseman moves":

A Stronger Invariant. There is an assigment of groups to knots / 2-knots as follows. Put an arrow "under" every un-broken curve / surface in a broken curve / surface diagram and label it with the name of a group generator. Then mod out by relations as below.

Facts. The resulting "Fundamental group" $\pi_{1}(K)$ of a knot / 2knot K is a very strong but not very computable invariant of K. Though it has computable projections; e.g., for any finite G, count the homomorphisms from $\pi_{1}(K)$ to G.
Exercise. Show that $\left|\operatorname{Hom}\left(\pi_{1}(K) \rightarrow S_{3}\right)\right|=\lambda(K)+3$.

Satoh's Conjecture. (Satoh, \longrightarrow "simple long knotted 2D tube in 4D"
Virtual Knot Presentations of
Ribbon Torus-Knots, J. Knot Theory and its Ramifications 9 (2000) 531-542). Two long wknot diagrams represent via the map δ the same simple long 2D knotted tube in 4D iff they differ
 by a sequence of R-moves as above and the "w-moves" VR1-

VR3, D and OC listed below:

Some knot theory books.

- Colin C. Adams, The Knot Book, an Elementary Introduction to the Mathematical Theory of Knots, American Mathematical Society, 2004.
- Meike Akveld and Andrew Jobbings, Knots Unravelled, from Strings to Mathematics, Arbelos 2011.
- J. Scott Carter and Masahico Saito, Knotted Surfaces and Their Diagrams, American Mathematical Society, 1997.
- Peter Cromwell, Knots and Links, Cambridge University Press, 2004.
- W.B. Raymond Lickorish, An Introduction to Knot Theory, Springer 1997.

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Cornell-150925/. Similar talks at .../CUMC-1307/, . . ./CUMC-1307/

