Abstract. Much as we can understand 3-dimensional objects by staring at their pictures and x-ray images and slices in 2dimensions, so can we understand 4-dimensional objects by staring at their pictures and x-ray images and slices in 3dimensions, capitalizing on the fact that we understand 3dimensions pretty well. So we will spend some time staring at and understanding various 2-dimensional views of a 3dimensional elephant, and then even more simply, various 2dimensional views of some 3-dimensional knots. This achieved, we'll take the leap and visualize some 4 -dimensional knots by their various traces in 3-dimensional space, and if we'll still have time, we'll prove that these knots are really knotted.

2-Knots / 4D Knots. Formally, "a differentiable embedding of S^{2} in \mathbb{R}^{4} modulo differentiable deformations of such".

Some Unknots

Thistlethwaite's unknot

Scharein's relaxation

Haken's unknot

3-Colourings. Colour the arcs of a broken arc diagram in RGB so that every crossing is either mono-chromatic or trichromatic. Let $\lambda(K)$ be the number of such 3-colourings that K has.
Example. $\lambda(\bigcirc)=3$ while $\lambda(\mathcal{S})=9$; so $\bigcirc \neq \mathscr{G}$. Riddle. Is $\lambda(K)$ always a power of 3 ?
 Proof sketch. It is enough to show that for each Reidemeister move, there is an end-colours-preserving bijection between the colourings of the two sides. E.g.:

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Cornell-150925/. Similar talks at .../CUMC-1307/, .../CUMC-1307/

