 in terms of a very simple minded map $\not \mathscr{H}$ from n-component v-w. Equally well, it is $\mathscr{\not}: v B_{n} \rightarrow w B_{n+1}$. Better, it is tangles to $(n+1)$-component w-tangles. It is possible that you all $\mathcal{K}: v T_{n} \rightarrow(n v+1 w) T$ or $\mathcal{K}: v B_{n} \rightarrow(n v+1 w) B$. know this already. Possibly my talk will be very short - it will Claims. be as long as it is necessary to describe \mathcal{K} and say a few more words, and if this is little, so be it.

All you need is $\mathscr{K} \ldots \bullet$ What is its domain? - What is its target? - Why should one care?

Virtual Knots. Virtual knots are the algebraic structure underlying the Reidemeister presentation of ordinary knots, without the topology. Locally they are knot diagrams modulo the Reidemeister relations; globally, who cares? So,
$v T=\mathrm{CA}\langle \%, \lambda: R 1, R 2, R 3\rangle \quad \mathrm{CA}=$ "Circuit Algebra"

No! Note that also

1. \mathcal{K} is well defined.
2. On u-links, $Ж$ "factors".

3. \nVdash does not respect $O C$.
4. $\mathscr{\not}$ recovers Manturov's $V G$ and $\mu: V G(K)=\pi_{1}(\nVdash(K)), \mu=$ $\mathscr{F} \circ \phi=\phi / / \mathcal{W}$.
Even better, $\mathscr{\nsim}$ pulls back any invariant of 2-component w-knots to an invariant of virtual knots. in particular, there is a wheelvalued "non-commutative" invariant ω as in $[\mathrm{BN}]$ and DBN : Talks: Hamilton-1412 (next page).
Likely, the various "2-variable Alexander polynomials" for virtual knots arise in this way.
Proof of 1.

Everything slides out!
Proof of 2. The net "red flow" into every face is 0 , so the red arrows can be paired. They form cycles that can hover off the picture.
No proof of 3. Well, there simply is no proof that $O C$ is respected, and it's easy to come up with counterexamples.
Proof of 4. A simple verification, except my conventions are off. . .

References.

[BN] D. Bar-Natan, Balloons and Hoops and their Universal Finite Type Invariant, BF Theory, and an Ultimate Alexander Invariant, Acta Mathematica Vietnamica 40-2 (2015) 271-329, arXiv:1308.1721.
[BGHNW] H. U. Boden, A. I. Gaudreau, E. Harper, A. J. Nicas, and L. White, Virtual Knot Groups and Almost Classical Knots, arXiv:1506.01726.
[Ma] V. O. Manturov, On Invariants of Virtual Links, Acta Applicandae Mathematica 72-3 (2002) 295-309.

Prejudices should always be re-evaluated!

Video and more at http://www.math.toronto.edu/~drorbn/Talks/MoscowByWeb-1511/

