Warning. Conventions on this page change randomly from line to line.
$Z^{w / 2}$. The GGA story is about $Z^{w / 2}: \mathcal{K} \rightarrow \mathcal{A}^{w / 2}$, defined on arrows $a$ by $\pm a \mapsto \exp ( \pm a)$ :


Where the target space $\mathcal{A}^{w / 2}$ is the space of unsigned arrow diagrams modulo

( $Z^{w / 2}$ is a reduction of the much-studied $Z^{w}[B N D, B N]$ ).
The Euler Trick. How best do non-commutative algebra with exponentials? Logarithms are from hell as $e^{f} e^{g}=e^{\operatorname{bch}(f, g)}$, but Euler's from heaven: Let $E$ be the derivation $E f:=(\operatorname{deg} f) f\left(=x f^{\prime}\right.$, in $\mathbb{Q} \llbracket x \|)$ and let $\tilde{E} Z:=Z^{-1} E Z\left(=x(\log Z)^{\prime}\right.$ in same $)$. If $\operatorname{deg} x=1$ then $\tilde{E} e^{x}=x$ and if $F=e^{f}$ and $G=e^{g}$, then $\tilde{E}(F G)$ is $(F G)^{-1}((E F) G+F(E G))=G^{-1}(\tilde{E} F) G+\tilde{E} G=e^{-\mathrm{ad} g}(\tilde{E} F)+\tilde{E} G$.
Scatter and Glow. Apply $\tilde{E}$ to $Z(K)$. $E Z$ is shown:


Tail scattering. The algebra $\mathbb{Q} \llbracket b_{i} \rrbracket\left\langle a_{i j}\right\rangle$ modulo $\left[a_{i j}, a_{k l}\right]=0$ (loc), $\left[a_{i j}, a_{i k}\right]=$ 0 (TC), and $\left[a_{i k}, a_{j k}\right]=-\left[a_{i j}, a_{j k}\right]=$ $b_{j} a_{i k}-b_{i} a_{j k}(\mathrm{CH}$ and $\overrightarrow{4 \mathrm{~T}})$, acts on $V=$ $\mathbb{Q} \llbracket b_{i} \mathbb{Z}\left\langle x_{i}=a_{i \infty}\right\rangle$ by $\left[a_{i j}, x_{i}\right]=0,\left[a_{i j}, x_{j}\right]=$
 $b_{i} x_{j}-b_{j} x_{i}$. Hence $e^{\text {ad } a_{i j}} x_{i}=x_{i}, e^{\text {ad } a_{i j}} x_{j}=$ $e^{b_{i}} x_{j}+\frac{b_{j}}{b_{i}}\left(1-e^{b_{i}}\right) x_{i}$. Renaming $\bar{x}_{i}=x_{i} / b_{i}, T_{i}=e^{b_{i}}$, get $\left[e^{\text {ad } a_{i j}}\right]_{\bar{x}_{i}, \bar{x}_{j}}=\left(\begin{array}{cc}1 & 1-T_{i} \\ 0 & T_{i}\end{array}\right)$. Alternatively,

$$
{ }_{y_{i}}^{\substack{y_{j}}} \stackrel{{ }^{2}}{\longrightarrow} \underset{x_{j}}{\longrightarrow} \longrightarrow \begin{aligned}
& \bar{y}_{i}=\bar{x}_{i} \\
& x_{i}
\end{aligned}
$$

Linear Control Theory.
If $\binom{y}{y_{n}}=\left(\begin{array}{ll}\Xi & \phi \\ \theta & \alpha\end{array}\right)\binom{x}{x_{n}}$, and we further impose $x_{n}=y_{n}$, then $y=B x$ where $B=\Xi+\frac{\phi \theta}{1-\alpha}$. This fully explains
 the Gassner formulas and the GGA formula!

All that remains now is to replace TC by something more interesting: with $\epsilon^{2}=0$,

$$
\left[a_{i j}, a_{i k}\right]=\epsilon\left(c_{j} a_{i k}-c_{k} a_{i j}\right) .
$$

Many further changes are also necessary, and the algebra is a lot more complicated and revolves around "quantization of Lie bialgebras" [EK, En]. But the spirit is right.
References.
[BN] D. Bar-Natan, Balloons and Hoops and their Universal Finite Type Invariant, BF Theory, and an Ultimate Alexander Invariant, $\omega \varepsilon \beta / \mathrm{KBH}$, arXiv:1308.1721.
[BND] D. Bar-Natan and Z. Dancso, Finite Type Invariants of $W$-Knotted Objects I, II, IV, $\omega \varepsilon \beta / W K O 1$, $\omega \varepsilon \beta / \mathrm{WKO} 2, \omega \varepsilon \beta / \mathrm{WKO} 4$, arXiv:1405.1956, arXiv:1405.1955, arXiv:1511.05624.
[BNG] D. Bar-Natan and S. Garoufalidis, On the Melvin-Morton-Rozansky conjecture, Invent. Math. 125 (1996) 103133.
[BNS] D. Bar-Natan and S. Selmani, Meta-Monoids, MetaBicrossed Products, and the Alexander Polynomial, J. of Knot Theory and its Ramifications 22-10 (2013), arXiv:1302.5689.
[CT] D. Cimasoni and V. Turaev, A Lagrangian Representation of Tangles, Topology 44 (2005) 747-767, arXiv:math.GT/0406269.
[En] B. Enriquez, A Cohomological Construction of Quantization Functors of Lie Bialgebras, Adv. in Math. 197-2 (2005) 430-479, arXiv:math/0212325.
[EK] P. Etingof and D. Kazhdan, Quantization of Lie Bialgebras, $I$, Selecta Mathematica 2 (1996) 1-41, arXiv:q-alg/9506005.
[GST] R. E. Gompf, M. Scharlemann, and A. Thompson, Fibered Knots and Potential Counterexamples to the Property $2 R$ and Slice-Ribbon Conjectures, Geom. and Top. 14 (2010) 2305-2347, arXiv:1103.1601.
[GPV] M. Goussarov, M. Polyak, and O. Viro, Finite type invariants of classical and virtual knots, Topology 39 (2000) 1045-1068, arXiv:math.GT/9810073.
[KLW] P. Kirk, C. Livingston, and Z. Wang, The Gassner Representation for String Links, Comm. Cont. Math. 3 (2001) 87-136, arXiv:math/9806035.
[LD] J. Y. Le Dimet, Enlacements d'Intervalles et Représentation de Gassner, Comment. Math. Helv. 67 (1992) 306-315.
[MM] P. M. Melvin and H. R. Morton, The coloured Jones function, Commun. Math. Phys. 169 (1995) 501-520.
[PV] M. Polyak and O. Viro, Gauss Diagram Formulas for Vassiliev Invariants, Inter. Math. Res. Notices 11 (1994) 445-453.
[Ro] L. Rozansky, A contribution of the trivial flat connection to the Jones polynomial and Witten's invariant of 3d manifolds, I, Comm. Math. Phys. 175-2 (1996) 275-296, arXiv:hep-th/9401061.

