
Main Point. P2,2 is poly-size, so how hard can it be? Indeed, as a
module over Q~bi�, P2,2 is at most

Claim. R jk = ea jk eρ jk is a solution of the Yang-Baxter / R3 equa-
tion R12R13R23 = R23R13R12 in expP2,2, with ρ jk B
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and with φ(x) B e−x − 1 = −x + x2/2 − . . . , and ψ(x) B
((x + 2)e−x − 2 + x) /(2x) = x2/12 − x3/24 + . . . . (This already
gives some new (v-)braid group representations, as below).

(van der Veen, Schaveling)
Vo, Halacheva, Dalvit, Ens, Lee

Abstract. There is expected to be a hidden paradise of poly-time
computable knot polynomials lying just beyond the Alexander
polynomial. I will describe my brute attempts to gain entry.

vd, f (K) =
∑

Y⊂X(K), |Y |=d

f (Y)Why “expected”? Gauss diagram
formulas [PV, GPV] show that
finite-type invariants are all poly-time, and tempt to conjecture
that there are no others. But Alexander shows it nonsense:

d 2 3 4 5 6 7 8 · · ·
known invts∗ in O(nd) 1 1 ∞ 3 4 8 11 · · ·

This is an unreasonable picture! ∗Fresh, numerical, no cheating.
So there ought to be further poly-time invariants.
Also. • The line above the Alexander line in the Melvin-
Morton [MM, Ro] expansion of the coloured Jones polyno-
mial. • The 2-loop contribution to the Kontsevich integral.
Why “paradise”? Foremost answer: OBVIOUSLY. Cf. pro-
ving (incomputable A)=(incomputable B), or categorifying (incomputable C).
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Figure 1. A tangle.

Second Answer. The second answer has to do with “Algebraic Knot Theory”, so let me start with that. Somewhat
informally, a “tangle” is a piece of a knot, or a “knot with endpoints” (an example is on the right). Knots can
be assembled by stitching together the strands of several tangles, or the different strands of a single tangle. Some
interesting classes of knots can be defined algebraically using tangles and these stitching operations. Here is the most
interesting example:
Definition 1. A “ribbon knot” is a knot K that can be presented as the boundary of a disk D which is allowed to have
“ribbon singularities” but not “clasp singularities”. See Figure 2.

Figure 2. A ribbon singularity, a
clasp singularity, and an example of
a ribbon knot.

τ κT T T

gives Tn T2n
τoo κ // T1

Definition 2. Let T2n denote the set of all tangles T with 2n compo-
nents that connect 2n points along a “top end” with 2n points along
a “bottom end” inducing the identity permutation of ends (an exam-
ple is the tangle in Figure 1). Given T ∈ T2n, let τ(T ) be the result
of stitching its components at the top in pairs as on the right — it is
an n-component tangle all of whose ends are at the bottom, and we
(somewhat loosely) denote the set of all such by Tn, so τ : T2n → Tn. Likewise let κ(T ) be the result of stitching T both at the top and at the
bottom, also as on the right. So κ(T ) is a 1-component tangle, which is the same as a knot, and κ : T2n → T1.
Theorem 1 (I have not seen this theorem in the literature, yet it is not difficult to prove). The set of ribbon knots is the set of all knots K that
can be written as K = κ(T ) for some tangle T for which τ(T ) is the untangled (crossingless) tangle U:

{ribbon knots} = {κ(T ) : T ∈ T2n and τ(T ) = U ∈ Tn} .
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(1)
Now suppose we have an invariant Z : Tk → Ak of tangles, which takes values in some spaces Ak.

Suppose also we have operations τA : A2n → An and κA : A2n → A1 such that the diagram on the right is
commutative. Then

Z({ribbon knots}) ⊆ RA B {κA(ζ) : ζ ∈ A2n and τA(ζ) = 1A ∈ An} ⊂ A1, (2)

where 1A B Z(U) ∈ An. If the target spaces Ak are algebraic (polynomials, matrices, matrices of polynomials, etc.) and the operations τA and
κA are algebraic maps between them (at this stage, meaning just “have simple algebraic formulas”), then RA is an algebraically defined set.
Hence we potentially have an algebraic way to detect non-ribbon knots: if Z(K) < RA, then K is not ribbon.

As it turns out, it is valuable to detect non-ribbon knots. Indeed the Slice-Ribbon Conjecture
(Fox, 1960s) asserts that every slice knot (a knot in S 3 that can be presented as the boundary of a
disk embedded in B4) is ribbon. Gompf, Scharlemann, and Thompson [GST] describe a family of
slice knots which they conjecture are not ribbon (the simplest of those is on the right). With the
algebraic technology described above it may be possible to show that the [GST] knots are indeed
non-ribbon, thus disproving the Slice-Ribbon Conjecture.

What would it take?

C1. An invariant Z which makes sense on tangles and for which diagram (1) commutes.
C2. Z cannot be a simple extension of the Alexander polynomial to tangles, for by Fox-Milnor [FM] the Alexander polynomial does not

detect non-ribbon slice knots.
C3. Z cannot be computable from finitely many finite type invariants, for this would contradict the results of Ng [Ng].1

C4. Z must be computable on at least the simplest [GST] knot, which has 48 crossings.
C5. It is better if in some meaningful sense the size of the spaces Ak grows slowly in k. Indeed in (2), if A2n is much bigger than An and A1

then at least generically RA will be the full set A1 and our condition will be empty.

No invariant that I know now meets these criteria. Alexander and Vassiliev fail C2 and C3, respectively. Almost all quantum invariants
and knot homologies pass C1-C3, but fail C4. Jones, HOMFLY-PT and Khovanov potentially pass C4, yet fail C5. We must come up with
something new.

[FM] R. H. Fox and J. W. Milnor, Singularities of 2-Spheres in 4-Space and Cobordism of Knots, Osaka J. Math. 3 (1966) 257–267.
[GST] R. E. Gompf, M. Scharlemann, and A. Thompson, Fibered Knots and Potential Counterexamples to the Property 2R and Slice-Ribbon

Conjectures, Geom. and Top. 14 (2010) 2305–2347, arXiv:1103.1601.
[Ng] K. Y. Ng, Groups of ribbon knots, Topology 37 (1998) 441–458, arXiv:q-alg/9502017 (with an addendum at arXiv:math.GT/0310074)

1A slight subtlety arises: There is no taking limits here, and C3 does not preclude the possibility that Z is computable from infinitely many finite type invariants. The
Fox-Milnor condition on the Alexander polynomial of ribbon knots, for example, is expressible in terms of the full Alexander polynomial, yet not in terms of any finite
type reduction thereof. Unfortunately by C2 it cannot be used here.

Why “brute”? Cause it’s the only thing I know, for
now. There may be better ways in, and it’s fair to
hope that sooner or later they will be found.

The Gold Standard is set by the formulas [BNS, BN]
for Alexander. An S -component tangle T has Γ(T ) ∈
RS ×MS×S (RS ) =
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}
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Theorem [EK, Ha, En, Se]. There is a “homomorphic expansion”

Z :
{S -component
(v/b-)tangles

}
→ Av

S B
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. . .
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(it is enough to know Z on! and have disjoint union and stitching
formulas) . . . exponential and too hard!
Idea. Look for “ideal” quotients of Av

S that have poly-sized de-
scriptions; . . . specifically, limit the co-brackets.

1-co and 2-co, aka TC and
TC2, on the right. The pri-
mitives that remain are:

The 2D relations come from the relation with 2D
Lie bialgebras:

We letA2,2 beAv modulo 2-co and 2D, and z2,2 be the projection
of log Z to P2,2 B πPv, where Pv are the primitives ofAv.
Main Claim. z2,2 is poly-time computable.

For long knots, ω is Alexander, and that’s the
fastest Alexander algorithm I know!

Dunfield: 1000-crossing fast.

Problem. How do we multiply in exp(P2,2)? How do we stitch?
BCH is a theoretical dream. Instead, use “scatter and glow” and
“feedback loops”:

The Euler trick:
With E f B (deg f ) f get Eex = xex

and E(exeyez) =

xexeyez + exyeyez + exeyzez.

Rozansky

Jones

Help Needed! Disorganized videos of talks
in a private seminar are at ωεβ/PP.
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The Brute and the Hidden Paradise
Dror Bar-Natan: Talks: Greece-1607:

Work in Progress!

. . . manageable but still exponential!

bi =

1 δai j c j δai j clai j δai jakl

Feedback loopCherenkov radiation

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Greece-1607/
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