1-Smidgen $s l_{2}$ Let \mathfrak{g}_{1} be the 4-dimensional Lie algebra $\mathfrak{g}_{1}=$ $\langle b, c, u, w\rangle$ over the ring $R=\mathbb{Q}[\epsilon] /\left(\epsilon^{2}=0\right)$, with b central and wi- 5. $O\left(e^{\alpha w+\beta u+\delta u w} \mid w u\right)=\mathbb{O}\left(v(1+\epsilon v \Lambda) e^{\nu(-b \alpha \beta+\alpha w+\beta u+\delta u w)} \mid u c w\right)$ th $[w, c]=w,[c, u]=u$, and $[u, w]=b-2 \epsilon c$, with CYBE $r_{i j}=$ Here Λ is for Λ ó $\gamma o s$, "a principle of order and knowledge", a ba-$\left(b_{i}-\epsilon c_{i}\right) c_{j}+u_{i} w_{j}$ in $\mathcal{U}\left(\mathfrak{g}_{1}\right)^{\otimes\{i, j\}}$. Over $\mathbb{Q}, \mathfrak{g}_{1}$ is a solvable approxi- lanced quartic in α, β, u, c, and w : mation of $s l_{2}: \mathfrak{g}_{1} \supset\langle b, u, w, \epsilon b, \epsilon c, \epsilon u, \epsilon w\rangle \supset\langle b, \epsilon b, \epsilon c, \epsilon u, \epsilon w\rangle \supset$ 0. $($ note: $\operatorname{deg}(b, c, u, w, \epsilon)=(1,0,1,0,1))$
0 -Smidgen $s l_{2} \odot$. Let \mathfrak{g}_{0} be \mathfrak{g}_{1} at $\epsilon=0$, or $\mathbb{Q}\langle b, c, u, w\rangle /([b, \cdot]=$ $0,[c, u]=u,[c, w]=-w,[u, w]=b$ with $r_{i j}=b_{i} c_{j}+u_{i} w_{j}$. It is $\mathfrak{b}^{*} \rtimes \mathfrak{b}$ where \mathfrak{b} is the 2D Lie algebra $\mathbb{Q}\langle c, w\rangle$ and (b, u) is the dual basis of (c, w). For topology, it is more valuable than $\mathfrak{g}_{1} / s l_{2}$, but topology already got by other means almost everything \mathfrak{g}_{0} gives. How did these arise? $s l_{2}=\mathfrak{b}^{+} \oplus \mathfrak{b}^{-} / \mathfrak{b}=: s l_{2}^{+} / \mathfrak{h}$, where $\mathfrak{b}^{+}=$ $\langle c, w\rangle /[w, c]=w$ is a Lie bialgebra with $\delta: \mathfrak{b}^{+} \rightarrow \mathfrak{b}^{+} \otimes \mathfrak{b}^{+}$by $\delta:(c, w) \mapsto(0, c \wedge w)$. Going back, $s l_{2}^{+}=\mathcal{D}\left(\mathrm{b}^{+}\right)=\left(\mathrm{b}^{+}\right)^{*} \oplus \mathrm{~b}^{+}=$ $\langle b, u, c, w\rangle / \cdots$. Idea. Replace $\delta \rightarrow \epsilon \delta$ over $\mathbb{Q}[\epsilon] /\left(\epsilon^{k+1}=0\right)$. At $k=0$, get \mathfrak{g}_{0}. At $k=1$, get $[w, c]=w,\left[w, b^{\prime}\right]=-\epsilon w,[c, u]=u$, $\left[b^{\prime}, u\right]=-\epsilon u,\left[b^{\prime}, c\right]=0$, and $[u, w]=b^{\prime}-\epsilon c$. Now note that $b^{\prime}+\epsilon c$ is central, so switch to $b:=b^{\prime}+\epsilon c$. This is \mathfrak{g}_{1}.
Ordering Symbols. O (poly \mid specs $)$ plants the variables of poly in $\mathcal{S}\left(\oplus_{i} \mathfrak{g}\right)$ on several tensor copies of $\mathcal{U}(\mathfrak{g})$ according to specs. E.g., $\bigcirc\left(c_{1}^{3} u_{1} c_{2} e^{u_{3}} w_{3}^{9} \mid x: w_{3} c_{1}, y: u_{1} u_{3} c_{2}\right)=w^{9} c^{3} \otimes u e^{u} c \in \mathcal{U}(\mathfrak{g})_{x} \otimes \mathcal{U}(\mathfrak{g})_{y}$ This enables the description of elements of $\hat{\mathcal{U}}(\mathrm{g})^{\otimes S}$ using commutative polynomials / power series.
0-Smidgen Invariants. $r=I d \in \mathfrak{b}^{-} \otimes \mathfrak{b}^{+}$solves the CYBE $\left[r_{12}, r_{13}\right]+\left[r_{12}, r_{23}\right]+\left[r_{13}, r_{23}\right]=0$ in $\mathcal{U}\left(\mathrm{g}_{0}\right)^{\otimes 3}$ and, by luck,

$$
\begin{aligned}
& \text { solves YB/R3. }
\end{aligned}
$$

Lemma. $R_{i j}=e^{b_{i} c_{j}+u_{i} w_{j}}=\mathbb{O}\left(\left.\exp \left(b_{i} c_{j}+\frac{e^{b_{i}-1}}{b_{i}} u_{i} w_{j}\right) \right\rvert\, i: u_{i}, j: c_{j} w_{j}\right)$
Example. $Z\left(T_{0}\right)=\quad=\sum_{m, n} \frac{b_{i}^{m-n}\left(e^{b_{i}}-1\right)^{n}}{m!n!} u^{n} \otimes c^{m} w^{n}$.
$\bigcirc\left(\left.\exp \left(b_{5} c_{1}+\frac{e^{b_{5}-1}}{b_{5}} u_{5} w_{1}+b_{2} c_{4}+\frac{e^{b_{2}-1}}{b_{2}} u_{2} w_{4}-b_{3} c_{6}+\frac{e^{-b_{3}-1}}{b_{3}} u_{3} w_{6}\right) \right\rvert\,\right.$ $\left.x: c_{1} w_{1} u_{2}, y: u_{3} c_{4} w_{4} u_{5} c_{6} w_{6}\right)=\mathbb{O}\left(\zeta \mid x: u_{x} c_{x} w_{x}, y: u_{y} c_{y} w_{y}\right)$
Goal. Write ζ as a Gaussian: ωe^{L+Q} where L bilinear in b_{i} and c_{i} with integer coefficients, Q a balanced quadratic in u_{i} and w_{i} with coefficients in $R_{S}:=\mathbb{Q}\left(b_{i}, e^{b_{i}}\right)$, and $\omega \in R_{S}$.
The Big g_{0} Lemma. Under $[c, u]=u,[c, w]=-w$, and $[u, w]=b$: 1a. $N^{c u}:=\mathbb{O}\left(e^{\gamma c+\beta u} \mid u c\right) \xrightarrow{=} \mathbb{O}\left(e^{\gamma c+e^{\gamma} \beta u} \mid c u\right) \quad\left(\right.$ means $e^{\beta u} e^{\gamma c}=e^{\gamma c} e^{e^{\gamma} \beta u}$ $1 \mathrm{~b} . N^{w c}:=\mathbb{O}\left(e^{\gamma c+\alpha w} \mid w c\right) \stackrel{\mathbb{O}}{=}\left(e^{\gamma c+e^{\gamma} \alpha w} \mid c w\right) \quad \ldots$ in the $\{a x+b\}$ group $)$ 2. $\mathbb{O}\left(e^{\alpha w+\beta u} \mid w u\right)=\mathbb{O}\left(e^{-b \alpha \beta+\alpha w+\beta u} \mid u w\right) \quad$ (the Weyl relations) 3. $\mathbb{O}\left(e^{\delta u w} \mid w u\right) e^{\beta u}=e^{\nu \beta u} O\left(e^{\delta u w} \mid w u\right)$, with $v=(1+b \delta)^{-1}$
(a. expand and crunch. b. use $w=b \hat{x}, u=\partial_{x} . \quad$ c. use "scatter and glow".)
4. $\mathbb{O}\left(e^{\delta u w} \mid w u\right)=\mathbb{O}\left(v e^{v \delta u w} \mid u w\right)$
(same techniques)
5. $N^{w u}:=\mathbb{O}\left(e^{\beta u+\alpha w+\delta u w} \mid w u\right) \xrightarrow{=} \mathbb{O}\left(v e^{-b v \alpha \beta+\nu \alpha w+\nu \beta u+\nu \delta u w} \mid u w\right)$
6. $N_{k}^{c_{i} c_{j}}:=\mathbb{O}\left(\zeta \mid c_{i} c_{j}\right) \stackrel{\rightharpoonup}{=} \mathbb{O}\left(\zeta /\left(c_{i}, c_{j} \rightarrow c_{k}\right) \mid c_{k}\right)$

Sneaky. α may contain (other) u 's, β may contain (other) w 's.
Strand Stitching, $m_{k}^{i j}$, is defined as the composition

$$
u_{i} c_{i} \overline{w_{i} u_{j}} c_{j} w_{j} \xrightarrow{N_{x}^{w_{i} u_{j}}} u_{i} \overline{c_{i} u_{x}} \overline{w_{x} c_{j}} w_{j} \xrightarrow{N_{x}^{c_{i} u_{x}} / / N_{x}^{w_{x} c_{j}}} \widetilde{u_{i} u_{x}} \overline{c_{x} c_{x}} \overline{w_{x} w_{j}} \begin{aligned}
& i, j, x \rightarrow k \\
& u_{k} \\
& c_{k} w_{k}
\end{aligned}
$$

$$
\begin{aligned}
\Lambda= & -b v\left(\alpha^{2} \beta^{2} v^{2}+4 \alpha \beta \delta v+2 \delta^{2}\right) / 2+\beta^{2} \delta v^{3}(b \delta+2) u^{2} / 2 \\
& +\delta^{3} v^{3}(3 b \delta+4) u^{2} w^{2} / 2+\beta \delta^{2} v^{3}(2 b \delta+3) u^{2} w \\
& +\alpha \delta^{2} v^{3}(2 b \delta+3) u w^{2}+2 \delta v^{2}(b \delta+2)(\alpha \beta v+\delta) u w \\
& +\alpha^{2} \delta v^{3}(b \delta+2) w^{2} / 2+2(\alpha \beta v+\delta) c+2 \beta \delta v u c+2 \delta^{2} v u c w \\
& +2 \alpha \delta v c w+\beta v^{2}(\alpha \beta v+2 \delta) u+\alpha v^{2}(\alpha \beta v+2 \delta) w .
\end{aligned}
$$

Proof. A lengthy computation.
(Verification: $\omega \varepsilon \beta / \mathrm{Big}$) Problem. We now need to normal-order perturbed Gaussians! Solution. Borrow some tactics from QFT:

$$
\mathbb{O}\left(\epsilon P(c, u) e^{\gamma c+\beta u} \mid u c\right)=\mathbb{O}\left(\epsilon P\left(\partial_{\gamma}, \partial_{\beta}\right) e^{\gamma c+\beta u} \mid u c\right)=
$$

$$
\text { and likewise } \quad \mathcal{O}\left(\epsilon P\left(\partial_{\gamma}, \partial_{\beta}\right) e^{\gamma c+e^{-\gamma} \beta u} \mid c u\right)
$$

$\bigcirc\left(\epsilon P(u, w) e^{\alpha w+\beta u+\delta u w} \mid w u\right)=\bigcirc\left(\epsilon P\left(\partial_{\beta}, \partial_{\alpha}\right) v e^{v(-b \alpha \beta+\alpha w+\beta u+\delta u w)} \mid u c w\right)$ Finally, the values of the generators $\curvearrowright, \lambda, \vec{n}$, and $\xrightarrow[\rightarrow]{u}$, are set by solving many equations, non-uniquely.
Pragmatic Simplifications. Set $t:=e^{b}$, work with $v:=(t-1) u / b$, and set $\mathbb{E}(\omega, L, Q, P):=\mathbb{O}\left(\omega^{-1} e^{L+Q / \omega}\left(1+\epsilon \omega^{-4} P\right):\left(i: v_{i} c_{i} w_{i}\right)\right)$. Now $\omega \in R_{S}:=\mathbb{Z}\left[t_{i}, t_{i}^{-1}\right]$ is Laurent, $L=\sum l_{i j} \log \left(t_{i}\right) c_{j}$ with $l_{i j} \in$ $\mathbb{Z}, Q=\sum q_{i j} v_{i} w_{j}$ with $q_{i j} \in R_{S}$, and P is a quartic polynomial in v_{i}, c_{j}, w_{k} with coefficients in R_{S}. The operations are lightly modified, and the Λ ó γ os and the values of the generators become somewhat simpler, as in the implementation below.
$\begin{aligned} & \text { Rough complexity esti- } \\ & \text { mate, after } t_{k} \rightarrow t . n \text { : xing } \\ & \text { number; } w \text { : width, maybe }\end{aligned} \frac{B}{\frac{n}{\sum_{A}^{4}}}{ }_{d=0}^{\frac{w^{4-d}}{E}} \frac{w^{d}}{F}, \frac{n^{2}}{G}=n^{3} w^{4} \in\left[n^{5}, n^{7}\right]$ $\sim \sqrt{n}$. A: go over stitchings in order. B : multiplication ops per $N^{u_{i} w_{j}} . d$: deg of u_{i}, w_{j} in P. E: \#terms of $\operatorname{deg} d$ in $P . F$: ops per term. G : cost per polynomial multiplication op.
Experimental Analysis ($\omega \varepsilon \beta /$ Exp). Log-log plots of computation time (sec) vs. crossing number, for all knots with up to 12 crossings (mean times) and for all torus knots with up to 48 crossings:

Conjecture (checked on the ${ }^{\frac{8}{6}}$ same collections). ${ }^{\frac{5}{12}}$ Given ${ }^{20}$ a knot K^{50} with Alexander polynomial A, there is a polynomial ρ_{1} such that

$$
P=A^{2} \frac{(t-1)^{3} \rho_{1}+t^{2}(2 v w+(1-t)(1-2 c)) A A^{\prime}}{(1-t) t}
$$

Furthermore, A and ρ_{1} are symmetric under $t \rightarrow t^{-1}$, so let A^{+}and ρ_{1}^{+}be their "positive parts", so e.g., $\rho_{1}(t)=\rho_{1}^{+}(t)+\rho_{1}^{+}\left(t^{-1}\right)-\rho_{1}^{+}(0)$. Power. On the 250 knots with at most 10 crossings, the pair (A, ρ_{1}) attains 250 distinct values, while (Khovanov, HOMFLYPT) attains only 249 distinct values. To 11 crossings the numbers are $(802,788,772)$ and to 12 they are $(2978,2883,2786)$.
Genus. Up to 12 xings, always $\operatorname{deg} \rho_{1}^{+} \leq 2 g-1$, where g is the 3 -genus of K (equallity for 2530 knots). This gives a lower bound on g in terms of ρ_{1} (conjectural, but undoubtedly true). This bound is often weaker than the Alexander bound, yet for 10 of the 12 -xing Alexander failures it does give the right answer.

This is http://www.math.toronto.edu/~drorbn/Talks/MIT-1612/. Better videos at .../Indiana-1611/, .../LesDiablerets-1608/

