
Goal. Write ζ as a Gaussian: ωeL+Q where L bilinear in bi and ci

with integer coefficients, Q a balanced quadratic in ui and wi with
coefficients in RS B Q(bi, ebi), and ω ∈ RS .
The Big g0 Lemma. Under [c, u] = u, [c,w] = −w, and [u,w] = b:
1a. Ncu B O(eγc+βu|uc) →= O(eγc+eγβu|cu) (means eβueγc = eγceeγβu

1b. Nwc B O(eγc+αw|wc) →= O(eγc+eγαw|cw) . . . in the {ax + b} group)
2. O(eαw+βu|wu) = O(e−bαβ+αw+βu|uw) (the Weyl relations)
3. O(eδuw|wu)eβu = eνβuO(eδuw|wu), with ν = (1 + bδ)−1

(a. expand and crunch. b. use w = bx̂, u = ∂x. c. use “scatter and glow”.)
4. O(eδuw|wu) = O(νeνδuw|uw) (same techniques)
5. Nwu B O(eβu+αw+δuw|wu) →= O(νe−bναβ+ναw+νβu+νδuw|uw)
6. Ncic j

k B O(ζ |cic j)
→
= O(ζ/(ci, c j → ck)|ck)

Sneaky. α may contain (other) u’s, β may contain (other) w’s.

Experimental Analysis (ωεβ/Exp). Log-log plots of computation
time (sec) vs. crossing number, for all knots with up to 12 cros-
sings (mean times) and for all torus knots with up to 48 crossings:

Conjecture (checked on the same collections). Given a knot K
with Alexander polynomial A, there is a polynomial ρ1 such that

P = A2 (t − 1)3ρ1 + t2(2vw + (1 − t)(1 − 2c))AA′

(1 − t)t
.

Furthermore, A and ρ1 are symmetric under t → t−1, so let A+ and
ρ+

1 be their “positive parts”, so e.g., ρ1(t) = ρ+
1 (t)+ρ+

1 (t−1)−ρ+
1 (0).

Power. On the 250 knots with at most 10 crossings, the pair
(A, ρ1) attains 250 distinct values, while (Khovanov, HOMFLY-
PT) attains only 249 distinct values. To 11 crossings the numbers
are (802, 788, 772) and to 12 they are (2978, 2883, 2786).
Genus. Up to 12 xings, always deg ρ+

1 ≤ 2g − 1, where g is
the 3-genus of K (equallity for 2530 knots). This gives a lower
bound on g in terms of ρ1 (conjectural, but undoubtedly true).
This bound is often weaker than the Alexander bound, yet for 10
of the 12-xing Alexander failures it does give the right answer.
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Rough complexity esti-
mate, after tk → t. n: xing
number; w: width, maybe
∼ √n. A: go over stitchings in order. B: multiplication ops per
Nuiw j . d: deg of ui,w j in P. E: #terms of deg d in P. F: ops per
term. G: cost per polynomial multiplication op.

The Big g1 Lemma. Parts 1 and 6 are the same, yet
5. O

(
eαw+βu+δuw|wu

)
= O

(
ν(1 + ενΛ)eν(−bαβ+αw+βu+δuw)|ucw

)

Here Λ is for Λόγος, “a principle of order and knowledge”, a ba-
lanced quartic in α, β, u, c, and w:

Λ = − bν(α2β2ν2 + 4αβδν + 2δ2)/2 + β2δν3(bδ + 2)u2/2
+ δ3ν3(3bδ + 4)u2w2/2 + βδ2ν3(2bδ + 3)u2w
+ αδ2ν3(2bδ + 3)uw2 + 2δν2(bδ + 2)(αβν + δ)uw
+ α2δν3(bδ + 2)w2/2 + 2(αβν + δ)c + 2βδνuc + 2δ2νucw
+ 2αδνcw + βν2(αβν + 2δ)u + αν2(αβν + 2δ)w.

Proof. A lengthy computation. (Verification: ωεβ/Big)
Problem. We now need to normal-order perturbed Gaussians!
Solution. Borrow some tactics from QFT:
O(εP(c, u)eγc+βu|uc) = O(εP(∂γ, ∂β)eγc+βu|uc) =

O(εP(∂γ, ∂β)eγc+e−γβu|cu),and likewise
O

(
εP(u,w)eαw+βu+δuw|wu

)
=O

(
εP(∂β, ∂α)νeν(−bαβ+αw+βu+δuw)|ucw

)

Finally, the values of the generators !, ", −→n , and u−→, are set by
solving many equations, non-uniquely.

“ucw form”

1-Smidgen sl2 Let g1 be the 4-dimensional Lie algebra g1 =

〈b, c, u,w〉 over the ring R = Q[ε]/(ε2 = 0), with b central and wi-
th [w, c] = w, [c, u] = u, and [u,w] = b − 2εc, with CYBE ri j =

(bi − εci)c j + uiw j inU(g1)⊗{i, j}. Over Q, g1 is a solvable approxi-
mation of sl2: g1 ⊃ 〈b, u,w, εb, εc, εu, εw〉 ⊃ 〈b, εb, εc, εu, εw〉 ⊃
0. (note: deg(b, c, u,w, ε) = (1, 0, 1, 0, 1))

0-Smidgen sl2 ,. Let g0 be g1 at ε = 0, or Q〈b, c, u,w〉/([b, ·] =

0, [c, u] = u, [c,w] = −w, [u,w] = b with ri j = bic j + uiw j. It is
b∗ o b where b is the 2D Lie algebra Q〈c,w〉 and (b, u) is the dual
basis of (c,w). For topology, it is more valuable than g1 / sl2, but
topology already got by other means almost everything g0 gives.
How did these arise? sl2 = b+ ⊕ b−/h C sl+2 /h, where b+ =

〈c,w〉/[w, c] = w is a Lie bialgebra with δ : b+ → b+ ⊗ b+ by
δ : (c,w) 7→ (0, c ∧ w). Going back, sl+2 = D(b+) = (b+)∗ ⊕ b+ =

〈b, u, c,w〉/ · · · . Idea. Replace δ → εδ over Q[ε]/(εk+1 = 0). At
k = 0, get g0. At k = 1, get [w, c] = w, [w, b′] = −εw, [c, u] = u,
[b′, u] = −εu, [b′, c] = 0, and [u,w] = b′ − εc. Now note that
b′ + εc is central, so switch to b B b′ + εc. This is g1.
Ordering Symbols. O (poly | specs) plants the variables of poly in
S(⊕ig) on several tensor copies ofU(g) according to specs. E.g.,

O
(
c3

1u1c2eu3w9
3|x : w3c1, y : u1u3c2

)
=w9c3⊗ueuc ∈ U(g)x⊗U(g)y

This enables the description of elements of Û(g)⊗S using com-
mutative polynomials / power series.
0-Smidgen Invariants. r = Id ∈ b− ⊗ b+ solves the CYBE
[r12, r13] + [r12, r23] + [r13, r23] = 0 inU(g0)⊗3 and, by luck,

i j i j

= Ri j = eri j = ebic j+uiw j ∈ U(g0,i ⊕ g0, j)
solves YB/R3.

Lemma. Ri j =ebic j+uiw j =O
(
exp

(
bic j + ebi−1

bi
uiw j

)
|i : ui, j : c jw j

)

Example. Z(T0) = =
∑

m,n
bm−n

i (ebi−1)n

m!n! un ⊗ cmwn.

O
(

exp
(
b5c1+ eb5−1

b5
u5w1+b2c4+ eb2−1

b2
u2w4−b3c6+ e−b3−1

b3
u3w6

)
|

x : c1w1u2, y : u3c4w4u5c6w6

)
= O

(
ζ |x : uxcxwx, y : uycywy

)

Strand Stitching, mi j
k , is defined as the composition

uici wiu j c jw j
N

wiu j
x−−−−→ ui ciux wxc j w j

Nciux
x �N

wxc j
x−−−−−−−−→ uiux cxcx wxw j

i, j,x→k−−−−−→ ukckwk

On to 1-smidgen invariants, where much is the same. . .

Pragmatic Simplifications. Set t B eb, work with v B (t − 1)u/b,
and set E(ω, L,Q, P) B O

(
ω−1eL+Q/ω(1 + εω−4P) : (i : viciwi)

)
.

Now ω ∈ RS B Z[ti, t−1
i ] is Laurent, L =

∑
li j log(ti)c j with li j ∈

Z, Q =
∑

qi jviw j with qi j ∈ RS , and P is a quartic polynomial
in vi, c j, wk with coefficients in RS . The operations are lightly
modified, and the Λόγος and the values of the generators become
somewhat simpler, as in the implementation below.
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This is http://www.math.toronto.edu/~drorbn/Talks/MIT-1612/. Better videos at . . . /Indiana-1611/,
. . . /LesDiablerets-1608/
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