$(b_i - \epsilon c_i)c_j + u_iw_j$ in $\mathcal{U}(\mathfrak{g}_1)^{\otimes (i,j)}$. Over \mathbb{Q} , \mathfrak{g}_1 is a solvable approximation of sl_2 : $\mathfrak{g}_1 \supset \langle b, u, w, \epsilon b, \epsilon c, \epsilon u, \epsilon w \rangle \supset \langle b, \epsilon b, \epsilon c, \epsilon u, \epsilon w \rangle \supset 0$. (note: deg $(b, c, u, w, \epsilon) = (1, 0, 1, 0, 1)$) 0-Smidgen $sl_2 \textcircled{O}$. Let \mathfrak{g}_0 be \mathfrak{g}_1 at $\epsilon = 0$, or $\mathbb{Q}\langle b, c, u, w \rangle/([b, \cdot] = 0, [c, u] = u, [c, w] = -w, [u, w] = b$ with $r_{ij} = b_i c_j + u_i w_j$. It is $\mathfrak{b}^* \rtimes \mathfrak{b}$ where \mathfrak{b} is the 2D Lie algebra $\mathbb{Q}\langle c, w \rangle$ and (b, u) is the dual basis of (c, w) . For topology, it is more valuable than \mathfrak{g}_1 / sl_2 , but topology already got by other means almost everything \mathfrak{g}_0 gives. How did these arise? $sl_2 = \mathfrak{b}^+ \oplus \mathfrak{b}^-/\mathfrak{h} =: sl_2^+/\mathfrak{h}$, where $\mathfrak{b}^+ =$	5. $\mathbb{O}\left(e^{aw+\rho u+ouw} wu\right) = \mathbb{O}\left(v(1 + \epsilon v\Lambda)e^{v(-bap+aw+\rho u+ouw)} ucw\right)$ Here Λ is for $\Lambda \dot{o}\gamma o\varsigma$, "a principle of order and knowledge", a balanced quartic in α , β , u , c , and w : $\Lambda = -bv(\alpha^2\beta^2v^2 + 4\alpha\beta\delta v + 2\delta^2)/2 + \beta^2\delta v^3(b\delta + 2)u^2/2 + \delta^3 v^3(3b\delta + 4)u^2w^2/2 + \beta\delta^2 v^3(2b\delta + 3)u^2w + \alpha\delta^2 v^3(2b\delta + 3)uw^2 + 2\delta v^2(b\delta + 2)(\alpha\beta v + \delta)uw + \alpha^2\delta v^3(b\delta + 2)w^2/2 + 2(\alpha\beta v + \delta)c + 2\beta\delta vuc + 2\delta^2 vucw + 2\alpha\delta vcw + \beta v^2(\alpha\beta v + 2\delta)u + \alpha v^2(\alpha\beta v + 2\delta)w$
$\langle c, w \rangle / [w, c] = w$ is a Lie bialgebra with $\delta \colon \mathfrak{b}^+ \to \mathfrak{b}^+ \otimes \mathfrak{b}^+$ by $\delta \colon (c, w) \mapsto (0, c \land w)$. Going back, $sl_2^+ = \mathcal{D}(\mathfrak{b}^+) = (\mathfrak{b}^+)^* \oplus \mathfrak{b}^+ =$	$\mathbb{O}(\epsilon P(c, u)e^{\gamma c + \beta u} uc) = \mathbb{O}(\epsilon P(\partial_{\gamma}, \partial_{\beta})e^{\gamma c + \beta u} uc) =$
$\langle b, u, c, w \rangle / \cdots$. Idea. Replace $\delta \to \epsilon \delta$ over $\mathbb{Q}[\epsilon]/(\epsilon^{k+1} = 0)$. At	and likewise $\mathbb{O}(\epsilon P(\partial_{\gamma}, \partial_{\beta})e^{\gamma c + e^{-\gamma}\beta u} cu),$
$k = 0$, get g_0 . At $k = 1$, get $[w, c] = w$, $[w, b'] = -\epsilon w$, $[c, u] = u$,	$\mathbb{O}\left(\epsilon P(u,w)e^{\alpha w+\beta u+\delta uw} wu\right) = \mathbb{O}\left(\epsilon P(\partial_{\beta},\partial_{\alpha})ve^{v(-b\alpha\beta+\alpha w+\beta u+\delta uw)} ucw\right)$
$[b', u] = -\epsilon u, [b', c] = 0$, and $[u, w] = b' - \epsilon c$. Now note that $b' + \epsilon c$ is central, so switch to $b := b' + \epsilon c$. This is g_1 .	Finally, the values of the generators \mathbb{X} , \mathbb{X} , \vec{n} , and \underline{u} , are set by
	solving many equations, non-uniquely. Pragmatic Simplifications. Set $t \coloneqq e^b$, work with $v \coloneqq (t-1)u/b$,
$S(\oplus_i \mathfrak{g})$ on several tensor copies of $\mathcal{U}(\mathfrak{g})$ according to <i>specs</i> . E.g.,	and set $\mathbb{E}(\omega, L, Q, P) := \mathbb{O}\left(\omega^{-1}e^{L+Q/\omega}(1 + \epsilon\omega^{-4}P): (i: v_ic_iw_i)\right).$
$\mathbb{O}\left(c_1^3 u_1 c_2 e^{u_3} w_3^9 x; w_3 c_1, y; u_1 u_3 c_2\right) = w^9 c^3 \otimes u e^u c \in \mathcal{U}(\mathfrak{g})_x \otimes \mathcal{U}(\mathfrak{g})_y$	Now $\omega \in R_S := \mathbb{Z}[t_i, t_i^{-1}]$ is Laurent, $L = \sum l_{ij} \log(t_i)c_j$ with $l_{ij} \in$
This enables the description of elements of $\hat{\mathcal{U}}(\mathfrak{g})^{\otimes S}$ using commutative polynomials / power series	\mathbb{Z} , $Q = \sum q_{ij}v_iw_j$ with $q_{ij} \in R_S$, and P is a quartic polynomial in v_i , c_i , w_k with coefficients in R_S . The operations are lightly
0-Smidgen Invariants. $r = Id \in b^- \otimes b^+$ solves the CYBE	modified, and the $\Lambda \dot{0}\gamma_{0}\varsigma$ and the values of the generators become somewhat simpler, as in the implementation below.
$[r_{12}, r_{13}] + [r_{12}, r_{23}] + [r_{13}, r_{23}] = 0 \text{ in } \mathcal{U}(\mathfrak{g}_0)^{\otimes 3} \text{ and, by luck,}$ $\downarrow \qquad \qquad$	Rough complexity esti- mate, after $t_k \rightarrow t$. n : xing number; w : width, maybe $n^{\frac{1}{A}} \sum_{d=0}^{4} \frac{w^{4-d}}{E} \frac{w^d}{F} \frac{n^2}{G} = n^3 w^4 \in [n^5, n^7]$
Lemma. $R_{ij} = e^{b_i c_j + u_i w_j} = \mathbb{O}\left(\exp\left(b_i c_j + \frac{e^{b_i} - 1}{b_i} u_i w_j\right) i : u_i, j : c_j w_j\right)$	$\sim \sqrt{n}$. A: go over stitchings in order. B: multiplication ops per
Example. $Z(T_0) = \sum_{m,n} \frac{b_i^{m-n} (e^{b_i} - 1)^n}{m! n!} u^n \otimes c^m w^n.$	$N^{u_iw_j}$. d: deg of u_i, w_j in P. E: #terms of deg d in P. F: ops per term. G: cost per polynomial multiplication op.
$\mathbb{O}\left(\exp\left(b_5c_1 + \frac{e^{b_5-1}}{b_5}u_5w_1 + b_2c_4 + \frac{e^{b_2-1}}{b_2}u_2w_4 - b_3c_6 + \frac{e^{-b_3-1}}{b_3}u_3w_6\right)\right $	Experimental Analysis ($\omega \epsilon \beta / Exp$). Log-log plots of computation time (sec) vs. crossing number, for all knots with up to 12 cros-
$(x; c_1w_1u_2, y; u_3c_4w_4u_5c_6w_6) = \mathbb{O}(\zeta x; u_xc_xw_x, y; u_yc_yw_y)$	sings (mean times) and for all torus knots with up to 48 crossings:
Goal. Write ζ as a Gaussian: ωe^{L+Q} where L bilinear in b_i and c_i	50 10 ⁴ (8.7)
with integer coefficients, Q a balanced quadratic in u_i and w_i with coefficients in $R_s := \mathbb{Q}(b_i, e^{b_i})$, and $\omega \in R_s$.	ال المراجع الم 20 - 10000 - المراجع ال 10 - (المراجع المراجع ا
The Big g_0 Lemma. Under $[c, u] = u$, $[c, w] = -w$, and $[u, w] = b$:	100 ຄ.ຊ. ຄະລິ (ຜູ້ຜູ້ຜູ້ຜູ້ອີດ 7.3 (ຄ.ຊ. 10.2) (ຄ.ຊ. (ຄ.ຊ. (ຄ.ຊ. 10.2) (ຄ.ຊ. (ຄ.ຊ. (ຄ.ຊ. 10.2))
1a. $N^{cu} := \mathbb{O}(e^{\gamma c + \beta u} uc) \stackrel{\rightarrow}{=} \mathbb{O}(e^{\gamma c + e^{\gamma} \beta u} cu)$ (means $e^{\beta u} e^{\gamma c} = e^{\gamma c} e^{e^{\gamma} \beta u}$	2 - 10 (7.3) (8.3) (11.2) (7.3) (8.3) (11.2) (7.3) (8.3)
1b. $N^{wc} := \mathbb{O}(e^{\gamma c + \alpha w} wc) \stackrel{\rightarrow}{=} \mathbb{O}(e^{\gamma c + e^{\gamma} \alpha w} cw)$ in the $\{ax + b\}$ group) 2. $\mathbb{O}(e^{\alpha w + \beta u} wu) = \mathbb{O}(e^{-b\alpha\beta + \alpha w + \beta u} uw)$ (the Weyl relations)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
2. $\mathbb{O}(e^{\delta uw} wu) = \mathbb{O}(e^{\delta uw} wu)$ (the Weyl relations) 3. $\mathbb{O}(e^{\delta uw} wu)e^{\beta u} = e^{\nu\beta u}\mathbb{O}(e^{\delta uw} wu)$, with $\nu = (1 + b\delta)^{-1}$	Conjecture (checked on the same collections). Given a knot K with Alexander polynomial A , there is a polynomial ρ_1 such that
(a. expand and crunch. b. use $w = b\hat{x}$, $u = \partial_x$. c. use "scatter and glow".)	
4. $\mathbb{O}(e^{\delta uw} wu) = \mathbb{O}(ve^{v\delta uw} uw)$ (same techniques)	$P = A^2 \frac{(t-1)^3 \rho_1 + t^2 (2vw + (1-t)(1-2c))AA'}{(1-t)t}.$
5. $N^{wu} := \mathbb{O}(e^{\beta u + \alpha w + \delta uw} wu) \stackrel{i}{=} \mathbb{O}(ve^{-bv\alpha\beta + v\alpha w + v\beta u + v\delta uw} uw)$	Furthermore, A and ρ_1 are symmetric under $t \to t^{-1}$, so let A^+ and
6. $N_k^{c_i c_j} := \mathbb{O}(\zeta c_i c_j) \stackrel{\sim}{=} \mathbb{O}(\zeta / (c_i, c_j \to c_k) c_k)$ Sneaky. α may contain (other) <i>u</i> 's, β may contain (other) <i>w</i> 's.	ρ_1^+ be their "positive parts", so e.g., $\rho_1(t) = \rho_1^+(t) + \rho_1^+(t^{-1}) - \rho_1^+(0)$.
Strand Stitching, m_k^{ij} , is defined as the composition	Power. On the 250 knots with at most 10 crossings, the pair
$u_i c_i \overline{w_i u_j} c_j w_j \xrightarrow{N_x^{w_i u_j}} u_i \overline{c_i u_x} \overline{w_x c_j} w_j \xrightarrow{N_x^{c_i u_x} / / N_x^{w_x c_j}} \overline{u_i u_x} \overline{c_x c_x} \overline{w_x w_j}$	(A, ρ_1) attains 250 distinct values, while (Khovanov, HOMFLY- PT) attains only 249 distinct values. To 11 crossings the numbers are (802, 788, 772) and to 12 they are (2978, 2883, 2786).
$\xrightarrow{i,j,x\to k} u_k c_k w_k$	Genus. Up to 12 xings, always deg $\rho_1^+ \leq 2g - 1$, where g is the 3 genus of K (equality for 2520 length). This gives a lower
On to 1-smidgen invariants, where much is the same	the 3-genus of K (equallity for 2530 knots). This gives a lower bound on g in terms of ρ_1 (conjectural, but undoubtedly true). This bound is often weaker than the Alexander bound, yet for 10 of the 12-xing Alexander failures it does give the right answer.

This is http://www.math.toronto.edu/~drorbn/Talks/MIT-1612/. Better videos at .../Indiana-1611/, .../LesDiablerets-1608/