Abstract. Rozansky [Ro2] and Overbay [Ov] described a spectacular knot polynomial that failed to attract the attention it deserved as the first poly-time-computable knot polynomial since Alexander's [Al, 1928] and (in my opinion) as the second most likely knot polynomial (after Alexander's) to carry topological information. With Roland van der Veen, I will explain how to compute the Rozansky polynomial using some new commutator-calculus techniques and a Lie algebra \mathfrak{g}_{1} which is at the same time
 solvable and an approximation of the simple Lie algebra $s l_{2}$.
Theorem ([BNG], conjectured [MM], e- مि 28 Melvin, lucidated [Ro1]). Let $J_{d}(K)$ be the co-
loured Jones polynomial of K, in the d-dimensional representation of $s l_{2}$. Writing

$$
\left.\frac{\left(q^{1 / 2}-q^{-1 / 2}\right) J_{d}(K)}{q^{d / 2}-q^{-d / 2}}\right|_{q=e^{\hbar}}=\sum_{j, m \geq 0} a_{j m}(K) d^{j} \hbar^{m},
$$

"below diagonal" coefficients vanish, $a_{j m}(K)=\uparrow m$ 0 if $j>m$, and "on diagonal" coefficients give the inverse of the Alexander polynomial: $\left(\sum_{m=0}^{\infty} a_{m m}(K) \hbar^{m}\right) \cdot A(K)\left(e^{\hbar}\right)=1$.

"Above diagonal" we have Rozansky's Theorem [Ro3, (1.2)]:

$$
J_{d}(K)(q)=\frac{q^{d}-q^{-d}}{\left(q-q^{-1}\right) A(K)\left(q^{d}\right)}\left(1+\sum_{k=1}^{\infty} \frac{(q-1)^{k} R_{k}(K)\left(q^{d}\right)}{A^{2 k}(K)\left(q^{d}\right)}\right)
$$

Why "spectacular"? Foremost reason: OBVIOUSLY. Cf. proving (incomputable A)=(incomputable B), or categorifying (incomputable C). Also, will bound genus and may disprove \{ribbon $\}=\{$ slice $\}$.

A bit about ribbon knots. A "ribbon knot" is a knot that can be presented as the boundary of a disk that has "ribbon singularities", but no "clasp singularities". A "slice knot" is a knot in $S^{3}=\partial B^{4}$ which is the boundary of a non-singular disk in B^{4}. Every ribbon knots is clearly slice, yet,
Conjecture. Some slice knots are not ribbon.
Fox-Milnor. The Alexander polynomial of a ribbon knot is always of the form $A(t)=f(t) f(1 / t)$.
(also for slice)

$4^{+}=-t^{8}+2 t^{7}-t^{6}-2 t^{4}+5 t^{3}-2 t^{2}-7 t+13$

$$
\begin{array}{r}
o_{1}^{+}=5 t^{15}-18 t^{14}+33 t^{13}-32 t^{12}+2 t^{11}+42 t^{10}-62 t^{9}-8 t^{8}+166 t^{7}-242 t^{6}+ \\
108 t^{5}+132 t^{4}-226 t^{3}+148 t^{2}-11 t-36
\end{array}
$$

The Gold Standard is set by the " Γ-calculus" Alexander formulas [BNS, BN1]. An S-component tangle T has $\Gamma(T) \in R_{S} \times M_{S \times S}\left(R_{S}\right)=\left\{\begin{array}{c|c}\omega & S \\ \hline S & A\end{array}\right\}$ with $R_{S}:=\mathbb{Z}\left(\left\{t_{a}: a \in S\right\}\right):$ $\left(a_{a} \widetilde{C}_{b}, b^{\nearrow} \mathbb{a}_{a}\right) \rightarrow$\begin{tabular}{c|cc}
1 \& a \& b \\
\hlinea \& 1 \& $1-t_{a}^{ \pm 1}$ \\
b \& 0 \& $t_{a}^{ \pm 1}$

$\quad T_{1} \sqcup T_{2} \rightarrow$

$\omega_{1} \omega_{2}$ \& S_{1} \& S_{2} \\
\hlineS_{1} \& A_{1} \& 0 \\
S_{2} \& 0 \& A_{2}

ω \& a \& b \& S \\
\hlinea \& α \& β \& θ \\
b \& γ \& δ \& ϵ \\
S \& ϕ \& ψ \& Ξ
\end{tabular}\(\xrightarrow[t_{a}, t_{b} \rightarrow t_{c}]{m_{c}^{a b}}\left(\begin{array}{c|cc}(1-\beta) \omega \& c \& S \\

\hline c \& \gamma+\frac{\alpha \delta}{1-\beta} \& \epsilon+\frac{\delta \theta}{1-\beta} \\
S \& \phi+\frac{\alpha \psi}{1-\beta} \& \Xi+\frac{\psi \theta}{1-\beta}\end{array}\right)\)
(Roland: "add to A the product of column b and row a, divide by $\left(1-A_{a b}\right)$, delete column b and row $a^{\prime \prime}$.)

For long knots, ω is Alexander, and that's the fastest Alexander algorithm I know!

Dunfield: 1000-crossing fast.
 (There are also formulas for strand doubling and strand reversal). Theorem [EK, Ha, En, Se]. There is a "homomorphic expansion" $Z:\left\{\begin{array}{l}S \text {-component } \\ (v / b-) \text { tangles }\end{array}\right\} \rightarrow \mathcal{A}_{S}^{v}:=?_{2}$
Algebras and Invariants. Given any unital algebra A (even better if A is Hopf; typically, $A \sim \hat{\mathcal{U}}(\mathrm{~g})$), appropriate orange $R \in A \otimes A$, and appropriate cuaps $\in A$, get an $A^{\otimes S}$-valued invariant of pure S-component tangles:

Good News. In theory, enough to know R, the cuaps, and stitching/multiplication $m_{k}^{i j}: A_{i} \otimes A_{j} \rightarrow A_{k}$.
Problem. Extract information out of Z.
Textbook Solution. Use representation theory ...works, slowly. Today's Solution (with van der Veen). For some specific \mathfrak{g} 's, work in a space of "formulas of a specific type" for elements of $\hat{\mathcal{U}}(\mathfrak{g})^{\otimes S}$:

$$
\left\{\begin{array}{l}
\text { ordered perturbed } \\
\text { Gaussian formulas }
\end{array}\right\} \rightarrow \hat{\mathcal{U}}(\mathrm{g})^{\otimes S}
$$

van der Veen

This is http://www.math.toronto.edu/~drorbn/Talks/MIT-1612/. Better videos at .../Indiana-1611/, . . /LesDiablerets-1608/

