On Elves and Invariants
his page，they describe the strongest truly computable knot invariant we know． Three steps to the computation of ρ_{1} ： 1．Preparation．Given K ，results〈long word｜｜simple formulas〉． 2．Rewrite rules．Make the word sim－ pler and the formulas more complica－ ted，until the word＂elf＂is reached． 3．Readout．The invariant ρ_{1} is read from the last formulas．

> Knot K
> \downarrow preparation
> $\left\langle\right.$ elf \ldots elf $\left.\| \omega_{0} ; L_{0} ; Q_{0} ; P_{0}\right\rangle$
> \downarrow rewrite rules
$\langle e l f \| \omega ;-;-; P\rangle$
\downarrow readout
$\rho_{1}(K)=\rho_{1}(\omega, P)$

Preparation．Draw K using a 0 －framed 0 －rotation planar diagram D where all crossings are poin－ ting up．Walk along D labeling features by $1, \ldots, m$ in order：over－passes，under－passes，and right－heading cups and caps（＂\pm－cuaps＂）．If x is a xing，let i_{x} and j_{x} be the labels on its over／under strands，and let s_{x} be 0 if it right－handed and -1
 otherwise．If c is a cuap，let i_{c} be its label and s_{c} be its sign．Set

$$
\begin{aligned}
(L ; Q ; P) & =\sum_{x:(i, j, s)}(-)^{s}\left(l_{j} ; t^{s} e_{i} f_{j} ;(-t)^{s} e_{i} l_{(1+s) i-s j} f_{j}+l_{i} l_{j}+\frac{t^{2 s} e_{i}^{2} f_{j}^{2}}{4}\right) \\
& +\sum_{c:(i, s)}\left(0 ; 0 ; s \cdot l_{i}\right) .
\end{aligned}
$$

This done，output $\left\langle e_{1} l_{1} f_{1} e_{2} l_{2} f_{2} \cdots e_{m} l_{m} f_{m} \| 1 ; L ; Q ; P\right\rangle$ ．
In formulas，L is always \mathbb{Z}－linear in $\left\{l_{i}\right\}, Q$ is an R－linear combina－ tion of $\left\{e_{i} f_{j}\right\}$ where $R:=\mathbb{Q}\left[t^{ \pm 1}\right]$ ，and P is an R－linear combination of $\left\{1, l_{i}, l_{i} l_{j}, e_{i} f_{j}, e_{i} l_{j} f_{k}, e_{i} e_{j} f_{k} f_{l}\right\}$ ．（The key to computability！）
Rewrite Rules．Manipulate〈word \｜formulas〉 expressions u－ sing the rewrite rules below，until you come to the form $\left\langle e_{1} l_{1} f_{1} \| \omega ;-;-; P\right\rangle$ ．Output (ω, P) ．
Rule 1，Deletions．If a letter appears in word but not in formulas， you can delete it．
Rule 2，Merges．In word，you can replace adjacent $v_{i} v_{j}$ with v_{k} （for $v \in\{e, l, f\}$ ）while making the same changes in formulas （provided k creates no naming clashes）．E．g．，

$$
\left\langle\ldots e_{i} e_{j} \ldots \| Z\right\rangle \rightarrow\left\langle\ldots e_{k} \ldots \|\left. Z\right|_{e_{i}, e_{j} \rightarrow e_{k}}\right\rangle .
$$

Rule 3，le Sorts．Provided k introduces no clashes，given $\left\langle\ldots l_{j} e_{i} \ldots \| \omega ; L ; Q ; P\right\rangle$ ，decompose $L=\lambda l_{j}+L^{\prime}, Q=\alpha e_{i}+Q^{\prime}$ ， write $P=P\left(e_{i}, l_{j}\right)$（with messy coefficients），set $q=\mathbb{e}^{\gamma} \beta e_{k}+\gamma l_{k}$ ， and output
$\left\langle\ldots e_{k} l_{k} \ldots \| \omega ;\left.L\right|_{l_{j} \rightarrow l_{k}} ; t^{\lambda} \alpha e_{k}+Q^{\prime} ;\left.\mathbb{E}^{-q} P\left(\partial_{\beta}, \partial_{\gamma}\right) \mathbb{E}^{q}\right|_{\beta \rightarrow \alpha / \omega, \gamma \rightarrow \lambda \log t}\right\rangle$. Rule 4，$f l$ Sorts．Provided k introduces no clashes，given $\left\langle\ldots f_{i} l_{j} \ldots \| \omega ; L ; Q ; P\right\rangle$ ，decompose $L=\lambda l_{j}+L^{\prime}, Q=\alpha f_{i}+Q^{\prime}$ ， write $P=P\left(f_{i}, l_{j}\right)$（with messy coefficients），set $q=\mathbb{E}^{\gamma} \beta f_{k}+\gamma l_{k}$ ， and output
$\left\langle\ldots l_{k} f_{k} \ldots \| \omega ; L l_{l_{j} \rightarrow l_{k}} ; t^{\lambda} \alpha f_{k}+Q^{\prime} ;\left.\mathbb{e}^{-q} P\left(\partial_{\beta}, \partial_{\gamma}\right) \mathbb{e}^{q}\right|_{\beta \rightarrow \alpha / \omega, \gamma \rightarrow \lambda \log t}\right\rangle$ ．
$\left\langle\ldots f_{i} e_{j} \ldots \| \omega ; L ; Q ; P\right\rangle$ ，decompose $Q=Q_{f e} f_{i} e_{j}+Q_{f} f_{i}+Q_{e} e_{j}+$ Q^{\prime} write $P=P\left(f_{i}, e_{j}\right)$（with messy coefficients），set $\mu=1+(t-1) \delta$ and $q=\left((1-t) \alpha \beta+\beta e_{k}+\alpha f_{k}+\delta e_{k} f_{k}\right) / \mu$ ，and output

$$
\left\langle\ldots e_{k} f_{k} \ldots \|\left._{\omega^{4} \Lambda_{k}+\mathbb{E}^{-q} P\left(\partial_{\alpha}, \partial_{\beta}\right)\left(\mathbb{P}^{q}\right)}^{\mu \omega ; L ; \mu \omega q+\mu Q^{\prime} ;}\right|_{\substack{\left.\alpha \rightarrow Q_{f} \mid \omega, \beta, \beta\right)-Q_{e} / \omega, \delta \rightarrow Q_{e}}},\right.
$$

where Λ_{k} is the Λ ó $\gamma \mathbf{o}$ ，＂a principle of order and knowledge＂：

$$
\begin{aligned}
& \Lambda_{k}=\frac{t+1}{4}\left(-\delta(\mu+1)\left(\beta^{2} e_{k}^{2}+\alpha^{2} f_{k}^{2}\right)-\delta^{3}(3 \mu+1) e_{k}^{2} f_{k}^{2}\right. \\
& -2\left(\beta e_{k}+\alpha f_{k}\right)\left(\alpha \beta+2 \delta \mu+\delta^{2}(2 \mu+1) e_{k} f_{k}+2 \delta \mu^{2} l_{k}\right) \\
& -4(\alpha \beta+\delta \mu)\left(\delta(\mu+1) e_{k} f_{k}+\mu^{2} l_{k}\right)-4 \delta^{2} \mu^{2} e_{k} f_{k} l_{k} \\
& \left.+(t-1)\left(2(\alpha \beta+\delta \mu)^{2}-\alpha^{2} \beta^{2}\right)\right) \text {. } \\
& \text { elf merges, } m_{k}^{i j} \text {, are defined as compositions } \geq \rightarrow \rightarrow \\
& e_{i} l_{i} \overline{f_{i} e_{j}} l_{j} f_{j} \xrightarrow{s_{x}^{f_{i} e_{j}}} e_{i} \overline{l_{i} e_{x}} \overline{f_{x} l_{j}} f_{j} \xrightarrow{s_{x}^{t_{x}} / / S_{x}^{f_{x} l_{j}}} \overline{e_{i} e_{x}} \overline{l_{x} l_{x}} \overline{f_{x} f_{j}} \\
& \xrightarrow{i, j, x \rightarrow k} e_{k} l_{k} f_{k}
\end{aligned}
$$

Readout．Given $\langle e l f \| \omega ;-;-; P\rangle$ ，output

$$
\rho_{1}(K):=\frac{t\left(\left.P\right|_{e, l, f \rightarrow 0}-t \omega^{\prime} \omega^{3}\right)}{(t-1)^{2} \omega^{2}} .
$$

（ ω is the Alexander polynomial，L and Q are not interesting）．

Experimental Analysis（ $\omega \varepsilon \beta /$ Exp）．Log－log plots of computation time（sec）vs．crossing number，for all knots with up to 12 cros－ sings（mean times）and for all torus knots with up to 48 crossings：

Power．On the 250 knots with at most 10 crossings，the pair （ ω, ρ_{1} ）attains 250 distinct values，while（Khovanov，HOMFLY－ PT）attains only 249 distinct values．To 11 crossings the numbers are $(802,788,772)$ and to 12 they are $(2978,2883,2786)$ ．
Genus．Up to 12 xings，always ρ_{1} is symmetric under $t \leftrightarrow t^{-1}$ ． With ρ_{1}^{+}denoting the positive－degree part of ρ_{1} ，always $\operatorname{deg} \rho_{1}^{+} \leq$ $2 g-1$ ，where g is the 3 －genus of K（equallity for 2530 knots）． This gives a lower bound on g in terms of ρ_{1}（conjectural，but undoubtedly true）．This bound is often weaker than the Alexander bound，yet for 10 of the 12 －xing Alexander failures it does give the right answer．
Why Works？The Lie algebra \mathfrak{g}_{1}（below）is a＂solvable approxi－ mation of $s l_{2}{ }^{\prime}$ ．
Theorem．The map（as defined below）
$\left.\langle w \| \omega ; L ; Q ; P\rangle \mapsto \mathbb{O}\left(\omega^{-1} \mathbb{e}^{L \log t+\omega^{-1}} Q_{(}+\epsilon \omega^{-4} P\right): w\right) \in \hat{\mathcal{U}}\left(\mathrm{g}_{1}\right)$ is well defined modulo the sorting rules．It maps the initial prepa－ ration to a product of＂R－matrices＂and＂cuap values＂satisfying the usual moves for Morse knots（R3，etc．）．（And hence the result is a＂quantum invariant＂，except computed very differently；no representation theory！）． ＂God created the knots，all else in topology is the work of mortals．＂

Leopold Kronecker（modified）

Happy Birthday， Scott！

