Abstract. Recently, Roland van der Veen and myself found that Chern-Simons-Witten. Given a knot $\gamma(t)$ in there are sequences of solvable Lie algebras "converging" to any \mathbb{R}^{3} and metrized Lie algebra \mathfrak{g}, set $Z(\gamma):=$ given semi-simple Lie algebra (such as $s l_{2}$ or $s l_{3}$ or $E 8$). Certain computations are much easier in solvable Lie algebras; in particular, using solvable approximations we can compute in polynomial time certain projections (originally discussed by Rozansky) of the knot invariants arising from the Chern-Simons-Witten topological quantum field theory. This provides us with the first strong knot invariants that are computable for truly large knots.
But $s l_{2}$ and $s l_{3}$ and similar algebras occur in physics (and in mathematics) in many other places, beyond the Chern-SimonsWitten theory. Do solvable approximations have further applications?
Recomposing $g l_{n}$. Half is enough! $g l_{n} \oplus \mathfrak{a}_{n}=\mathcal{D}(\nabla, b, \delta)$:

Now define $g l_{n}^{\epsilon}:=\mathcal{D}(\nabla, b, \epsilon \delta)$. Schematically, this is $[\nabla, \nabla]=\nabla$, $[\triangle, \triangle]=\epsilon \triangle$, and $[\nabla, \triangle]=\Delta+\epsilon \nabla$. In detail, it is

$\left[e_{i j}, e_{k l}\right]=\delta_{j k} e_{i l}-\delta_{l i} e_{k j} \quad\left[f_{i j}, f_{k l}\right]=\epsilon \delta_{j k} f_{i l}-\epsilon \delta_{l i} f_{k j}$ $\left[e_{i j}, f_{k l}\right]=\delta_{j k}\left(\epsilon \delta_{j<k} e_{i l}+\delta_{i l}\left(h_{i}+\epsilon g_{i}\right) / 2+\delta_{i>l} f_{i l}\right)$ $-\delta_{l i}\left(\epsilon \delta_{k<j} e_{k j}+\delta_{k j}\left(h_{j}+\epsilon g_{j}\right) / 2+\delta_{k>j} f_{k j}\right)$ $\left[g_{i}, e_{j k}\right]=\left(\delta_{i j}-\delta_{i k}\right) e_{j k} \quad\left[h_{i}, e_{j k}\right]=\epsilon\left(\delta_{i j}-\delta_{i k}\right) e_{j h}$ $\left[g_{i}, f_{j k}\right]=\left(\delta_{i j}-\delta_{i k}\right) f_{j k} \quad\left[h_{i}, f_{j k}\right]=\epsilon\left(\delta_{i j}-\delta_{i k}\right) f_{j k}$
Solvable Approximation. At $\epsilon=1$ and modulo $h=g$, the above is just $g l_{n}$. By rescaling at $\epsilon \neq 0, g l_{n}^{\epsilon}$ is independent of ϵ. We let $g l_{n}^{k}$ be $g l_{n}^{\epsilon}$ regarded as an algebra over $\mathbb{Q}[\epsilon] / \epsilon^{k+1}=0$. It is the " k-smidgen solvable approximation" of $g l_{n}$!
Recall that \mathfrak{g} is "solvable" if iterated commutators in it ultimately vanish: $\mathfrak{g}_{2}:=[\mathfrak{g}, \mathfrak{g}], \mathfrak{g}_{3}:=\left[\mathfrak{g}_{2}, \mathfrak{g}_{2}\right], \ldots, \mathfrak{g}_{d}=0$. Equivalently, if it is a subalgebra of some large-size ∇ algebra.
Note. This whole process makes sense for arbitrary semi-simple Lie algebras.
Why are "solvable algebras" any good? Contrary to common beliefs, computations in semi-simple Lie algebras are just awful:

$$
\ln [1]=\text { MatrixExp }\left[\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right] / / \text { FullSimplify // MatrixForm Enter }
$$

Yet in solvable algebras, exponentiation is fine and even BCH ,
$z=\log \left(\mathbb{C}^{x} \mathbb{C}^{y}\right)$, is bearable:

Question. What else can you do with solvable approximation? Chern-Simons-Witten theory is often "solved" using ideas from conformal field theory and using quantization of various moduli spaces. Does it make sense to use solvable approximation there too? Elsewhere in physics? Elsewhere in mathematics?
See Also. Talks at George Washington University [$\omega \varepsilon \beta / \mathrm{gwu}$], Indiana $[\omega \varepsilon \beta / \mathrm{ind}]$, and Les Diablerets $[\omega \varepsilon \beta / \mathrm{ld}]$, and a University of Toronto "Algebraic Knot Theory" class [$\omega \varepsilon \beta /$ akt].

$$
\int_{A \in \Omega^{1}\left(\mathbb{R}^{3}, \mathfrak{g}\right)} \mathcal{D} A \mathbb{e}^{i k c s(A)} P \operatorname{Exp}_{\gamma}(A)
$$

where $c s(A):=\frac{1}{4 \pi} \int_{\mathbb{R}^{3}} \operatorname{tr}\left(A d A+\frac{2}{3} A^{3}\right)$ and

$$
\operatorname{PExp}_{\gamma}(A):=\prod_{0}^{1} \exp \left(\gamma^{*} A\right) \in \mathcal{U}=\hat{\mathcal{U}}(\mathfrak{g})
$$

and $\mathcal{U}(\mathfrak{g}):=\langle$ words in $\mathfrak{g}\rangle /(x y-y x=[x, y])$. In a favourable gauge, one may hope that this computation will localize near the crossings and the bends, and all will depend on just two quantities,

$$
R=\sum a_{i} \otimes b_{i} \in \mathcal{U} \otimes \mathcal{U} \quad \text { and } \quad C \in \mathcal{U}
$$

This was never done formally, yet R and C can be "guessed" and all "quantum knot invariants" arise in this way. So for the trefoil,

$$
Z=\sum_{i, j, k} C a_{i} b_{j} a_{k} C^{2} b_{i} a_{j} b_{k} C
$$

But Z lives in \mathcal{U}, a complicated space. How do you extract information out of it?
Solution 1, Representation Theory. Choose a finite dimensional representation ρ of \mathfrak{g} in some vector space V. By luck and the wisdom of Drinfel'd and Jimbo, $\rho(R) \in V^{*} \otimes V^{*} \otimes V \otimes V$ and $\rho(C) \in V^{*} \otimes V$ are computable, so Z is computable too. But in exponential time!

Solution 2, Solvable Approximation. Work directly in $\hat{\mathcal{U}}\left(\mathfrak{g}_{k}\right)$, where $\mathfrak{g}_{k}=s l_{2}^{k}$ (or a similar algebra); everything is expressible using low-degree polynomials in a small number of variables, hence everything is poly-time computable!
Example 0. Take $\mathfrak{g}_{0}=s l_{2}^{0}=\mathbb{Q}\langle h, e, l, f\rangle$, with h central and $[f, l]=f,[e, l]=-e,[e, f]=h$. In it, using normal orderings,

$$
\begin{gathered}
R=\mathbb{O}\left(\left.\exp \left(h l+\frac{\mathbb{e}^{h}-1}{h} e f\right) \right\rvert\, e \otimes l f\right), \quad \text { and } \\
\mathbb{O}\left(\mathbb{e}^{\delta e f} \mid f e\right)=\mathbb{O}\left(v \mathbb{e}^{v \delta e f} \mid e f\right) \quad \text { with } v=(1+h \delta)^{-1} .
\end{gathered}
$$

Example 1. Take $R=\mathbb{Q}[\epsilon] /\left(\epsilon^{2}=0\right)$ and $\mathfrak{g}_{1}=s l_{2}^{1}=R\langle h, e, l, f\rangle$, with h central and $[f, l]=f,[e, l]=-e,[e, f]=h-2 \epsilon l$. In it,

$$
\mathbb{O}\left(\mathbb{C}^{\delta e f} \mid f e\right)=\mathbb{O}\left(v(1+\epsilon v \delta \Lambda / 2) \mathbb{C}^{\nu \delta e f} \mid e l f\right), \quad \text { where } \Lambda \text { is }
$$ $4 v^{3} \delta^{2} e^{2} f^{2}+3 v^{3} \delta^{3} h e^{2} f^{2}+8 v^{2} \delta e f+4 v^{2} \delta^{2} h e f+4 v \delta e l f-2 v \delta h+4 l$. Fact. Setting $h_{i}=h$ (for all i) and $t=\mathbb{e}^{h}$, the \mathfrak{g}_{1} invariant of any tangle T can be written in the form

$$
Z_{\mathfrak{g}_{1}}(T)=\mathbb{O}\left(\omega^{-1} \mathbb{e}^{h L+\omega^{-1} Q}\left(1+\epsilon \omega^{-4} P\right) \mid \bigotimes_{i} e_{i} l_{i} f_{i}\right)
$$

where L is linear, Q quadratic, and P quartic in the $\left\{e_{i}, l_{i}, f_{i}\right\}$ with ω and all coefficients polynomials in t. Furthermore, everything is poly-time computable.

