Abstract. It has long been known that there are knot invariants Theorem ([BNG], conjectured [MM], e- A \quad Melvin, associated to semi-simple Lie algebras, and there has long been lucidated [Ro1]). Let $J_{d}(K)$ be the co- 3,3 , Morton a dogma as for how to extract them: "quantize and use repre- loured Jones polynomial of K, in the d-dimensional representasentation theory". We present an alternative and better procedu- tion of $s l_{2}$. Writing
re: "centrally extend, approximate by solvable, and learn how to re-order exponentials in a universal enveloping algebra". While equivalent to the old invariants via a complicated process, our invariants are in practice stronger, faster to compute (poly-time vs. exp-time), and clearly carry topological information.
KiW 43 Abstract ($\omega \varepsilon \beta /$ kiw). Whether or not you like the formulas on this page, they describe the strongest truly computable knot invariant we know.

Experimental Analysis ($\omega \varepsilon \beta / \operatorname{Exp}$). Log-log plots of computation time (sec) vs. crossing number, for all knots with up to 12 crossings (mean times) and for all torus knots with up to 48 crossings:

Power. On the 250 knots with at most 10 crossings, the pair (ω, ρ_{1}) attains 250 distinct values, while (Khovanov, HOMFLYPT) attains only 249 distinct values. To 11 crossings the numbers are $(802,788,772)$ and to 12 they are $(2978,2883,2786)$.
Genus. Up to 12 xings, always ρ_{1} is symmetric under $t \leftrightarrow t^{-1}$. With ρ_{1}^{+}denoting the positive-degree part of ρ_{1}, always $\operatorname{deg} \rho_{1}^{+} \leq$ $2 g-1$, where g is the 3 -genus of K (equality for 2530 knots). This gives a lower bound on g in terms of ρ_{1} (conjectural, but undoubtedly true). This bound is often weaker than the Alexander bound, yet for 10 of the 12 -xing Alexander failures it does give the right answer.

[Vo]: Works
for Alexander! $o_{1}^{+}=5 t^{15}-18 t^{14}+33 t^{13}-32 t^{12}+2 t^{11}+42 t^{10}-62 t^{9}-8 t^{8}+166 t^{7}-242 t^{6}+$ Faster is better, leaner is meaner! $108 t^{5}+132 t^{4}-226 t^{3}+148 t^{2}-11 t-36$ dog•ma (dôg'mə, dŏg'-)

The Free Dictionary, $\omega \varepsilon \beta /$ TFD
n. pl. dog-mas or dog•ma'ta (-mə-tə)

1. A doctrine or a corpus of doctrines relating to matters such as morality and faith, set forth in an authoritative manner by a religion.
2. A principle or statement of ideas, or a group of such principles or statements especially when considered to be authoritative or accepted uncritically: "Much education consists in the instilling of unfounded dogmas in place of a spirit of inquiry" (Bertrand Russell).

$$
\left.\frac{\left(q^{1 / 2}-q^{-1 / 2}\right) J_{d}(K)}{q^{d / 2}-q^{-d / 2}}\right|_{q=e^{\hbar}}=\sum_{j, m \geq 0} a_{j m}(K) d^{j} \hbar^{m},
$$

"below diagonal" coefficients vanish, $a_{j m}(K)=$ 0 if $j>m$, and "on diagonal" coefficients give the inverse of the Alexander polynomial: $\left(\sum_{m=0}^{\infty} a_{m m}(K) \hbar^{m}\right) \cdot \omega(K)\left(e^{\hbar}\right)=1$.

"Above diagonal" we have Rozansky's Theorem [Ro3, (1.2)]:

$$
J_{d}(K)(q)=\frac{q^{d}-q^{-d}}{\left(q-q^{-1}\right) \omega(K)\left(q^{d}\right)}\left(1+\sum_{k=1}^{\infty} \frac{(q-1)^{k} \rho_{k}(K)\left(q^{d}\right)}{\omega^{2 k}(K)\left(q^{d}\right)}\right) .
$$

The Yang-Baxter Technique. Given an alge$\operatorname{bra} A$ (typically $\hat{\mathcal{U}}(\mathfrak{g})$ or $\left.\hat{\mathcal{U}}_{q}(\mathfrak{g})\right)$ and elements

$$
R=\sum a_{i} \otimes b_{i} \in A \otimes A \quad \text { and } \quad C \in A
$$

form

$$
Z=\sum_{i, j, k} C a_{i} b_{j} a_{k} C^{2} b_{i} a_{j} b_{k} C
$$

Problem. Extract information from Z.
The Dogma. Use representation theory. In principle finite, but slow.
The Loyal Opposition. For certain algebras, work in a homomorphic poly-dimensional "space of formulas".
$m_{k}^{i j} \longrightarrow\left\{\mathcal{F}_{S}\right\} \xrightarrow{\mathbb{E}} \longrightarrow\left\{A^{\otimes S}\right\} \leftrightharpoons m_{k}^{i j}$

The (fake) moduli of Lie algebras on V, a quadratic variety in $\left(V^{*}\right)^{\otimes 2} \otimes V$ is on the right. We care about $s l_{17}^{k}:=s l_{17}^{\epsilon} /\left(\epsilon^{k+1}=0\right)$.
 Why are "solvable algebras" any good? Contrary to common beliefs, computations in semi-simple Lie algebras are just awful:
$\ln [1]=\operatorname{MatrixExp}\left[\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\right] / /$ FullSimplify // MatrixForm Enter
Yet in solvable algebras, exponentiation is fine and even BCH ,
$z=\log \left(\mathbb{C}^{x} \mathbb{C}^{y}\right)$, is bearable:

Out[2]//MatrixForm=
$\operatorname{In}[2]:=\operatorname{MatrixExp}\left[\left(\begin{array}{ll}a & b \\ 0 & c\end{array}\right)\right] / /$ MatrixForm $\quad\left(\begin{array}{cc}e^{a} & \frac{b\left(e^{a}-e^{c}\right)}{a-c} \\ 0 & e^{c}\end{array}\right)$
$\ln [3]:=\operatorname{MatrixExp}\left[\left(\begin{array}{cc}a_{1} & b_{1} \\ 0 & c_{1}\end{array}\right)\right] \cdot \operatorname{MatrixExp}\left[\left(\begin{array}{cc}a_{2} & b_{2} \\ 0 & c_{2}\end{array}\right)\right] / /$
MatrixLog // PowerExpand // Simplify // MatrixForm

Enter

Recomposing $g l_{n}$. Half is enough! $g l_{n} \oplus \mathfrak{a}_{n}=\mathcal{D}(\nabla, b, \delta)$:

Now define $g l_{n}^{\epsilon}:=\mathcal{D}(\nabla, b, \epsilon \delta)$. Schematically, this is $[\nabla, \nabla]=\nabla$, $[\triangle, \triangle]=\epsilon \Delta$, and $[\nabla, \Delta]=\Delta+\epsilon \nabla$. In detail, it is

	$\left[e_{i j}, f_{k l}\right]=\delta_{j k}\left(\epsilon \delta_{j<k} e_{i l}+\delta_{i l}\left(h_{i}+\epsilon g_{i}\right) / 2+\delta_{i>l} f_{i l}\right)$
	$-\delta_{l i}\left(\epsilon \delta_{k<j} e_{k j}+\delta_{k j}\left(h_{j}+\epsilon g_{j}\right) / 2+\delta_{k>j} f_{k j}\right)$
	$\left.e_{j k}\right]=\left(\delta_{i j}-\delta_{i k}\right) e_{j k} \quad\left[h_{i}, e_{j k}\right]=\epsilon\left(\delta_{i j}-\delta_{i k}\right) e_{j k}$
	$\left.f_{j k}\right]=\left(\delta_{i j}-\delta_{i k}\right) f_{j k} \quad\left[h_{i}, f_{j k}\right]=\epsilon\left(\delta_{i j}-\delta_{i k}\right) f_{j k}$

