m
n
N
Abstract. It has long been known that there are knot invariants Theorem ([BNG], conjectured [MM], e- Melvin, associated to semi-simple Lie algebras, and there has long been lucidated [Ro1]). Let $J_{d}(K)$ be the co- 25 , 2 , Morton, a dogma as for how to extract them: "quantize and use repre- loured Jones polynomial of K, in the d-dimensional representasentation theory". We present an alternative and better procedu- tion of $s l_{2}$. Writing
re: "centrally extend, approximate by solvable, and learn how to re-order exponentials in a universal enveloping algebra". While equivalent to the old invariants via a complicated process, our invariants are in practice stronger, faster to compute (poly-time vs. exp-time), and clearly carry topological information.
KiW 43 Abstract ($\omega \varepsilon \beta /$ kiw). Whether or not you like the formulas on this page, they describe the strongest truly computable knot invariant we know.
Experimental Analysis ($\omega \varepsilon \beta / \operatorname{Exp}$). Log-log plots of computation time (sec) vs. crossing number, for all knots with up to 12 crossings (mean times) and for all torus knots with up to 48 crossings:

Power. On the 250 knots with at most 10 crossings, the pair (ω, ρ_{1}) attains 250 distinct values, while (Khovanov, HOMFLYPT) attains only 249 distinct values. To 11 crossings the numbers are $(802,788,772)$ and to 12 they are $(2978,2883,2786)$.
Genus. Up to 12 xings, always ρ_{1} is symmetric under $t \leftrightarrow t^{-1}$. With ρ_{1}^{+}denoting the positive-degree part of ρ_{1}, always $\operatorname{deg} \rho_{1}^{+} \leq$ $2 g-1$, where g is the 3 -genus of K (equality for 2530 knots). This gives a lower bound on g in terms of ρ_{1} (conjectural, but undoubtedly true). This bound is often weaker than the Alexander bound, yet for 10 of the 12 -xing Alexander failures it does give the right answer.
 for Alexander! Ribbon Knots.
 $o_{1}^{+}=5 t^{15}-18 t^{14}+33 t^{13}-32 t^{12}+2 t^{11}+42 t^{10}-62 t^{9}-8 t^{8}+166 t^{7}-242 t^{6}+$ Faster is better, leaner is meaner! $108 t^{5}+132 t^{4}-226 t^{3}+148 t^{2}-11 t-36$
Ordering Symbols. \mathbb{O} (poly \mid specs $)$ plants the variables of poly in $\mathcal{S}\left(\oplus_{i} \mathfrak{g}\right)$ on several tensor copies of $\mathcal{U}(\mathfrak{g})$ according to specs. E.g., $\bigcirc\left(a_{1}^{3} y_{1} a_{2} e^{y_{3}} x_{3}^{9} \mid x_{3} a_{1} \otimes y_{1} y_{3} a_{2}\right)=x^{9} a^{3} \otimes y e^{y} a \in \mathcal{U}(\mathrm{~g}) \otimes \mathcal{U}(\mathrm{g})$ This enables the description of elements of $\hat{\mathcal{U}}(\mathfrak{g})^{\otimes S}$ using commutative polynomials / power series.

$$
\left.\frac{\left(q^{1 / 2}-q^{-1 / 2}\right) J_{d}(K)}{q^{d / 2}-q^{-d / 2}}\right|_{q=e^{\hbar}}=\sum_{j, m \geq 0} a_{j m}(K) d^{j} \hbar^{m},
$$

"below diagonal" coefficients vanish, $a_{j m}(K)=$ 0 if $j>m$, and "on diagonal" coefficients give the inverse of the Alexander polynomial: $\left(\sum_{m=0}^{\infty} a_{m m}(K) \hbar^{m}\right) \cdot \omega(K)\left(e^{\hbar}\right)=1$.

"Above diagonal" we have Rozansky's Theorem [Ro3, (1.2)]:

$$
J_{d}(K)(q)=\frac{q^{d}-q^{-d}}{\left(q-q^{-1}\right) \omega(K)\left(q^{d}\right)}\left(1+\sum_{k=1}^{\infty} \frac{(q-1)^{k} \rho_{k}(K)\left(q^{d}\right)}{\omega^{2 k}(K)\left(q^{d}\right)}\right) .
$$

The Yang-Baxter Technique. Given an algebra U (typically $\hat{\mathcal{U}}(\mathrm{g})$ or $\hat{\mathcal{U}}_{q}(\mathrm{~g})$) and elements

$$
R=\sum a_{i} \otimes b_{i} \in U \otimes U \quad \text { and } \quad C \in U
$$

form

$$
Z=\sum_{i, j, k} C a_{i} b_{j} a_{k} C^{2} b_{i} a_{j} b_{k} C
$$

Problem. Extract information from Z.
The Dogma. Use representation theory. In principle finite, but slow.
The Loyal Opposition. For certain algebras, work in a homomorphic poly-dimensional "space of formulas".
$m_{k}^{i j} \longrightarrow\left\{\mathcal{F}_{S}\right\} \xrightarrow{\mathbb{E}} \not\left\{U^{\otimes S}\right\} \longleftrightarrow m_{k}^{i j}$

The (fake) moduli of Lie algebras on V, a quadratic variety in $\left(V^{*}\right)^{\otimes 2} \otimes V$ is on the right. We care about $s l_{17}^{k}:=s l_{17}^{\epsilon} /\left(\epsilon^{k+1}=0\right)$.
 Recomposing $g l_{n}$. Half is enough! $g l_{n} \oplus \mathfrak{a}_{n}=\mathcal{D}(\nabla, b, \delta)$:

Now define $g l_{n}^{\epsilon}:=\mathcal{D}(\nabla, b, \epsilon \delta)$. Schematically, this is $[\nabla, \nabla]=\nabla$, $[\Delta, \Delta]=\epsilon \Delta$, and $[\nabla, \Delta]=\Delta+\epsilon \nabla$. In detail, it is

$\begin{aligned} {\left[x_{i j}, y_{k l}\right]=} & \delta_{j k}\left(\epsilon \delta_{j<k} x_{i l}+\delta_{i l}\left(b_{i}+\epsilon a_{i}\right) / 2+\delta_{i>l} y_{i l}\right) \\ & -\delta_{l i}\left(\epsilon \delta_{k<j} x_{k j}+\delta_{k j}\left(b_{j}+\epsilon a_{j}\right) / 2+\delta_{k>j} y_{k j}\right) \\ {\left[a_{i}, x_{j k}\right]=} & \left(\delta_{i j}-\delta_{i k}\right) x_{j k} \\ {\left[a_{i}, y_{j k}\right]=} & {\left.\left[b_{i}, x_{j k}\right]=\epsilon\left(\delta_{i j}-\delta_{i j}\right) \delta_{i k}\right) y_{j k} } \\ & {\left[b_{i}, y_{j k}\right]=\epsilon\left(\delta_{i j}-\delta_{i k}\right) y_{j k} } \end{aligned}$	

The Main $s l_{2}$ Theorem. Let $\mathfrak{g}^{\epsilon}=\langle t, y, a, x\rangle /([t, \cdot]=0,[a, x]=$ $x,[a, y]=-y,[x, y]=t-2 \epsilon a)$ and let $\mathfrak{g}_{k}=\mathfrak{g}^{\epsilon} /\left(\epsilon^{k+1}=0\right)$. The $\mathfrak{g}_{k^{-}}$ invariant of any S-component tangle K can be written in the form $Z(K)=\mathbb{O}\left(\omega \mathbb{e}^{L+Q+P}: \bigotimes_{i \in S} y_{i} a_{i} x_{i}\right)$, where ω is a scalar (a rational function in the variables t_{i} and their exponentials $\left.T_{i}:=\mathbb{C}^{t_{i}}\right)$, where $L=\sum l_{i j} t_{i} a_{j}$ is a quadratic in t_{i} and a_{j} with integer coefficients $l_{i j}$, where $Q=\sum q_{i j} y_{i} x_{j}$ is a quadratic in the variables y_{i} and x_{j} with scalar coefficients $q_{i j}$, and where P is a polynomial in $\left\{\epsilon, y_{i}, a_{i}, x_{i}\right\}$ (with scalar coefficients) whose ϵ^{d}-term is of degree at most $2 d+2$ in $\left\{y_{i}, \sqrt{a_{i}}, x_{i}\right\}$. Furthermore, after setting $t_{i}=t$ and $T_{i}=T$ for all i, the invariant $Z(K)$ is poly-time computable.

