

The Yang-Baxter Technique. Given an al- Definition. A "docile perturbed gebra U (typically $\hat{\mathcal{U}}(\mathfrak{g})$ or $\hat{\mathcal{U}}_{q}(\mathrm{~g})$) and ele- Gaussian" in the variables $\left(z_{i}\right)_{i \in S}$ over ments

$$
\begin{gathered}
R=\sum a_{i} \otimes b_{i} \in U \otimes U \quad \text { and } \quad C \in U, \\
Z=\sum_{i, j, k} C a_{i} b_{j} a_{k} C^{2} b_{i} a_{j} b_{k} C .
\end{gathered}
$$

form
Problem. Extract information from Z.
The Dogma. Use representation theory. In principle finite, but slow.

The (fake) moduli of Lie algebras on V, a quadratic variety in $\left(V^{*}\right)^{\otimes 2} \otimes V$ is on the right. We care about $s l_{17}^{k}:=s l_{17}^{\epsilon} /\left(\epsilon^{k+1}=0\right)$.

Solvable Approximation. A quantized universal enveloping algebra (aka "quantum group") is an ∞-dimensional inverse limit.

Recomposing $g l_{n}$. Half is enough! $g l_{n} \oplus \mathfrak{a}_{n}=\mathcal{D}(\nabla, b, \delta)$:

Now define $g l_{n}^{\epsilon}:=\mathcal{D}(\nabla, b, \epsilon \delta)$. Schematically, this is $[\nabla, \nabla]=\nabla$, $[\Delta, \Delta]=\epsilon \Delta$, and $[\nabla, \Delta]=\Delta+\epsilon \nabla$. In detail, it is

$$
\left[\begin{array}{lr}
{\left[e_{i j}, e_{k l}\right]=\delta_{j k} e_{i l}-\delta_{l i} e_{k j}} & {\left[f_{i j}, f_{k l}\right]=\epsilon \delta_{j k} f_{i l}-\epsilon \delta_{l i} f_{k}} \\
{\left[e_{i j}, f_{k l}\right]=\delta_{j k}\left(\epsilon \delta_{j<k} e_{i l}+\delta_{i l}\left(h_{i}+\epsilon g_{i}\right) / 2+\delta_{i>l} f_{i l}\right)} \\
& -\delta_{l i}\left(\epsilon \delta_{k<j} e_{k j}+\delta_{k j}\left(h_{j}+\epsilon g_{j}\right) / 2+\delta_{k>j} f_{k j}\right) \\
{\left[g_{i}, e_{j k}\right]=\left(\delta_{i j}-\delta_{i k}\right) e_{j k}} & {\left[h_{i}, e_{j k}\right]=\epsilon\left(\delta_{i j}-\delta_{i k}\right) e_{j k}} \\
{\left[g_{i}, f_{j k}\right]=\left(\delta_{i j}-\delta_{i k}\right) f_{j k}} & {\left[h_{i}, f_{j k}\right]=\epsilon\left(\delta_{i j}-\delta_{i k}\right) f_{j k}}
\end{array}\right.
$$

Solvable Approximation (2). At $\epsilon=1$ and modulo $h=g$, the above is just $g l_{n}$. By rescaling at $\epsilon \neq 0, g l_{n}^{\epsilon}$ is independent of ϵ. We let $g l_{n}^{k}$ be $g l_{n}^{\epsilon}$ regarded as an algebra over $\mathbb{Q}[\epsilon] / \epsilon^{k+1}=0$. It is the " k-smidgen solvable approximation" of $g l_{n}$!
Recall that \mathfrak{g} is "solvable" if iterated commutators in it ultimately vanish: $\mathfrak{g}_{2}:=[\mathfrak{g}, \mathfrak{g}], \mathfrak{g}_{3}:=\left[\mathfrak{g}_{2}, \mathfrak{g}_{2}\right], \ldots, \mathfrak{g}_{d}=0$. Equivalently, if it is a subalgebra of some large-size ∇ algebra.
Note. This whole process makes sense for arbitrary semi-simple Lie algebras.
$\mathcal{G D O}$-Categories. Given \mathfrak{g} with basis $B=\{x, y, \ldots\}$, consider the following diagram:

$$
\begin{aligned}
& \mathbb{Q}=\hat{\boldsymbol{U}}_{(q)}\left(\bigoplus_{0} \mathfrak{g}\right) \xrightarrow{Z} \hat{\boldsymbol{U}}_{(q)}(\mathfrak{g}) \xrightarrow[m]{\stackrel{\Delta}{\longrightarrow}} \hat{\boldsymbol{U}}_{(q)}\left(\bigoplus_{2} \mathfrak{g}\right)
\end{aligned}
$$

Hence $Z, S W_{x y}, m, \Delta$, (and likewise S and θ) are morphisms in the completion of the monoidal category \mathcal{F} whose objects are finite sets B and whose morphisms are $\operatorname{mor}_{\mathcal{F}}\left(B, B^{\prime}\right):=$ $\operatorname{Hom}_{\mathbb{Q}}\left(\mathcal{S}(B) \rightarrow \mathcal{S}\left(B^{\prime}\right)\right)=\mathcal{S}\left(B^{*}, B^{\prime}\right)$ (by convention, $x^{*}=\xi$, $y^{*}=\eta$, etc.). Ergo we need to consolidate (at least parts of) said completion.
the ring R is an expression of the form

$$
\mathbb{e}^{q^{i j} z_{i} z_{j}} P=\mathbb{e}^{q^{i j} z_{i} z_{j}}\left(\sum_{k \geq 0} \epsilon^{k} P_{k}\right)
$$

where all coefficients are in R and where P is a "docile series": $\operatorname{deg} P_{k} \leq 4 k$.
Docililty Matters! The rank of the space of docile series to ϵ^{k} is polynomial in the number of variables $|S|$.
Theorem ([BNG], conjectured [MM], คO AR Melvin, elucidated [Ro1]). Let $J_{d}(K)$ be the co- 85 Morton, loured Jones polynomial of K, in the d-dimensional representation of $s l_{2}$. Writing

$$
\left.\frac{\left(q^{1 / 2}-q^{-1 / 2}\right) J_{d}(K)}{q^{d / 2}-q^{-d / 2}}\right|_{q=e^{h}}=\sum_{j, m \geq 0} a_{j m}(K) d^{j} \hbar^{m}
$$

"below diagonal" coefficients vanish, $a_{j m}(K)=\uparrow$ 0 if $j>m$, and "on diagonal" coefficients give the inverse of the Alexander polynomial: $\left(\sum_{m=0}^{\infty} a_{m m}(K) \hbar^{m}\right) \cdot \omega(K)\left(e^{\hbar}\right)=1$.

"Above diagonal" we have Rozansky's Theorem [Ro3, (1.2)]:

$$
J_{d}(K)(q)=\frac{q^{d}-q^{-d}}{\left(q-q^{-1}\right) \omega(K)\left(q^{d}\right)}\left(1+\sum_{k=1}^{\infty} \frac{(q-1)^{k} \rho_{k}(K)\left(q^{d}\right)}{\omega^{2 k}(K)\left(q^{d}\right)}\right) .
$$

Prior art. Some amazing computations by
Rozansky and Overbay in [Ro2, Ro3] and in [Ov].
Faddeev's Formula (In as much as we can tell, first appeared w/o proof in Faddeev [Fa], rediscovered and proven in
Quesne [Qu], and again with easier proof,
 and with $\mathbb{E}_{q}^{x}:=\sum_{n \geq 0} \frac{x^{n}}{[n]_{q}}$, we have

$$
\log \mathbb{E}_{q}^{x}=\sum_{k \geq 1} \frac{(1-q)^{k} x^{k}}{k\left(1-q^{k}\right)}=x+\frac{(1-q)^{2} x^{2}}{2\left(1-q^{2}\right)}+\ldots
$$

Proof. We have that $\mathbb{E}_{q}^{x}=\frac{\mathbb{e}_{q}^{q x}-\mathbb{E}_{q}^{x}}{q x-x}$ ("the q-derivative of \mathbb{E}_{q}^{x} is itself"), and hence $\mathbb{e}_{q}^{q x}=(1+(1-q) x) \mathbb{E}_{q}^{x}$, and

$$
\log \mathbb{e}_{q}^{q x}=\log (1+(1-q) x)+\log \mathbb{e}_{q}^{x} .
$$

Writing $\log \mathbb{C}_{q}^{x}=\sum_{k \geq 1} a_{k} x^{k}$ and comparing powers of x, we get $q^{k} a_{k}=-(1-q)^{k} / k+a_{k}$, or $a_{k}=\frac{(1-q)^{k}}{k\left(1-q^{k}\right)}$.

Aside. "Consolidate" means "give a finite name to an infinite object, and figure out how to sufficiently manipulate such finite names". E.g., solving $f^{\prime \prime}=-f$ we encounter and set $\sum \frac{(-1)^{k} x^{2 k}}{(2 k)!} \leadsto \cos x, \sum \frac{(-1)^{k} x^{2 k+1}}{(2 k+1)!} \leadsto \sin x$, and then $\cos ^{2} x+$ $\sin ^{2} x=1$ and $\sin (x+y)=\sin x \cos y+\cos x \sin y$.
The Composition Law. If

$$
\mathcal{S}\left(B_{0}\right) \xrightarrow{{ }^{t} f \in \mathbb{Q} \llbracket \zeta_{0} i, z_{1 j} \rrbracket} \xrightarrow{f} \mathcal{S}\left(B_{1}\right) \xrightarrow{{ }^{t} g \in \mathbb{Q} \llbracket \zeta_{1} ; z_{2 k} \mathbb{}} \xrightarrow{g} \mathcal{S}\left(B_{2}\right)
$$

then ${ }^{t}(f / / g)={ }^{t}(g \circ f)=\left(\left.g\right|_{\zeta_{1 j} \rightarrow \partial_{z_{1 j}}} f\right)_{z_{1 j}=0}$.

Examples.

1. The 1 -variable identity map $I: \mathcal{S}(z) \rightarrow \mathcal{S}(z)$ is given by ${ }^{t} I_{1}=\mathbb{e}^{z \zeta}$ and the n-variable one by ${ }^{t} I_{n}=\mathbb{e}^{z_{1} \zeta_{1}+\cdots+z_{n} \zeta_{n}}$.
