$$\begin{array}{c} C \\ b_{1} \\ c_{2} \\ c_{3} \\ c_{4} \\ c_{5} \\ c_{6} \\ c_$$

Hence Z, SW_{xy} , m, Δ , (and likewise S and θ) are morphisms in the *completion* of the monoidal category \mathcal{F} whose objects are finite sets B and whose morphisms are $\operatorname{mor}_{\mathcal{F}}(B, B') :=$ $\operatorname{Hom}_{\mathbb{Q}}(\mathcal{S}(B) \to \mathcal{S}(B')) = \mathcal{S}(B^*, B')$ (by convention, $x^* = \xi$, $y^* = \eta$, etc.). Ergo we need to *consolidate* (at least parts of) said completion.

r Aside. "Consolidate" means "give a finite name to an infinite object, and figure out how to sufficiently manipulate such finite names". E.g., solving f'' = -f we encounter and set $\sum \frac{(-1)^k x^{2k}}{(2k)!} \rightarrow \cos x$, $\sum \frac{(-1)^k x^{2k+1}}{(2k+1)!} \rightarrow \sin x$, and then $\cos^2 x + \frac{1}{2k} \cdot \frac{1}{2k} \cdot \frac{1}{2k} = 1$ and $\sin(x + y) = \sin x \cos y + \cos x \sin y$.

The Composition Law. If

$$\mathcal{S}(B_0) \xrightarrow{f} \mathcal{S}(B_1) \xrightarrow{g} \mathcal{S}(B_1) \xrightarrow{g} \mathcal{S}(B_2)$$

then ${}^t(f/\!\!/g) = {}^t(g \circ f) = \left(g|_{\zeta_{1j} \to \partial_{z_{1j}}} f\right)_{z_{1j}=0}$.

Examples.

1. The 1-variable identity map $I: S(z) \to S(z)$ is given by ${}^{t}I_{1} = \underline{e}^{\underline{z}\underline{\zeta}}$ and the *n*-variable one by ${}^{t}I_{n} = \underline{e}^{\underline{z}\underline{\zeta}+\dots+\underline{z}_{n}\underline{\zeta}_{n}}$.

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Matemale-1804/