Dror Bar-Natan: Talks: Matemale-1804:

Solvable Approximations of the Quantum $s l_{2}$ Portfolio
Our Main Theorem (loosely stated). Everything that matters in the quantum $s l_{2}$ portfolio can be continuously expressed in terms of docile perturbed Gaussians using solvable approximations. \bigcirc Our Main Points.

- What's the "quantum $s l_{2}$ portfolio"?
- What in it "matters" and why? (the most important question)
- What's "solvable approximation"? What's "continuously"?
- What are "docile perturbed Gaussians"?
- Why do they matter?
(2 ${ }^{\text {nd }}$ most important)
- How proven?
$\xrightarrow[\kappa]{\longrightarrow}$

Gompf, Schar-

ribbon $K \in \mathcal{T}_{1} \quad z(K) \in \mathcal{R} \subseteq \mathcal{A}_{1}$
Faster is better, leaner is meaner!

84 The Gold Standard is set by the " Γ-calculus" Alexander formulas [BNS, BN1]. An S-component tangle T has

- How implemented?
(sacred; the work of unsung heroes)
- Some context and background.
- What's next?

The quantum $s l_{2}$ Portfolio includes a classical universal enveloping algebra $C U$, its quantization $Q U$, their tensor
 powers $C U^{\otimes S}$ and $Q U^{\otimes S}$ with the "tensor operations" \otimes, their products $m_{k}^{i j}$, coproducts $\Delta_{j k}^{i}$ and antipodes S_{i}, their Cartan automophisms $C \theta: C U \rightarrow C U$ and $Q \theta: Q U \rightarrow Q U$, the "dequantizators" $A \mathbb{D}: Q U \rightarrow C U$ and $S \mathbb{D}: Q U \rightarrow C U$, and most importantly, the R-matrix R and the Drinfel'd element s. All this in any PBW basis, and change of basis maps are included.

Genus. Every knot is the boundary of an orientable "Seifert Surface" ($\omega \varepsilon \beta / \mathrm{SS}$), and the least of their genera is the "genus" of the knot.
Claim. The knots of genus ≤ 2 are precisely the images of 4-component tangles via

$\left(\zeta / / m_{12 \rightarrow 1} / / m_{13 \rightarrow 1}\right)=\left(\zeta / / m_{23 \rightarrow 2} / / m_{12 \rightarrow 1}\right)$

I

 presented as the boundary of a disk that has "ribbon singularities", but no "clasp singularities". A "slice knot" is a knot in $S^{3}=\partial B^{4}$ which is the boundary of a non-singular disk in B^{4}. Every ribbon knots is clearly slice, yet,Conjecture. Some slice knots are not ribbon.
Fox-Milnor. The Alexander polynomial of a ribbon knot is always of the form $A(t)=f(t) f(1 / t)$.
(also for slice)

