The Taylor Remainder Formulas. Let f be a smooth function, let $P_{n, a}(x)$ be the nth order Tayfor polynomial of f around a and evaluated at x, so with $a_{k}=f^{(k)}(a) / k!$,

$$
P_{n, a}(x):=\sum_{k=0}^{n} a_{k}(x-a)^{k},
$$

and let $R_{n, a}(x):=f(x)-P_{n, a}(x)$ be the "mistake"

Partial Derivatives Commute.
Make Fubini Smile Again!
If $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is C^{2} near $a \in \mathbb{R}^{2}$, then $f_{12}(a)=f_{21}(a)$.
Proof. Let $x \in \mathbb{R}^{2}$ be small, and let $R:=\left[a_{1}, a_{1}+x_{1}\right] \times\left[a_{2}, a_{2}+x_{2}\right]$.
$f_{12}(a) \sim \sqrt{\int f_{12}}=\stackrel{\bullet}{\square} \overbrace{}^{+}=\square f_{21} \sim f_{21}(a)$ $f_{12}(a) \sim \frac{1}{|R|} \int_{R} f_{12}=\frac{1}{|R|} \int_{a_{1}}^{a_{1}+x_{1}} d t_{1}\left(f_{1}\left(t_{1}, a_{2}+x_{2}\right)-f_{1}\left(t_{1}, a_{2}\right)\right)$
$=\frac{1}{|R|}\binom{f\left(a_{1}+x_{1}, a_{2}+x_{2}\right)-f\left(a_{1}+x_{1}, a_{2}\right)}{-f\left(a_{1}, a_{2}+x_{2}\right)+f\left(a_{1}, a_{2}\right)}$.
But the answer here is the same as in
(In particular, the Taylor expansions of \sin , \cos, exp, and of severat other lovely functions converges to these functions everywhere, no matter the odds.)
Proof of (1) (for adults; I learned it from my son Itai). The fundamental theorem of calcuhus says that if $g(a)=0$ then $g(x)=\int_{a}^{x} d x_{1} g\left(x_{1}\right)$. By design, $R_{n, a}^{(k)}(a)=0$ for $0 \leq k \leq n$. Therefore

$$
\begin{array}{r}
R_{n, a}(x)=\int_{a}^{x} d x_{1} R_{n, a}^{\prime}\left(x_{1}\right) \quad f^{a} t x^{(n+1)}(t) x_{n} x_{2} x_{1} \\
=\int_{a}^{x} d x_{1} \int_{a}^{x_{1}} d x_{2} R_{n, a}^{\prime \prime}\left(x_{2}\right) \\
=\ldots=\int_{a}^{x} d x_{1} \int_{a}^{x_{1}} d x_{2} \ldots \int_{a}^{x_{n}} d x_{n} \int_{a}^{t} d t R_{n, a}^{(n+1)}(t) \\
=\int_{a}^{x} d x_{1} \int_{a}^{x_{1}} d x_{2} \ldots \int_{a}^{x_{n}} d x_{n} \int_{a}^{t} d t f^{(n+1)}(t),
\end{array}
$$

when $x>a$, and with similar logic when $x<a$,

$$
\begin{aligned}
= & \int_{a \leq t \leq x_{n} \leq \ldots \leq x_{1} \leq x} f^{(n+1)}(t)=\int_{a}^{t} d t f^{(n+1)}(t) \int_{t \leq x_{n} \leq \ldots \leq x_{1} \leq x} 1 \\
= & \int_{a}^{t} d t \frac{f^{(n+1)}(t)}{n!} \int_{\left(x_{1}, \ldots, x_{n}\right) \in[t, x]^{n}} 1=\int_{a}^{x} d t \frac{f^{(n+1)}(t)}{n!}(x-t)^{n}
\end{aligned}
$$

de-Fubini (obfuscation in the name of simplicity). Prematurely aborting the above chain of equalities, we find that for any $1 \leq k \leq n+1$,

$$
R(x)=\int_{a}^{x} d t R^{(k)}(t) \frac{(x-t)^{k-1}}{(k-1)!}
$$

But these are easy to prove by induction using integration by parts, and there's no need to invoke Fubini.

Guido Fubini

$$
\begin{gather*}
f_{21}(a) \sim \frac{1}{|R|} \int_{R} f_{21}=\frac{1}{|R|} \int_{a_{2}}^{a_{2}+x_{2}} d t_{2}\left(f_{2}\left(a_{1}+x_{1}, t_{2}\right)-f_{2}\left(a_{1}, t_{2}\right)\right) \tag{2}\\
=\frac{1}{|R|}\binom{f\left(a_{1}+x_{1}, a_{2}+x_{2}\right)-f\left(a_{1}, a_{2}+x_{2}\right)}{-f\left(a_{1}+x_{1}, a_{2}\right)+f\left(a_{1}, a_{2}\right)}
\end{gather*}
$$

and both of these approximations get better and better as $x \rightarrow 0$.
The Mean Value Theorem for Curves (MVT4C).
If $\gamma:[a, b] \rightarrow \mathbb{R}^{2}$ is a smooth curve, then there is
some $t_{1} \in(a, b)$ for which $\gamma(b)-\gamma(a)$ and $\dot{\gamma}\left(t_{1}\right)$ are linearly dependent. If also $\gamma(a)=0$, and $\gamma=\binom{\xi}{\eta}$ and $\eta \neq 0 \neq \dot{\eta}$ on (a, b), then
$\frac{\xi(b)}{\eta(b)}=\frac{\dot{\xi}\left(t_{1}\right)}{\dot{\eta}\left(t_{1}\right)} \quad\left(\right.$ when lucky, $\left.=\frac{\ddot{\xi}\left(t_{2}\right)}{\ddot{\eta}\left(t_{2}\right)} \ldots\right)$.
$\gamma(a)$
Proof of (2). Iterate the lucky MVT4C as follows:

$$
\frac{R_{n, a}(x)}{(x-a)^{n+1}}=\frac{R_{n, a}^{\prime}\left(t_{1}\right)}{(n+1)\left(t_{1}-a\right)^{n}}=\ldots=\frac{R_{n, a}^{(n+1)}\left(t_{n+1}\right)}{(n+1)!}=\frac{f^{(n+1)}(t)}{(n+1)!} .
$$

π is Irrational following Ivan Riven, Bull.
Amer. Math. Soc. (1947) pp. 509:
Theorem: IT is irrational.
Proof: Assume $\pi=a / b$ and consider the polynomid $P(x)=\frac{x^{n}(a-b x)^{n}}{n!}$ For n quite large. Clearly
 small, hence $\quad I=\int_{0}^{\pi /} \rho(x) \sin x d x$

 ration by parts shows that $I=\binom{$ boundary }{ terms }$\pm \int p^{(2 n+1)}(x) \cos x d x$. The second firm is 0 because P is a polynomial of degne

\qquad
 2n, and the first term is an integer for cluarty $p(k)(0)$ is alwaysan integer, for $p(\pi-x)=P(x)$ hence same is true for $P^{(k)}(\pi)$ and for $\sin \&$ cos of 0 \& π are all integers. Ergo I is an integer between σ and 1 ,

