The Taylor Remainder Formulas. Let f be a smooth function, let $P_{n,a}(x)$ be the *n*th order Taylor polynomial of f around a and evaluated at x, so with $a_k = f^{(k)}(a)/k!$,

$$P_{n,a}(x) \coloneqq \sum_{k=0}^n a_k (x-a)^k,$$

and let $R_{n,a}(x) \coloneqq f(x) - P_{n,a}(x)$ be the "mistake" or "remainder term". Then

$$R_{n,a}(x) = \int_{a}^{x} dt \, \frac{f^{(n+1)}(t)}{n!} (x-t)^{n}, \tag{1}$$

Brook Taylor

or alternatively, for some t between a and x,

$$R_{n,a}(x) = \frac{f^{(n+1)}(t)}{(n+1)!} (x-a)^{n+1}.$$
 (2)

(In particular, the Taylor expansions of sin, cos, exp, and of several other lovely functions converges to these functions everywhe-R

re, no matter the odds.) • x **Proof of** (1) (for adults; I learned it from my son Itai). The =R \hat{x} fundamental theorem of calcu- a x_1 lus says that if g(a) = 0 then $|^{=}$ R' $g(x) = \int_{a}^{x} dx_1 g(x_1)$. By design, x2 $\dot{x_1}$ $R_{n,a}^{(k)}(a) = 0$ for $0 \le k \le n$. The- $R^{(n+1)}$ refore $\dot{x_1}$ x X2

$$R_{n,a}(x) = \int_{a}^{x} dx_{1} R'_{n,a}(x_{1}) = \int_{a}^{x} dx_{1} \int_{a}^{x_{1}} dx_{2} R''_{n,a}(x_{2})$$
$$= \dots = \int_{a}^{x} dx_{1} \int_{a}^{x_{1}} dx_{2} \dots \int_{a}^{x_{n}} dx_{n} \int_{a}^{t} dt R^{(n+1)}_{n,a}(t)$$
$$= \int_{a}^{x} dx_{1} \int_{a}^{x_{1}} dx_{2} \dots \int_{a}^{x_{n}} dx_{n} \int_{a}^{t} dt f^{(n+1)}(t),$$
when $x > a$, and with similar logic when $x < a$,

w

$$= \int_{a \le t \le x_n \le \dots \le x_1 \le x} f^{(n+1)}(t) = \int_a^t dt \, f^{(n+1)}(t) \int_{t \le x_n \le \dots \le x_1 \le x} 1$$
$$= \int_a^t dt \frac{f^{(n+1)}(t)}{n!} \int_{(x_1,\dots,x_n) \in [t,x]^n} 1 = \int_a^x dt \, \frac{f^{(n+1)}(t)}{n!} (x-t)^n.$$

de-Fubini (obfuscation in the name of simplicity). Prematurely aborting the above chain of equalities, we find that for any $1 \le k \le n+1$,

$$R(x) = \int_{a}^{x} dt \, R^{(k)}(t) \frac{(x-t)^{k-1}}{(k-1)!}.$$

But these are easy to prove by induction using inte-Guido Fubini gration by parts, and there's no need to invoke Fubini.

Partial Derivatives Commute. Make Fubini Smile Again! If $f : \mathbb{R}^2 \to \mathbb{R}$ is C^2 near $a \in \mathbb{R}^2$, then $f_{12}(a) = f_{21}(a)$. **Proof.** Let $x \in \mathbb{R}^2$ be small, and let $R := [a_1, a_1 + x_1] \times [a_2, a_2 + x_2]$. = $\sum f$ = $\int f_{12}$ $\int f_{21}$ $f_{12}(a) \sim$ $\sim f_{21}(a)$ $f_{12}(a) \sim \frac{1}{|R|} \int_R f_{12} = \frac{1}{|R|} \int_{a_1}^{a_1 + x_1} dt_1 \left(f_1(t_1, a_2 + x_2) - f_1(t_1, a_2) \right)$ $= \frac{1}{|R|} \left(\begin{array}{c} f(a_1 + x_1, a_2 + x_2) - f(a_1 + x_1, a_2) \\ -f(a_1, a_2 + x_2) + f(a_1, a_2) \end{array} \right).$ But the answer here is the same as in C 1 $C^{a_2+x_2}$

$$f_{21}(a) \sim \frac{1}{|R|} \int_{R} f_{21} = \frac{1}{|R|} \int_{a_{2}} dt_{2} \left(f_{2}(a_{1} + x_{1}, t_{2}) - f_{2}(a_{1}, t_{2}) \right)$$
$$= \frac{1}{|R|} \left(\begin{array}{c} f(a_{1} + x_{1}, a_{2} + x_{2}) - f(a_{1}, a_{2} + x_{2}) \\ -f(a_{1} + x_{1}, a_{2}) + f(a_{1}, a_{2}) \end{array} \right),$$

and both of these approximations get better and better as $x \to 0$.

The Mean Value Theorem for Curves (MVT4C).
If
$$\gamma: [a, b] \to \mathbb{R}^2$$
 is a smooth curve, then there is
some $t_1 \in (a, b)$ for which $\gamma(b) - \gamma(a)$ and $\dot{\gamma}(t_1)$
are linearly dependent. If also $\gamma(a) = 0$, and
 $\gamma = \begin{pmatrix} \xi \\ \eta \end{pmatrix}$ and $\eta \neq 0 \neq \dot{\eta}$ on (a, b) , then
 $\frac{\xi(b)}{\eta(b)} = \frac{\dot{\xi}(t_1)}{\dot{\eta}(t_1)}$ (when lucky, $= \frac{\ddot{\xi}(t_2)}{\dot{\eta}(t_2)} \dots$).
Proof of (2). Iterate the lucky MVT4C as follows:
 $\frac{R_{n,a}(x)}{(x-a)^{n+1}} = \frac{R'_{n,a}(t_1)}{(n+1)(t_1-a)^n} = \dots = \frac{R_{n,a}^{(n+1)}(t_{n+1})}{(n+1)!} = \frac{f^{(n+1)}(t)}{(n+1)!}$.
T is Irrational following Ivan Niven, Bull.
Amer. Math. Soc. (1947) pp. 509:
Theorem: TT is irrational.
 $\frac{P(\Sigma of : Assume T = \alpha/b and consider the polynomial $\rho(x) = \frac{xn(\alpha-4x)^n}{n!}$ For h quite large. Clearly
 $p(x) = \frac{xn(\alpha-4x)^n}{n!}$ For h quite large. Clearly
 $p(x) = \frac{xn(\alpha-4x)^n}{n!}$ For h quite large. Time yet $I = \int_0^\infty \rho(x) \sin x dx$
Satisfies $0 <$ met the top curve against $I = \int_0^\infty \rho(x) \sin x dx$
 $I = \int_0^\infty \rho(x) dx$
 $I = \int_0^\infty \rho(x)$$

between a and ly

and these are rare indud.

D

pace left blank for creative doodling

Video and more at http://www.math.toronto.edu/~drorbn/Talks/MAASeaway-1810/

剄 FUJIFILM

Software for