The Real Thing. In the algebra $Q U_{\epsilon}$, over $\mathbb{Q} \llbracket \hbar \rrbracket$ using the yaxt Real Zipping is a minor mess, and is done in two phases: order, $T=\mathbb{e}^{\hbar t}, \bar{T}=T^{-1}, \mathcal{A}=\mathbb{e}^{\alpha}$, and $\overline{\mathcal{A}}=\mathcal{A}^{-1}$, we have

	τa-phase	ξy-phase		
ζ-like variables	τ	a	ξ	y
z-like variables	t	α	x	η

in $\mathcal{S}\left(B_{i}, B_{j}\right)$, and in $\mathcal{S}\left(B_{1}^{*}, B_{2}^{*}, B\right)$ we have

$$
\tilde{m}=\mathbb{e}^{\left(\alpha_{1}+\alpha_{2}\right) a+\eta_{2} \xi_{1}(1-T) / \hbar+\left(\xi_{1} \overline{\mathcal{A}}_{2}+\xi_{2}\right) x+\left(\eta_{1}+\eta_{2} \overline{\mathcal{A}}_{1}\right) y}\left(1+\epsilon \lambda+O\left(\epsilon^{2}\right)\right),
$$

where $\lambda=2 a \eta_{2} \xi_{1} T+\eta_{2}^{2} \xi_{1}^{2}\left(3 T^{2}-4 T+1\right) / 4 \hbar-\eta_{2} \xi_{1}^{2}(3 T-1) x \overline{\mathcal{A}}_{2} / 2$ $-\eta_{2}^{2} \xi_{1}(3 T-1) y \overline{\mathcal{A}}_{1} / 2+\eta_{2} \xi_{1} x y \hbar \overline{\mathcal{A}}_{1} \overline{\mathcal{A}}_{2}$.
Finally,
$\tilde{\Delta}=\mathbb{e}^{\tau\left(t_{1}+t_{1}\right)+\eta\left(y_{1}+T_{1} y_{2}\right)+\alpha\left(a_{1}+a_{2}\right)+\xi\left(x_{1}+x_{2}\right)}(1+O(\epsilon)) \in \mathcal{S}\left(B^{*}, B_{1}, B_{2}\right)$, and $\tilde{S}=\mathbb{e}^{-\tau t-\alpha a-\eta \xi(1-\bar{T}) \mathcal{A} / \hbar-\bar{T} \eta y \mathcal{A}-\xi x \mathcal{A}}(1+O(\epsilon)) \in \mathcal{S}\left(B^{*}, B\right)$.

The Zipping Issue. (between unbound and bound lies half-zipped).
 Zipping. If $P\left(\zeta^{j}, z_{i}\right)$ is a polynomial, or whenever otherwise convergent, set $\left\langle P\left(\zeta^{j}, z_{i}\right)\right\rangle_{\left(\zeta^{j}\right)}=\left.P\left(\partial_{z_{j}}, z_{i}\right)\right|_{z_{i}=0}$. (E.g., if $P=$ $\sum a_{n m} \zeta^{n} z^{m}$ then $\left.\langle P\rangle_{\zeta}=\left.\sum a_{n m} \partial_{z}^{n} z^{m}\right|_{z=0}=\sum n!a_{n n}\right)$.

The Zipping / Contraction Theorem. If $P=P\left(\zeta^{j}, z_{i}\right)$ has a finite ζ-degree and the y 's and the q 's are "small" then

$$
\left\langle P \mathbb{e}^{c+\eta^{i} z_{i}+y_{j} \zeta^{j}+q_{j}^{i} z_{i} \zeta^{j}}\right\rangle_{\left(\zeta^{j}\right)}=\operatorname{det}(\tilde{q}) \mathbb{e}^{c+\eta^{i} \tilde{q}_{i}^{k} y_{k}}\left\langle P \left\lvert\, \begin{array}{c}
\zeta^{j} \rightarrow \zeta^{j}+\eta^{i} \tilde{q}_{i}^{j} \\
z_{i} \rightarrow \tilde{q}_{i}^{k}\left(z_{k}+y_{k}\right)
\end{array}\right.\right\rangle_{\left(\zeta^{j}\right)}
$$

where \tilde{q} is the inverse matrix of $1-q:\left(\delta_{j}^{i}-q_{j}^{i}\right) \tilde{q}_{k}^{j}=\delta_{k}^{i}$.
Exponential Reservoirs. The true Hilbert hotel is exp! Remove one x from an "exponential reservoir" of x 's and you are left with the same exponential reservoir:
$\mathbb{e}^{x}=\left[\ldots+\frac{x x x x x x}{120}+\ldots\right] \xrightarrow{\partial_{x}}\left[\ldots+\frac{x x x x x x}{120}+\ldots\right]=\left(\mathbb{e}^{x}\right)^{\prime}=\mathbb{e}^{x}$, and if you let each element choose left or right, you get twice the same reservoir:
$\mathbb{C}^{x} \xrightarrow{x \rightarrow x_{l}+x_{r}} \mathbb{C}^{x_{l}+x_{r}}=\mathbb{E}^{x_{l}} \mathbb{C}^{x_{r}}$.
A Graphical Proof. Glue top to bottom on the right, in all possible ways. Several scenarios occur:

1. Start at A, go through the q-machine $k \geq 0$ times, stop at B. $\operatorname{Get}\left\langle P\left(\zeta, \sum_{k \geq 0} q^{k} z\right)\right\rangle=\langle P(\zeta, \tilde{q} z)\rangle$.
2. Loop through the q-machine and swallow your own tail. Get $\exp \left(\sum q^{k} / k\right)=\exp (-\log (1-q))=\tilde{q}$.
3. ...

By the reservoir splitting principle, these scenarios contribute multiplicatively.
Implementation. $\quad\left(\mathbb{E}[Q, P]\right.$ means $\left.\mathbb{e}^{Q} P\right) \quad \omega \varepsilon \beta / Z i p$

```
Zip
    Module[{\zeta, z, zs, c, ys, \etas, qt, zrule, \zetarule},
        zs = Table[\zeta*, {\zeta, \zetas}];
        c=Q /. Alternatives @@ (\zetas Uzs) ->0;
        ys = Table[\partial\zeta (Q /. Alternatives @@ zs ->0), {\zeta, \zetas}];
        \etas=Table[\partialz (Q /. Alternatives@@ ¢s ->0), {z, zs}];
        qt = Inverse@Table[K\deltaz,\mp@subsup{\zeta}{}{*}-\mp@subsup{\partial}{z,\zeta}{}Q,{\zeta,\zetaS},{z, zs}];
        zrule = Thread[zs }->\mathrm{ qt.(zs + ys)];
        \zetarule = Thread[\zetas }->\zetas+\etas.qt]
        Simplify /@
            \mathbb{E}[c+\etas.qt.ys, Det[qt] Zip
```

Already at $\epsilon=0$ we get the best known formulas for the Alexander polynomial!
Generic Docility. A "docile perturbed Gaussian" in the variables $\left(z_{i}\right)_{i \in S}$ over the ring R is an expression of the form

$$
\mathbb{e}^{q^{i j} z_{i} z_{j}} P=\mathbb{e}^{q^{i j} z_{i} z_{j}}\left(\sum_{k \geq 0} \epsilon^{k} P_{k}\right),
$$

where all coefficients are in R and where P is a "docile series": $\operatorname{deg} P_{k} \leq 4 k$.
Our Docility. In the case of $Q U_{\epsilon}$, all invariants and operations are of the form $\mathbb{e}^{L+Q} P$, where

- L is a quadratic of the form $\sum l_{z \zeta} z \zeta$, where z runs over $\left\{t_{i}, \alpha_{i}\right\}_{i \in S}$ and ζ over $\left\{\tau_{i}, a_{i}\right\}_{i \in S}$, with integer coefficients $l_{z \zeta}$.
- Q is a quadratic of the form $\sum q_{z \zeta} z \zeta$, where z runs over $\left\{x_{i}, \eta_{i}\right\}_{i \in S}$ and ζ over $\left\{\xi_{i}, y_{i}\right\}_{i \in S}$, with coefficients $q_{z \zeta}$ in the ring R_{S} of rational functions in $\left\{T_{i}, \mathcal{A}_{i}\right\}_{i \in S}$.
- P is a docile power series in $\left\{y_{i}, a_{i}, x_{i}, \eta_{i}, \xi_{i}\right\}_{i \in S}$ with coefficients in R_{S}, and where $\operatorname{deg}\left(y_{i}, a_{i}, x_{i}, \eta_{i}, \xi_{i}\right)=(1,2,1,1,1)$.
Docililty Matters! The rank of the space of docile series to ϵ^{k} is polynomial in the number of variables $|S|$.
!!!!!
At $\epsilon^{2}=0$ we get the Rozansky-Overbay [Ro1, Ro2, Ro3, Ov] invariant, which is stronger than HOMFLY-PT polynomial and Khovanov homology taken together!
- In general, get "higher diagonals in the Melvin-MortonRozansky expansion of the coloured Jones polynomial" [MM, BNG], but why spoil something good?
[BNG] D. Bar-Natan and S. Garoufalidis, On the Melvin- References. Morton-Rozansky conjecture, Invent. Math. 125 (1996) 103-133.
[BV] D. Bar-Natan and R. van der Veen, A Polynomial Time Knot Polynomial, arXiv:1708.04853.
[Fa] L. Faddeev, Modular Double of a Quantum Group, arXiv:math/9912078.
[GR] S. Garoufalidis and L. Rozansky, The Loop Exapnsion of the Kontsevich Integral, the Null-Move, and S-Equivalence, arXiv:math.GT/0003187.
[MM] P. M. Melvin and H. R. Morton, The coloured Jones function, Commun. Math. Phys. 169 (1995) 501-520.
[Ov] A. Overbay, Perturbative Expansion of the Colored Jones Polynomial, University of North Carolina PhD thesis, $\omega \varepsilon \beta / \mathrm{Ov}$.
[Qu] C. Quesne, Jackson's q-Exponential as the Exponential of a Series, arXiv: math-ph/0305003.
Ro1] L. Rozansky, A contribution of the trivial flat connection to the Jones polynomial and Witten's invariant of 3 d manifolds, I, Comm. Math. Phys. 175-2 (1996) 275-296, arXiv:hep-th/9401061.
[Ro2] L. Rozansky, The Universal R-Matrix, Burau Representation and the Melvin-Morton Expansion of the Colored Jones Polynomial, Adv. Math. 1341 (1998) 1-31, arXiv:q-alg/9604005.
[Ro3] L. Rozansky, A Universal U(1)-RCC Invariant of Links and Rationality Conjecture, arXiv:math/0201139.
[Za] D. Zagier, The Dilogarithm Function, in Cartier, Moussa, Julia, and Vanhove (eds) Frontiers in Number Theory, Physics, and Geometry II. Springer, Berlin, Heidelberg, and $\omega \varepsilon \beta / \mathrm{Za}$.

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Ohio-1901

