Abstract. A major part of "quantum topology" is the defini- The (fake) moduli of Lie algetion and computation of various knot invariants by carrying out bras on V, a quadratic variety in computations in quantum groups. Traditionally these computa- $\left(V^{*}\right)^{\otimes 2} \otimes V$ is on the right. We cations are carried out "in a representation", but this is very slow: re about $s l_{17}^{k}:=s l_{17}^{\epsilon} /\left(\epsilon^{k+1}=0\right)$.
 one has to use tensor powers of these representations, and the Solvable Approximation. In $g l_{n}$, half is enough! Indeed $g l_{n} \oplus$ dimensions of powers grow exponentially fast.
In my talk, I will describe a direct method for carrying out such computations without having to choose a representation and explain why in many ways the results are better and faster. The two key points we use are a technique for composing infinite-order "perturbed Gaussian" differential operators, and the little-known fact that every semi-simple Lie algebra can be approximated by solvable Lie algebras, where computations are easier.
KiW 43 Abstract ($\omega \varepsilon \beta /$ kiw). Whether or not you like the formulas on this page, they describe the strongest truly computable knot invariant we know.
(experimental analysis @ $\omega \varepsilon \beta /$ kiw) Knotted Candies $\omega \varepsilon \beta / \mathrm{kc}$

PBW Bases. The U 's we care about always have "Poincaré-Birkhoff-Witt" bases; there is some finite set $B=\{y, x, \ldots\}$ of 'generators" and isomorphisms $\mathbb{O}_{y, x, \ldots}: \hat{\mathcal{S}}(B) \rightarrow U$ defined by "ordering monomials" to some fixed y, x, \ldots order. The quantum group portfolio now becomes a "symmetric algebra" portfolio, or a "power series" portfolio.

$$
\begin{array}{|lc|}
\hline \begin{array}{c}
\text { Operations are Objects. } \\
B^{*}:=\left\{z_{i}^{*}=\zeta_{i}: z_{i} \in B\right\},
\end{array} & f \in \operatorname{Hom}_{\mathbb{Q}}\left(S(B) \rightarrow S\left(B^{\prime}\right)\right) \\
\left\langle z_{i}^{m}, \zeta_{i}^{n}\right\rangle=\delta_{m n} n!, & \| \\
\left\langle\prod z_{i}^{m_{i}}, \prod \zeta_{i}^{n_{i}}\right\rangle=\prod \delta_{m_{i} n_{i}} n_{i}!, & S(B)^{*} \otimes S\left(B^{\prime}\right) \\
\text { in general, for } f \in \mathcal{S}\left(z_{i}\right) \text { and } g \in \mathcal{S}\left(\zeta_{i}\right), & S\left(B^{*}\right) \otimes S\left(B^{\prime}\right) \\
\langle f, g\rangle=\left.f\left(\partial_{\zeta_{i}}\right) g\right|_{\zeta_{i}=0}=\left.g\left(\partial_{z_{i}}\right) f\right|_{z_{i}=0} . & \| \\
\text { The Composition Law. If } & S\left(B^{*} \sqcup B^{\prime}\right) \\
\text { II }
\end{array}
$$

$C, ~, C$ The Yang-Baxter Technique. Given an al$a_{n}=\mathcal{D}(\nabla, b, \delta):$

Now define $g l_{n}^{\epsilon}:=\mathcal{D}(\nabla, b, \epsilon \delta)$. Schematically, this is $[\nabla, \nabla]=\nabla$, $[\triangle, \triangle]=\epsilon \Delta$, and $[\nabla, \triangle]=\Delta+\epsilon \nabla$. The same process works for all semi-simple Lie algebras, and at $\epsilon^{k+1}=0$ always yields a solvable Lie algebra.
$C U$ and $Q U$. Starting from $s l_{2}$, get $C U_{\epsilon}=\langle y, a, x, t\rangle /([t,-]=$ $0,[a, y]=-y,[a, x]=x,[x, y]=2 \epsilon a-t)$. Quantize using standard tools (I'm sorry) and get $Q U_{\epsilon}=\langle y, a, x, t\rangle /([t,-]=$ $\left.0,[a, y]=-y,[a, x]=x, x y-\mathbb{e}^{\hbar \epsilon} y x=\left(1-T \mathbb{e}^{-2 \hbar \epsilon a}\right) / \hbar\right)$.
 gebra U (typically $\hat{\mathcal{U}}(\mathrm{g})$ or $\hat{\mathcal{U}}_{q}(\mathrm{~g})$) and elements

1 form

$$
\begin{gathered}
R=\sum a_{i} \otimes b_{i} \in U \otimes U \quad \text { and } \quad C \in U, \\
\mathrm{rm} \\
Z=\sum_{i, j, k} C a_{i} b_{j} a_{k} C^{2} b_{i} a_{j} b_{k} C .
\end{gathered}
$$

Problem. Extract information from Z.
The Dogma. Use representation theory. In principle finite, but slow.

A Knot Theory Portfolio.

- Has operations $\sqcup, m_{k}^{i j}, \Delta_{j k}^{i}, S_{i}$.
- All tangloids are generated by $R^{ \pm 1}$ and $C^{ \pm 1}$ (so "easy" to produce invariants).
- Makes some knot properties ("genus", "ribbon") become "definable".

A "Quantum Group" Portfolio consists of a vector space U

3. The "archetypal coproduct $\Delta_{j k}^{i}: \mathcal{S}\left(z_{i}\right) \rightarrow \mathcal{S}\left(z_{j}, z_{k}\right)$ ", given by $z_{i} \rightarrow z_{j}+z_{k}$ or $\Delta z=z \otimes 1+1 \otimes z$, has $\tilde{\Delta}=\mathbb{e}^{\left(z_{j}+z_{k}\right) \zeta_{i}}$.
4. R-matrices tend to have terms of the form $\mathbb{E}_{q}^{\hbar y_{1} x_{2}} \in \mathcal{U}_{q} \otimes \mathcal{U}_{q}$. The "baby R-matrix" is $\tilde{R}=\mathbb{e}^{\hbar y x} \in \mathcal{S}(y, x)$.
5. The "Weyl form of the canonical commutation relations" states that if $[y, x]=t I$ then $\mathbb{e}^{\xi x} \mathbb{e}^{\eta y}=\mathbb{e}^{\eta y} \mathbb{C}^{\xi x} \mathbb{e}^{-\eta \xi t}$. So with $S W_{x y} \int \mathcal{S}(y, x) \xrightarrow[\mathcal{O}_{y x}]{\stackrel{O_{x y}}{\longrightarrow}} \mathcal{U}(y, x)$ we have $\widetilde{S W}_{x y}=\mathbb{e}^{\eta y+\xi x-\eta \xi t}$.

