Abstract. I'll explain what "everything around" means: classical and quantum $m, \Delta, S, t r, R, C$, and θ, as well as P, Φ, J, \mathbb{D}, and more, and all of their compositions. What DoPeGDO means: the category of Docile Perturbed Gaussian Differential Operators.
And what $s l_{2+}^{\epsilon}$ means: a solvable approximation of the semisimple Lie algebra $s l_{2}$.

DoPeGDO := The category with objects finite sets ${ }^{\dagger 2}$ and $\operatorname{mor}(A \rightarrow B)$:

$$
\{\mathcal{F}=\omega \exp (Q+P)\} \subset \mathbb{Q} \llbracket \zeta_{A}, z_{B}, \epsilon \rrbracket
$$

Where: • ω is a scalar. ${ }^{\dagger 3} \bullet Q$ is a "small" ϵ-free quadratic in $\zeta_{A} \cup z_{B} .^{\dagger 4} \bullet P$ is a "docile perturbation": $P=\sum_{k \geq 1} \epsilon^{k} P^{(k)}$, where $\operatorname{deg} P^{(k)} \leq 2 k+2$. $^{\dagger 5}$ - Compositions: ${ }^{\dagger 6}$
$\mathcal{F} / / \mathcal{G}=\mathcal{G} \circ \mathcal{F}:=\left(\left.\mathcal{G}\right|_{\xi_{i} \rightarrow \partial_{z_{i}}} \mathcal{F}\right)_{z_{i}=0}=\left(\left.\mathcal{F}\right|_{z_{i} \rightarrow \partial_{\xi_{i}}} \mathcal{G}\right)_{\xi_{i}=0}$ Cool! $\left(V^{*}\right)^{\otimes \Sigma} \otimes V^{\otimes S}$ explodes; the ranks of quadratics and bounded-degree polynomials grow slowly! ${ }^{\dagger 7}$ Representation theory is over-rated! Cool! How often do you see a computational toolbox so successful?

Our Algebras. Let $s l_{2+}^{\epsilon}:=L\langle y, b, a, x\rangle$ subject to $[a, x]=x$, Compositions (1). In mor $(A \rightarrow B), Q=\sum_{i \in A, j, \in B} E_{i j} \zeta_{i z}+\frac{1}{2} \sum_{i, j \in A} F_{i j} \zeta_{i j} \zeta_{j}+\frac{1}{i_{i, j, k}} \sum_{i j} G_{i j} z_{i} z_{j}$ $[b, y]=-\epsilon y,[a, b]=0,[a, y]=-y,[b, x]=\epsilon x$, and $[x, y]=$ $\epsilon a+b$. So $t:=\epsilon a-b$ is central and if $\exists \epsilon^{-1}, s l_{2+}^{\epsilon} /\langle t\rangle \cong s l_{2}$. oef/oa U is either $C U=\mathcal{U}\left(s l_{2+}^{\epsilon}\right) \llbracket \hbar \rrbracket$ or $Q U=\mathcal{U}_{\hbar}\left(s l_{2+}^{\epsilon}\right)=$ $A\langle y, b, a, x\rangle \llbracket \hbar \rrbracket$ with $[a, x]=x,[b, y]=-\epsilon y,[a, b]=0,[a, y]=$ $-y,[b, x]=\epsilon x$, and $x y-q y x=(1-A B) / \hbar$, where $q=\mathbb{e}^{\hbar \epsilon}$, $A=\mathbb{e}^{-\hbar \epsilon a}$, and $B=\mathbb{e}^{-\hbar b}$. Set also $T=A^{-1} B=\mathbb{e}^{\hbar t}$.
The Quantum Leap. Also decree that in $Q U$,
$\Delta(y, b, a, x)=\left(y_{1}+B_{1} y_{2}, b_{1}+b_{2}, a_{1}+a_{2}, x_{1}+A_{1} x_{2}\right)$,

$$
S(y, b, a, x)=\left(-B^{-1} y,-b,-a,-A^{-1} x\right),
$$

and $R=\sum \hbar^{j+k} y^{k} b^{j} \otimes a^{j} x^{k} / j![k]_{q}!$.
Mid-Talk Debts. • What is this good for in quantum algebra? - In knot theory?

- How does the "inclusion" $\mathcal{D}: \operatorname{Hom}\left(U^{\otimes \Sigma} \rightarrow U^{\otimes S}\right) \leadsto$ DoPeGDO work?
- Proofs that everything around $s l_{2+}^{\epsilon}$ really is DoPeGDO.
- Relations with prior art.
- The rest of the "compositions" story.

Theorem ([BG], conjectured [MM], مo 28 Melvin, elucidated [Ro1]). Let $J_{d}(K)$ be 3 (23) Morton, the coloured Jones polynomial of K, in the d-dimensional representation of $s l_{2}$. Writing

$$
\left.\frac{\left(q^{1 / 2}-q^{-1 / 2}\right) J_{d}(K)}{q^{d / 2}-q^{-d / 2}}\right|_{q=e^{\hbar}}=\sum_{j, m \geq 0} a_{j m}(K) d^{j} \hbar^{m},
$$

"below diagonal" coefficients vanish, $a_{j m}(K)=\uparrow m$ 0 if $j>m$, and "on diagonal" coefficients give the inverse of the Alexander polynomial: $\left(\sum_{m=0}^{\infty} a_{m m}(K) \hbar^{m}\right) \cdot \omega(K)\left(e^{\hbar}\right)=1$.

"Above diagonal" we have Rozansky's Theorem [Ro3, (1.2)]:

$$
J_{d}(K)(q)=\frac{q^{d}-q^{-d}}{\left(q-q^{-1}\right) \omega(K)\left(q^{d}\right)}\left(1+\sum_{k=1}^{\infty} \frac{(q-1)^{k} \rho_{k}(K)\left(q^{d}\right)}{\omega^{2 k}(K)\left(q^{d}\right)}\right) .
$$

Where $\bullet E=E_{1}\left(I-F_{2} G_{1}\right)^{-1} E_{2}$.

- ${ }^{5} F=F_{1}+E_{1} F_{2}\left(I-G_{1} F_{2}\right)^{-1} E_{1}^{T}$. $G=G_{2}+E_{2}^{T} G_{1}\left(I-F_{2} G_{1}\right)^{-1} E_{2}$. $\omega=\omega_{1} \omega_{2} \operatorname{det}\left(I-F_{2} G_{1}\right)^{-1}$.

P is computed using "connected Feyn-
man diagrams" or as the solution of a messy
PDE (yet we're still in algebra!).
DoPeGDO Footnotes. $\dagger 1$. Each variable has a "weight" $\in\{0,1,2\}$, and always wt $z_{i}+\mathrm{wt} \zeta_{i}=2$.
†2. Really, "weight-graded finite sets" $A=A_{0} \sqcup A_{1} \sqcup A_{2}$.
$\dagger 3$. Really, a power series in the weight-0 variables ${ }^{\dagger 9}$.

4. The weight of Q must be 2 , so it decomposes as $Q=Q_{20}+Q_{11}$. The coefficients of Q_{20} are rational numbers while the coefficients of Q_{11} may be weight- 0 power series ${ }^{\dagger 9}$.
+5. Setting wt $\epsilon=-2$, the weight of P is ≤ 2 (so the powers of the weight-0 variables are not constrained ${ }^{\dagger 9}$).
5. There's also an obvious product
$\operatorname{mor}\left(A_{1} \rightarrow B_{1}\right) \times \operatorname{mor}\left(A_{2} \rightarrow B_{2}\right) \rightarrow \operatorname{mor}\left(A_{1} \sqcup A_{2} \rightarrow B_{1} \sqcup B_{2}\right)$.
$\dagger 7$. That is, if the weight-0 variables are ignored. Otherwise more care is needed yet the conclusion remains.
6. $\operatorname{Hom}\left(U^{\otimes \Sigma} \rightarrow U^{\otimes S}\right) \leadsto \operatorname{mor}\left(\left\{\eta_{i}, \beta_{i}, \tau_{i}, \alpha_{i}, \xi_{i}\right\}_{i \in \Sigma} \rightarrow\left\{y_{i}, b_{i}, t_{i}, a_{i}, x_{i}\right\}_{i \in S}\right)$, where $\operatorname{wt}\left(\eta_{i}, \xi_{i}, y_{i}, x_{i}\right)=1$ and $\operatorname{wt}\left(\beta_{i}, \tau_{i}, \alpha_{i} ; b_{i}, t_{i}, a_{i}\right)=(2,2,0 ; 0,0,2)$.
$\dagger 9$. For tangle invariants the wt- 0 power series are always rational functions in the exponentials of the wt-0 variables (for knots: just one variable), with degrees bounded linearly by the crossing number.
