Abstract. This will be a very "light" talk: I will explain why about 13 years ago, in order to have a say on some problems in knot theory, I've set out to find tangle invariants with some nice compositional properties. In other talks in Sydney ($\omega \varepsilon \beta / \mathrm{talks}$) I have explained / will explain how such invariants were found though they are yet to be explored and utilized.

Vo's Thesis [Vo]. A proof of the Fox-Milnor theorem for ribbon knots using this technology (and more).

 $\mathrm{z}=\mathrm{Rm}_{12,1} \mathrm{Rm}_{27} \mathrm{Rm}_{83} \mathrm{Rm}_{4,11} \mathrm{Rp}_{16,5} \mathrm{Rp}$
$\mathrm{Do}\left[\mathbf{z = z / /} \mathrm{m}_{1 \mathrm{k}+1}, \quad\{\mathrm{k}, 2,16\}\right] ;$

Fact. Γ is better viewed as an invariant of a certain class of 2 D knotted objects in \mathbb{R}^{4} [BND, BN].
Fact. Γ is the "0-loop" part of an invariant that generalizes to " n-loops" (1 D tangles only, see further talks and future publications with van der Veen).
Speculation. Stepping stones to categorifica- $\begin{gathered}\text { M. Polyak \& T. Ohtsuki } \\ \text { @ Heian Shrine, Kyoto }\end{gathered}$ tion?

Ask me about geography vs. identity!
[BN] D. Bar-Natan, Balloons and Hoops and their Universal References. Finite Type Invariant, BF Theory, and an Ultimate Alexander Invariant, ω $\varepsilon \beta / \mathrm{KBH}$, arXiv:1308.1721.
[BND] D. Bar-Natan and Z. Dancso, Finite Type Invariants of W-Knotted Objects I: w-Knots and the Alexander Polynomial, Alg. and Geom. Top. 16-2 (2016) 1063-1133, arXiv:1405.1956, $\omega \varepsilon \beta / \mathrm{WKO} 1$.
[BNS] D. Bar-Natan and S. Selmani, Meta-Monoids, Meta-Bicrossed Products, and the Alexander Polynomial, J. of Knot Theory and its Ramifications 22-10 (2013), arXiv:1302.5689.
[GST] R. E. Gompf, M. Scharlemann, and A. Thompson, Fibered Knots and Potential Counterexamples to the Property $2 R$ and Slice-Ribbon Conjectures, Geom. and Top. 14 (2010) 2305-2347, arXiv:1103.1601.
[Vo] H. Vo, Alexander Invariants of Tangles via Expansions, University of Toronto Ph.D. thesis, $\omega \varepsilon \beta / \mathrm{Vo}$.

For long knots, ω is Alexander, and that's the fastest Alexander algorithm I know! Dunfield: 1000-crossing fast.

"God created the knots, all else in
topology is the work of mortals."
Leopold Kronecker (modified)
www.katlas.org
The Krivot Jtlas

