So What? If V is a representation, then $V^{\otimes n}$ explodes as a function of n, while in DoPeGDO up to a fixed power of ϵ, the ranks of $\operatorname{mor}(A \rightarrow B)$ grow polynomially as a function of $|A|$ and $|B|$.
Compositions. In $\operatorname{mor}(A \rightarrow B)$,

$$
Q=\sum_{i \in A, j \in B} E_{i j} \zeta_{i} z_{j}+\frac{1}{2} \sum_{i, j \in A} F_{i j} \zeta_{i} \zeta_{j}+\frac{1}{2} \sum_{i, j \in B} G_{i j} z_{i} z_{j}
$$

and so $\quad\left(\right.$ remember, $e^{x}=1+x+x x / 2+x x x / 6+\ldots$) (
where $\bullet E=E_{1}\left(I-F_{2} G_{1}\right)^{-1} E_{2}$.

- $F=F_{1}+E_{1} F_{2}\left(I-G_{1} F_{2}\right)^{-1} E_{1}^{T}$.
- $G=G_{2}+E_{2}^{T} G_{1}\left(I-F_{2} G_{1}\right)^{-1} E_{2}$.
- $\omega=\omega_{1} \omega_{2} \operatorname{det}\left(I-F_{2} G_{1}\right)^{-1}$.
- P is computed as the solution of a messy PDE or using "connected Feynman diagrams" (yet we're still in pure algebra!). Docility is preserved.

DoPeGDO Footnotes. Each variable has a "weight" $\in\{0,1,2\}$, and always wt $z_{i}+\mathrm{wt} \zeta_{i}=2$.
\dagger. Really, "weight-graded finite sets" $A=A_{0} \sqcup A_{1} \sqcup A_{2}$.
\dagger 2. Really, a power series in the weight- 0 variables ${ }^{\dagger 5}$.
\dagger 3. The weight of Q must be 2 , so it decomposes as $Q=$ $Q_{20}+Q_{11}$. The coefficients of Q_{20} are rational numbers while the coefficients of Q_{11} may be weight-0 power series ${ }^{\dagger 5}$.
\dagger. Setting wt $\epsilon=-2$, the weight of P is ≤ 2 (so the powers of the weight- 0 variables are not constrained) ${ }^{\dagger 5}$.
\dagger 5. In the knot-theoretic case, all weight- 0 power series are rational functions of bounded degree in the exponentials of the weight-0 variables.
\dagger 6. There's also an obvious product $\operatorname{mor}\left(A_{1} \rightarrow B_{1}\right) \times \operatorname{mor}\left(A_{2} \rightarrow B_{2}\right) \rightarrow \operatorname{mor}\left(A_{1} \sqcup A_{2} \rightarrow B_{1} \sqcup B_{2}\right)$.

Full DoPeGDO. Compute compositions in two phases:

- A 1-1 phase over the ring of power series in the weight-0 variables, in which the weight- 2 variables are spectators.
- A (slightly modified) 2-0 phase over \mathbb{Q}, in which the weight-1 variables are spectators.

Analog. Solve
Analog. Solve
$A x=a, B(x) y=$

Questions. - Are there QFT precedents for "two-step Gaussian integration'"?

- In QFT, one saves even more by considering "one-particleirreducible" diagrams and "effective actions". Does this mean anything here?
- Understanding $\operatorname{Hom}\left(\mathbb{Q}\left[z_{A}\right] \rightarrow \mathbb{Q}\left[z_{B}\right]\right)$ seems like a good cause. Can you find other applications for the technology here?
$\left(\begin{array}{l}Q U=\mathcal{U}_{\hbar}\left(s l_{2+}^{\epsilon}\right)=A\langle y, b, a, x\rangle \llbracket \hbar \rrbracket \text { with }[a, x]=x,[b, y]=-\epsilon y,[a, b]=0, \\ {[a, y]=-y,[b, x]=\epsilon x, \text { and } x y-q y x=(1-A B) / \hbar \text {, where } q=\mathbb{e}^{\hbar \epsilon}, A=\mathbb{e}^{-\hbar \epsilon \epsilon a},} \\ \text { and } B=\mathbb{e}^{-\hbar b} \text {. Also } \Delta(y, b, a, x)=\left(y_{1}+B_{1} y_{2}, b_{1}+b_{2}, a_{1}+a_{2}, x_{1}+A_{1} x_{2}\right), \\ \left.S(y, b, a, x)=\left(-B^{-1} y,-b,-a,-A^{-1} x\right) \text {, and } R=\sum \hbar^{j+k} y^{y} b^{j} \otimes a^{j} x^{k} / j![k]\right]_{q}!\end{array}\right)$
Theorem. Everything of value regrading $U=C U$ and/or its quantization $U=Q U$ is DoPeGDO:

also Cartan's θ, the Dequantizator, and more, and all of their compositions.

Solvable Approximation. In $s l_{n}$, half is enough! Indeed $s l_{n} \oplus \mathfrak{a}_{n-1}=\mathcal{D}(\nabla, b, \delta)$. Now define $s l_{n+}^{\epsilon}:=\mathcal{D}(\nabla, b, \epsilon \delta)$. Schematically, this is $[\nabla, \nabla]=\nabla$, $[\triangle, \Delta]=\epsilon \triangle$, and $[\nabla, \triangle]=$ $\Delta+\epsilon \nabla$. The same process works for all semi-simple Lie algebras, and at $\epsilon^{k+1}=0$ always yields a solvable Lie algebra.

Conclusion. There are lots of poly-time-computable wellbehaved near-Alexander knot invariants: - They extend to tangles with appropriate multiplicative behaviour. - They have cabling and strand reversal formulas.
$\omega \varepsilon \beta / \mathrm{akt}$ The invariant for $s l_{2+}^{\epsilon} /\left(\epsilon^{2}=0\right)$ (prior art: $\omega \varepsilon \beta / \mathrm{Ov}$) attains 2,883 distinct values on the 2,978 prime knots with ≤ 12 crossings. HOMFLY-PT and Khovanov homology together attain only 2,786 distinct values.

knot diag n_{k}^{t} $\left(\rho_{1}^{\prime}\right)^{+}$ Alexander's ω^{+}genus / ribbo $\left(\rho_{2}^{\prime}\right)^{+}$$\quad$ unknotting \# / amphi	knot diag n_{k}^{t} $\left(\rho_{1}^{\prime}\right)^{+}$ Alexander's ω^{+} genus / ribbon $\left(\rho_{2}^{\prime}\right)^{+}$ unknotting \# / amphi?	knot diag n_{k}^{t} $\left(\rho_{1}^{\prime}\right)^{+}$ Alexander's ω^{+} genus / ribbon $\left(\rho_{2}^{\prime}\right)^{+}$ unknotting \# / amphi?
$\bigcirc{ }^{\text {O }}$ O ${ }_{1}^{a} \quad 1 \quad 0 / 0$	3_{1}^{a} $T-1$ T $1 / \mathbf{X}$	(8)4_{1}^{a} $3-T$ $1 / \boldsymbol{X}$ 0 $1 / \checkmark$
$\begin{array}{ll} 5_{1}^{a} T^{2}-T+1 & 2 / \mathbf{X} \\ 2 T^{3}+3 T & 2 / \mathbf{x} \\ 5 T^{7}-20 T^{6}+55 T^{5}-120 T^{4}+217 T^{3}-338 T^{2}+450 T-510 \end{array}$	$\begin{array}{ll}5 a & 5 T-3 \\ 5 T-4 & 1 / \mathbf{X} \\ -10 T^{4}+120 T^{3}-487 T^{2}+1054 T-1362 & 1 / \boldsymbol{X}\end{array}$	$\begin{array}{ll} \text { (2) } 5-2 T & 1 / V \\ T-4 & 1 / \mathbf{x} \\ & 14 T^{4}-16 T^{3}-293 T^{2}+1098 T-1598 \end{array}$
$\text { (8) } \begin{array}{ll} 6_{2}^{a}-T^{2}+3 T-3 & 2 / \mathbf{x} \\ T^{3}-4 T^{2}+4 T-4 & 1 / \mathbf{x} \\ 3 T^{8}-21 T^{7}+49 T^{6}+15 T^{5}-433 T^{4}+1543 T^{3}-3431 T^{2}+5482 T-6410 \end{array}$	$6_{3}^{a} \quad T^{2}-3 T+5$ $2 / \mathbf{X}$ 0 $1 / V$ $4 T^{8}-33 T^{7}+121 T^{6}-203 T^{5}-111 T^{4}+1499 T^{3}-4210 T^{2}+7186 T-8510$	$\begin{array}{ll} 7_{1}^{a} T^{3}-T^{2}+T-1 & 3 / \mathbf{X} \\ 3 T^{5}+5 T^{3}+6 T & 3 / \mathbf{X} \\ 7 T^{11}-28 T^{10}+77 T^{9}-168 T^{8}+322 T^{7}-560 T^{6}+891 T^{5}-1310 T^{4}+ \\ 1777 T^{3}-2238 T^{2}+2604 T-2772 \end{array}$

