Unfortunately, dim $\mathcal{A}(\mathcal{X}, X) = \dim \Lambda(\mathcal{X}, X) = 4^{|X|}$ is big. Fortunately, we have the following theorem, a version of one of the main results in Halacheva's thesis, [Ha1, Ha2]:

Theorem. Working in $\Lambda(\mathcal{X} \cup X)$, if $w = \omega e^{\lambda}$ is a balanced Gaussian (namely, a scalar ω times the exponential of a quadratic $\lambda = \sum_{\zeta \in \mathcal{X}, z \in X} \alpha_{\zeta, z} \zeta z$), then generically so is $c_{x,\xi} e^{\lambda}$.

Thus we have an almost-always-defined " Γ -calculus": a contraction algebra morphism $\mathcal{T}(\mathcal{X}, X) \to R \times (\mathcal{X} \otimes_{R/R} X)$ whose behaviour under contractions is

 $c_{x,\xi}(\omega,\lambda=\mu+\eta x+\xi y+\alpha\xi x)=((1-\alpha)\omega,\mu+\eta y/(1-\alpha)).$

(Γ is fully defined on pure tangles – tangles without closed components – and

(This is great news! The space of balanced quadratics is only $|\mathcal{X}||X|$ -dimensional!)

Proof. Recall that $c_{x,\xi}$: $(1, \xi, x, x\xi)w' \mapsto (1, 0, 0, 1)w'$, write $\lambda = \mu + \eta x + \xi y + \alpha \xi x$, and ponder $e^{\lambda} =$

$$\dots + \frac{1}{k!} \underbrace{(\mu + \eta x + \xi y + \alpha \xi x)(\mu + \eta x + \xi y + \alpha \xi x) \cdots (\mu + \eta x + \xi y + \alpha \xi x)}_{k \text{ factors}} + \dots$$

Then $c_{\mathrm{x},\xi}\mathrm{e}^\lambda$ has three contributions:

- \blacktriangleright e^{μ} , from the term proportional to 1 (namely, independent of ξ and x) in e^{λ}
- ▶ $-\alpha e^{\mu}$, from the term proportional to $x\xi$, where the x and the ξ come from the same factor above.
- ηye^μ, from the term proportional to xξ, where the x and the ξ come from different factors above.

So $c_{x,\xi} e^{\lambda} = e^{\mu} (1 - \alpha + \eta y) = (1 - \alpha) e^{\mu} (1 + \eta y/(1 - \alpha)) = (1 - \alpha) e^{\mu} e^{\eta y/(1 - \alpha)} = (1 - \alpha) e^{\mu + \eta y/(1 - \alpha)}.$

Γ-calculus.

given by

hence on long knots).

6. An Implementation of Γ .

If I didn't implement I wouldn't believe myself.

Written in Mathematica [Wo], available as the notebook Gamma.nb at http://drorbn.net/mo21/ap. Code lines are highlighted in grey, demo lines are plain. We start with canonical forms for quadratics with rational function coefficients:

CCF[8_] := Factor[8];

 $\mathsf{CF}[\mathscr{S}_] := \mathsf{Module}[\{\mathsf{vs} = \mathsf{Union}@\mathsf{Cases}[\mathscr{S}, (\boldsymbol{\xi} \mid \mathsf{x})_{}, \infty]\},$

Total[(CCF[#[[2]]] (Times @@ vs^{#[[1]})) & /@ CoefficientRules[&, vs]]];

Multiplying and comparing Γ objects: r /: r[is1_, os1_, cs1_, ω1_, λ1_] × r[is2_, os2_, cs2_, ω2_, λ2_] := r[is1Uis2, os1Uos2, Join[cs1, cs2], ω1 ω2, λ1 + λ2] r /: r[is1_, os1_, _, ω1_, λ1_] = r[is2_, os2_, _, ω2_, λ2_] := TrueQ[(Sort@is1 === Sort@is2) ∧ (Sort@os1 === Sort@os2) ∧ Simplify[ω1 == ω2] ∧ CF@A1 == CF@A2] N = when the intermention

No rules for linear operations!

Contractions: $\begin{aligned} c_{h_{-},t_{-}} & \oplus \Gamma[is_{-}, os_{-}, cs_{-}, \omega_{-}, \lambda_{-}] := Module[\{\alpha, \eta, y, \mu\}, \\ \alpha &= \partial_{\xi_{1},x_{h}}\lambda; \ \mu = \lambda /. \ \xi_{t} \mid x_{h} \rightarrow 0; \\ \eta &= \partial_{x_{h}}\lambda /. \ \xi_{t} \rightarrow 0; \ y &= \partial_{\xi_{t}}\lambda /. \ x_{h} \rightarrow 0; \\ \Gamma[\\ DeleteCases[is, t], DeleteCases[os, h], KeyDrop[cs, \{x_{h}, \xi_{t}\}], \\ CCF[((1-\alpha)\omega], CF[(\mu + \eta y / (1-\alpha)]] \\] /. If[MatchQ[cs[\xi_{t}], \tau_{-}], cs[\xi_{t}] \rightarrow cs[x_{h}], cs[x_{h}] \rightarrow cs[\xi_{t}]]]; \\ c \oplus \Gamma[is_{-}, os_{-}, cs_{-}, \omega_{-}, \lambda_{-}] := Fold[c_{x2,x2}[\#1] \&, \Gamma[is, os, cs, \omega, \lambda], is \cap os] \end{aligned}$

The crossings and the point:
$\mathbf{\Gamma}[\mathbf{X}_{i_{_},j_{_},k_{_},l_{_}}[S_{_},T_{_}]] := \mathbf{\Gamma}[\{l, i\}, \{j, k\}, \langle \xi_i \rightarrow S, \mathbf{x}_j \rightarrow T, \mathbf{x}_k \rightarrow S, \xi_l \rightarrow T \rangle,$
$T^{-1/2}$, $CF\left[\{\boldsymbol{\xi}_{l}, \boldsymbol{\xi}_{l}\}, \begin{pmatrix} 1 \ 1 - T \\ \boldsymbol{\theta} & T \end{pmatrix}, \{\mathbf{x}_{j}, \mathbf{x}_{k}\}\right]$;
$\mathbf{\Gamma}\left[\overline{X}_{i_{_},j_{_},k_{_},l_{_}}[S_{_}, T_{_}]\right] := \mathbf{\Gamma}\left[\{i, j\}, \{k, l\}, \langle \xi_i \rightarrow S, \xi_j \rightarrow T, \mathbf{x}_k \rightarrow S, \mathbf{x}_l \rightarrow T \rangle,\right]$
$T^{1/2}$, $CF\left[\{\boldsymbol{\xi}_i,\boldsymbol{\xi}_j\},\begin{pmatrix} T^{-1} & \boldsymbol{\theta} \\ 1 - T^{-1} & 1 \end{pmatrix},\{x_k,x_l\}\right]$;
$\Gamma[\mathbf{X}_{i_{j},k_{l},l_{l}}] := \Gamma[\mathbf{X}_{i,j,k,l}[\tau_{i}, \tau_{l}]];$
$\Gamma[\overline{X}_{i_j,k_j,l_j}] := \Gamma[\overline{X}_{i_j,k_j,l}[\tau_i, \tau_j]];$
$\mathbf{\Gamma}[\mathbf{P}_{i_{-},j_{-}}[\mathcal{T}_{-}]] := \mathbf{\Gamma}[\{i\}, \{j\}, \langle \xi_{i} \rightarrow \mathcal{T}, \mathbf{x}_{j} \rightarrow \mathcal{T} \rangle, 1, \xi_{i} \mathbf{x}_{j}];$
$\Gamma[P_{i_{-},j_{-}}] := \Gamma[P_{i_{+},j}[\tau_{i}]];$

Automatic intelligent contractions:

Video and more at http://www.math.toronto.edu/~drorbn/Talks/MoscowByWeb-2104/