Axioms. One axiom is primary and interesting,

- Contractions commute! Namely, $c_{x, \xi} / / c_{y, \eta}=c_{y, \eta} / / c_{x, \xi}$ (or in old-speak, $\left.c_{y, \eta} \circ c_{x, \xi}=c_{x, \xi} \circ c_{y, \eta}\right)$.
And the rest are just what you'd expect:
- \sqcup is commutative and associative, and it commutes with $c_{\text {., }}$, and with σ. whenever that makes sense.

- $\sigma_{\xi}^{\xi}=\sigma_{x}^{x}=I d, \sigma_{\eta}^{\xi} / / \sigma_{\zeta}^{\eta}=\sigma_{\zeta}^{\xi}, \sigma_{y}^{x} / / \sigma_{z}^{y}=\sigma_{z}^{x}$, and renaming operations commute where it makes sense.

2. Heaven is a Place on Earth

(A version of the main results of Archibald's thesis, [Ar]).
Let us work over the base ring $\mathcal{R}=\mathbb{Q}\left[\left\{T^{ \pm 1 / 2}: T \in C\right\}\right]$. Set

$$
\mathcal{A}(\mathcal{X}, X):=\left\{w \in \Lambda(\mathcal{X} \sqcup X): \operatorname{deg}_{\mathcal{X}} w=\operatorname{deg}_{X} w\right\}
$$

(so in particular the elements of $\mathcal{A}(\mathcal{X}, X)$ are all of even degree). The union operation is the wedge product, the renaming operations are changes of variables, and $c_{x, \xi}$ is defined as follows. Write $w \in \mathcal{A}(\mathcal{X}, X)$ as a sum of terms of the form $u w^{\prime}$ where $u \in \Lambda(\xi, x)$ and $w^{\prime} \in \mathcal{A}(\mathcal{X} \backslash \xi, X \backslash x)$, and map u to 1 if it is 1 or $x \xi$ and to 0 is if is ξ or x :

$$
1 w^{\prime} \mapsto w^{\prime}, \quad \xi w^{\prime} \mapsto 0, \quad x w^{\prime} \mapsto 0, \quad x \xi w^{\prime} \mapsto w^{\prime} .
$$

Proposition. \mathcal{A} is a contraction algebra.

We construct a morphism of coloured contraction algebras $\mathcal{A}: \mathcal{T} \rightarrow \mathcal{A}$ by declaring

$$
\begin{aligned}
X_{i j k l}[S, T] & \mapsto T^{-1 / 2} \exp \left(\left(\begin{array}{ll}
\xi_{l} & \xi_{i}
\end{array}\right)\left(\begin{array}{cc}
1 & 1-T \\
0 & T
\end{array}\right)\binom{x_{j}}{x_{k}}\right) \\
\bar{X}_{i j k l}[S, T] & \mapsto T^{1 / 2} \exp \left(\left(\begin{array}{ll}
\xi_{i} & \xi_{j}
\end{array}\right)\left(\begin{array}{cc}
T^{-1} & 0 \\
1-T^{-1} & 1
\end{array}\right)\binom{x_{k}}{x_{l}}\right) \\
P_{i j}[T] & \mapsto \exp \left(\xi_{i} x_{j}\right)
\end{aligned}
$$

with

(Note that the matrices appearing in these formulas are the Burau matrices).

3. An Implementation of \mathcal{A}

If I didn't implement I wouldn't believe myself.

Written in Mathematica [Wo], available as the notebook Alpha.nb at http://drorbn.net/mo21/ap. Code lines are highlighted in grey, demo lines are plain. We start with an implementation of elements ("Wedge") of exterior algebras, and of the wedge product ("WP"):

```
WP[Wedge [u___], Wedge[v___]] := Signature [{u,v}] * Wedge @@ Sort [ {u,v}];
WP[0, _] = WP[_, 0] = 0;
WP[\mp@subsup{A}{-}{\prime},\mp@subsup{B}{-}{\prime}]:=
    Expand[Distribute[A ** B] /.
        (a_. * u_Wedge) ** (b_. * v_Wedge) : }->\mathrm{ abWP[u,v]];
WP[Wedge[^] + Wedge[a]-2b^a, Wedge[^]-3 Wedge[b] + 7c^d]
Wedge [] + Wedge [a] - 3 Wedge[b] -a^b + 7c^d + 7a^c^d+14a^b^c^d
```


Comments.

- We can relax $|\mathcal{X}|=|X|$ at no cost.
- We can lose the distinction between \mathcal{X} and X and get "circuit algebras".
- There is a "coloured version", where $\mathcal{T}(\mathcal{X}, X)$ is replaced with $\mathcal{T}(\mathcal{X}, X, \lambda, I)$ where $\lambda: \mathcal{X} \rightarrow C$ and $I: X \rightarrow C$ are "colour functions" into some set C of "colours", and contractions $c_{x, \xi}$ are allowed only if x and ξ are of the same colour, $I(x)=\lambda(\xi)$. In the world of tangles, this is "coloured tangles".

Alternative Formulations.

$-\quad c_{x, \xi} w=\iota_{\xi} \iota_{x} \mathbb{e}^{\chi \xi} w, \quad$ where ι. denotes interior multiplication.

- Using Fermionic integration,

$$
c_{x, \xi} w=\int \mathbb{e}^{x \xi} w d \xi d x
$$

- $c_{x, \xi}$ represents composition in exterior algebras! With $X^{*}:=\left\{x^{*}: x \in X\right\}$, we have that $\operatorname{Hom}(\wedge X, \wedge Y) \cong \wedge\left(X^{*} \sqcup Y\right)$ and the following square commutes:

- Similarly, $\Lambda(\mathcal{X} \sqcup X) \cong\left(H^{*}\right)^{\otimes \mathcal{X}} \otimes H^{\otimes X}$ where H is a 2-dimensional "state space" and H^{*} is its dual. Under this identification, $c_{X, \xi}$ becomes the contraction of an H factor with an H^{*} factor.

Theorem.

If D is a classical link diagram with k components coloured T_{1}, \ldots, T_{k} whose first component is open and the rest are closed, if MVA is the multivariable Alexander polynomial of the closure of D (with these colours), and if ρ_{j} is the counterclockwise rotation number of the j th component of D, then

$$
\mathcal{A}(D)=T_{1}^{-1 / 2}\left(T_{1}-1\right)\left(\prod_{j} T_{j}^{\rho_{j} / 2}\right) \cdot M V A \cdot\left(1+\xi_{\text {in }} \wedge x_{\mathrm{out}}\right)
$$

(\mathcal{A} vanishes on closed links).

We then define the exponentiation map in exterior algebras ("WExp") by summing the series and stopping the sum once the current term ("t") vanishes:
$\operatorname{WExp}\left[A_{-}\right]:=\operatorname{Module}[\{s=$ Wedge $[\wedge], t=$ Wedge $[\wedge], k=0\}$,
While $[t=!=0, s+=(t=\operatorname{Expand}[W P[t, A] /(++k)])] ; s]$
$\operatorname{WExp}[a \wedge b+c \wedge d+e \wedge f]$
Wedge [] $+a \wedge b+c \wedge d+e \wedge f+a \wedge b \wedge c \wedge d+a \wedge b \wedge e \wedge f+c \wedge d \wedge e \wedge f+a \wedge b \wedge c \wedge d \wedge e \wedge f$

