

With multiple uses of the same lookup table, what naively takes $\sim n^{5}$ can be reduced to $\sim n^{3}$.

In general within a big d-arrow diagram we need to find an as-large-as possible collection of arrows to delay. These must be non-adjacent to each other. As the adjacency graph for the arrows is at worst quadrivalent, we can always find $\left\lceil\frac{d}{4}\right\rceil$ non-adjacent arrows, and hence solve the counting problem in time
$\sim n^{d-\left\lceil\frac{d}{4}\right\rceil}=n^{\lfloor 3 d / 4\rfloor}$.

On to

Theorem FT3D. If ζ is a finite type invariant of type d then $C_{\zeta}(3 D, V)$ is at most
$\sim V^{6 d / 7+1 / 7}$.
With more effort, $C_{\zeta}(2 D, V) \lesssim V^{\left(\frac{4}{5}+\epsilon\right) d}$

The line/feather method:

Accurate but takes forever.

In reality, you take a few shark bites and feather the rest ..

.. and then there's an optimization problem to solve: when to stop biting and start feathering.

Note that this counting argument works equally well if each of the d arrows is pulled from a different set!
It follows that we can compute φ_{d} in time $\sim n^{\lfloor 3 d / 4\rfloor}$.

With bigger look-up tables that allow looking up "clusters" of G arrows, we can reduce this to $\sim n^{\left(\frac{2}{3}+\epsilon\right) d}$

An image editing problem:

(Yarn ball and background coutesy of Heather Young)

The rectangle/shark method:

Coarse but fast.

The structure of a crossing field.

There are about $\log _{2} L$ "generations". There are 2^{g} bites in generation g, and the total number of crossings in them is $\sim L^{2} / 2^{g}$

Let's go hunt!

Video and more at http://www.math.toronto.edu/~drorbn/Talks/KOS-211021/

