

 $V \sim L^3$

n= xing number $\sim L^2L^2=L^4=V^{4/3}$

(" \sim " means "equal up to constant terms and log terms")

Conversation Starter 1. A knot invariant ζ is said to be Computationally 3D, or C3D, if

$$C_{\zeta}(3D, V) \ll C_{\zeta}(2D, V^{4/3}).$$

This isn't a rigorous definition! It is time- and naïveté-dependent! But there's room for less-stringent rigour in mathematics, and on a philosophical level, our definition means something.

Theorem 1. Let lk denote the linking number of a 2-component link. Then $C_{lk}(2D,n)\sim n$ while $C_{lk}(3D,V)\sim V$, so lk is C3D!

Proof. WLOG, we are looking at a link in a grid, which we project as on the right:

Here's what it look like, in the case of a knot:

And here's a bigger knot.

This may look like a lot of information, but if V is big, it's less than the information in a planar diagram, and it is easily computable.

There are $2L^2$ triangular "crossings fields" F_k in such a projection.

WLOG, in each F_k all over strands and all under strands are oriented in the same way and all green edges belong to one component and all red edges to the other.

So $2L^2$ times we have to solve the problem "given two sets R and G of integers in [0,L], how many pairs $\{(r,g)\in R\times G\colon r< g\}$ are there?". This takes time $\sim L$ (see below), so the overall computation takes time $\sim L^3$.

Below. Start with rb=cf=0 ("reds before" and "cases found") and slide ∇ from left to right, incrementing rb by one each time you cross a \bullet and incrementing cf by rb each time you cross a \bullet :

In general, with our limited tools, speedup arises because appropriately projected 3D knots have many uniform "red over green" regions:

