

Theorem 1. Let $l k$ denote the linking number of a 2-component link. Then $C_{l k}(2 D, n) \sim n$ while $C_{l k}(3 D, V) \sim V$, so $l k$ is C3D!
Proof. WLOG, we are looking at a link in a grid, which we project as on the right:

/green
-blue

And here's a bigger knot.

This may look like a lot of information, but if V is big, it's less than the information in a planar diagram, and it is easily computable.

So $2 L^{2}$ times we have to solve the problem "given two sets R and G of integers in $[0, L]$, how many pairs $\{(r, g) \in R \times G: r<g\}$ are there?". This takes time $\sim L$ (see below), so the overall computation takes time $\sim L^{3}$.

Below. Start with $r b=c f=0$ ("reds before" and "cases found") and slide ∇ from left to right, incrementing $r b$ by one each time you cross a \bullet and incrementing of by $r b$ each time you cross a \bullet :

Conversation Starter 1. A knot invariant ζ is said to be Computationally 3D, or C3D, if

$$
C_{\zeta}(3 D, V) \ll C_{\zeta}\left(2 D, V^{4 / 3}\right) .
$$

This isn't a rigorous definition! It is time- and naïveté-dependent! But there's room for less-stringent rigour in mathematics, and on a philosophical level, our definition means something.

Here's what it look like, in the case of a knot:

There are $2 L^{2}$ triangular "crossings fields" F_{k} in such a projection.

WLOG, in each F_{k} all over strands and all under strands are oriented in the same way and all green edges belong to one component and all red edges to the other.

In general, with our limited tools, speedup arises because appropriately projected 3D knots have many uniform "red over green" regions:

