

http://drorbn.net/cms21

Kashaev for Mathematicians.

For a knot K and a complex unit ω set $u = \Re(\omega^{1/2})$, $v = \Re(\omega)$, make an $F \times F$ matrix A with contributions

and output $\frac{1}{2}(\sigma(A) - w(K))$.

http://drorbn.net/cms21

http://drorbn.net/cms21

Why are they equal?

I dunno, yet note that

- ▶ Kashaev is over the Reals, Bedlewo is over the Complex numbers.
- ▶ There's a factor of 2 between them, and a shift.

... so it's not merely a matrix manipulation.

Bedlewo for Mathematicians.

For a knot K and a complex unit ω set $t = 1 - \omega$, $r = 2\Re(t)$, make an $F \times F$ matrix A with contributions

(conjugate if going against the flow) and output $\sigma(A)$.

http://drorbn.net/cms21

Theorem. The Bedlewo program computes the Levine-Tristram signature of ${\cal K}$ at $\omega.$

(Easy) **Proof.** Levine and Tristram tell us to look at $\sigma((1-\omega)L + (1-\omega^*)L^T)$, where *L* is the linking matrix for a Seifert surface *S* for *K*: $L_{ij} = lk(\gamma_i, \gamma_i^+)$ where γ_i run over a basis of $H_1(S)$ and γ_i^+ is the pushout of γ_i . But signatures don't change if you run over and over-determined basis, and the faces make such and over-determined basis whose linking numbers are controlled by the crossings. The rest is details.

Art by Emily Redelmeier

http://drorbn.net/cms21

Thank You!