$\operatorname{Plot}\left[\omega=\mathbb{e}^{\text {it } t} ; u=\operatorname{Re}\left[\omega^{1 / 2}\right] ; \quad v=\operatorname{Re}[\omega] ;\right.$
(MatrixSignature [A] - Writhe[K]) / 2,
$\{t, 0,2 \pi\}$]

http://drorbn.net/cms21

Bedlewo for Mathematicians.

For a knot K and a complex unit ω set $t=1-\omega, r=2 \Re(t)$, make an $F \times F$ matrix A with contributions

Why are they equal?

I dunno, yet note that

- Kashaev is over the \mathbb{R} eals, Bedlewo is over the Complex numbers.
- There's a factor of 2 between them, and a shift.
...so it's not merely a matrix manipulation.

and output $\frac{1}{2}(\sigma(A)-w(K))$.

(conjugate if going against the flow) and output $\sigma(A)$.

Theorem. The Bedlewo program computes the Levine-Tristram signature of K at ω.
(Easy) Proof. Levine and Tristram tell us to look at $\sigma\left((1-\omega) L+\left(1-\omega^{*}\right) L^{T}\right)$, where L is the linking matrix for a Seifert surface S for $K: L_{i j}=\operatorname{lk}\left(\gamma_{i}, \gamma_{i}^{+}\right)$where γ_{i} run over a basis of $H_{1}(S)$ and γ_{i}^{+} is the pushout of γ_{i}. But signatures don't change if you run over and overdetermined basis, and the faces make such and over-determined basis whose linking numbers are controlled by the crossings. The rest is details.

