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1. Is there more than Examples 1–4?
2. Derive the bialgebra axioms from this perspective.
3. What more do we get if we don’t mod out by HOMFLY-PT?
4. What more do we get if we allow more than one strand-strand

interaction?
5. In this language, recover Kashiwara-

Vergne [AKKN1, AKKN2].
6. How is all this related to w-knots?
7. Do the same with associators. Use that to derive formulas for

solutions of Kashiwara-Vergne.
8. What’s the relationship with the Habiro-Massuyeau invariants

of links in handlebodies [HM] (different filtration!).
9. Pole dance on other surfaces!

10. Explore the action of the mapping class group.

Homework
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Kontsevich in a Pole Dance Studio. (w/o poles? See [Ko, BN])
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Comments on the Kontsevich Integral.
1. In the tangle case, the endpoints are fixed at top and bottom.
2. The (· · · )∼ means “a correction is needed near the caps and the

cups” (for the framed version, see [LM2, Da]).
3. There are never pp chords, and no 4Tpps and 4Tppp relations.
4. Z is an “expansion”.
5. Z respects the ss filtration and so descends to Z/s : K /s → A/s.

graded by the number of chords
filtered by the number of ss chords

= 0

+ = 04Tsss:

4Tpss:

Unignoring the Complications. We need λ0 and λ1 such that:
1. λ1(γ) is obtained from λ0(γ) by flipping all self-intersections

from ascending to descending.
2. Up to conjugation, λ1(γ) is obtained from λ0(γ) by a global

flip.
3. Z(λi(γ)) is computable from W(γ) and Z/1(λi(γ)) = W(γ).

Knitting needles

Yarn

View from above:

Comments onA. InA/1 legs on poles commute,
soA/1(⃝) = |A|!
InA/2

H we have:

= x y

|xxyxyyx|

Example 1a. ηa
1(|xyxy|, |xyx|) =

Example 3a. Ignoring complications, ηa
3(xxyxyx) =

Proof of Lemma 1. We partially prove Theorem 2 instead:
Theorem 2. gr•KH � F⟦ℏ⟧ ⊗ (K /1)0.
Proof mod ℏ2. The map ← is obvious. To go →, map KH →
F⟦ℏ⟧ ⊗K /1 using ! 7→ P + ℏ2a and " 7→ P − ℏ2a and apply the
functor gr•.

−= ℏ
( )
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Video and more at http://www.math.toronto.edu/~drorbn/Talks/LesDiablerets-2208/
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