Theorem. The Green function $g_{\alpha \beta}$ is the reading of a traffic counter at β, if car traffic is injected at α (if $\alpha=\beta$, the counter is after the injection point).
Example.

苞
Wearing my Quantum Algebra hat, I spy a Heisenberg algebra $\mathbb{H}=A\langle p, x\rangle /([p, x]=1):$

$$
\text { cars } \leftrightarrow p \quad \text { traffic counters } \leftrightarrow x
$$

HEISENBERG
Where did it come from? Consider $\mathfrak{g}_{\epsilon}:=s l_{2+}^{\epsilon}:=L\langle y, b, a, x\rangle$ with relations

$$
\begin{gathered}
{[b, x]=\epsilon x, \quad[b, y]=-\epsilon y, \quad[b, a]=0} \\
{[a, x]=x, \quad[a, y]=-y, \quad[x, y]=b+\epsilon a .}
\end{gathered}
$$

At invertible ϵ, it is isomorphic to $s l_{2}$ plus a central factor, and it can be quantized à la Drinfel'd [Dr] much like $s l_{2}$ to get an algebra $Q U=A\langle y, b, a, x\rangle$ subject to (with $q=\mathbb{e}^{\hbar \epsilon}$):

$$
[b, a]=0, \quad[b, x]=\epsilon x, \quad[b, y]=-\epsilon y,
$$

$$
[a, x]=x, \quad[a, y]=-y, \quad x y-q y x=\frac{1-\mathbb{e}^{-\hbar(b+\epsilon a)}}{\hbar}
$$

Invariance of ρ_{1}. We start with the hardest, Reidemeister 3:

\Rightarrow Overall traffic patterns are unaffected by Reid3!
\Rightarrow Green's $g_{\alpha \beta}$ is unchanged by Reid3, provided the cars injection site α and the traffic counters β are away.
\Rightarrow Only the contribution from the R_{1} terms within the Reid3 move matters, and using g-rules the relevant $g_{\alpha \beta}$'s can be pu-

```
shed outside of the Reid3 area:
\deltai_,j_
gRules
```



```
    \mp@subsup{g}{\alpha-}{\prime},i}:->\mp@subsup{\mathbf{T}}{}{-s}(\mp@subsup{\textrm{g}}{\alpha,\mp@subsup{i}{}{+}}{}-\mp@subsup{\delta}{\alpha,\mp@subsup{i}{}{+}}{})
    g}\mp@subsup{\alpha}{~}{\prime}j:->\mp@subsup{\textrm{g}}{\alpha,\mp@subsup{j}{}{+}}{
```


Ihs $=R_{1}[1, j, k]+R_{1}\left[1, i, k^{+}\right]+R_{1}\left[1, i^{+}, j^{+}\right] / /$.
gRules $_{1, j, k}$ grules $_{1, i, k^{+}}$U gRules $_{1, \mathrm{i}^{+}, \mathrm{j}^{+}}$;
$r h s=R_{1}[1, i, j]+R_{1}\left[1, i^{+}, k\right]+R_{1}\left[1, j^{+}, k^{+}\right] / /$.
gRules $_{1, i, j} \cup$ gRules $_{1, \mathrm{i}^{+}, k} \cup$ gRules $_{1, \mathrm{j}^{+}, \mathrm{k}^{+}}$;
Simplify[lhs == rhs]
True

Next comes Reid1, where we use results from an earlier example:
$\mathrm{R}_{1}[1,2,1]-1\left(\mathrm{~g}_{22}-1 / 2\right) / . \mathrm{g}_{\alpha_{-}, \beta_{-}}: \rightarrow\left(\begin{array}{ccc}1 & \mathrm{~T}^{-1} 1 \\ 0 & \mathrm{~T}^{-1} & 1 \\ 0 & 0 & 1\end{array}\right) \llbracket \alpha, \beta \rrbracket$
$\frac{1}{\mathrm{~T}^{2}}-\frac{1}{\mathrm{~T}}-\frac{-1+\frac{1}{\mathrm{~T}}}{\mathrm{~T}}=\square$

Invariance under the other moves is proven similarly.
Wearing my Topology hat the formula for R_{1}, and even the idea to look for R_{1}, remain a complete mystery to me.

$\mathcal{R} \in \mathbb{H} \otimes \mathbb{H}$.

Everything still makes sense at $\epsilon=0$ and can be expanded near $\epsilon=0$ resulting with $\mathcal{R}=\mathcal{R}_{0}\left(1+\epsilon \mathcal{R}_{1}+\cdots\right)$, with $\mathcal{R}_{0}=\mathbb{e}^{t(x p \otimes 1-x \otimes p)}$ and \mathcal{R}_{1} a quartic polynomial in p and x. So p 's and x 's get created along K and need to be pushed around to a standard location ("normal ordering"). This is done using

$$
\begin{aligned}
& (p \otimes 1) \mathcal{R}_{0}=\mathcal{R}_{0}(T(p \otimes 1)+(1-T)(1 \otimes p)) \\
& (1 \otimes p) \mathcal{R}_{0}=\mathcal{R}_{0}(1 \otimes p)
\end{aligned}
$$

and when the dust settles, we get our formulas for ρ_{1}. But $Q U$ is a quasi-triangular Hopf algebra, and hence ρ_{1} is homomorphic. Read more at $[B V 1, B V 2]$ and hear more at $\omega \varepsilon \beta /$ SolvApp, $\omega \varepsilon \beta /$ Dogma, $\omega \varepsilon \beta /$ DoPeGDO, $\omega \varepsilon \beta /$ FDA, $\omega \varepsilon \beta / A Q D W$. Also, we can (and know how to) look at higher powers of ϵ and we can (and more or less know how to) replace $s l_{2}$ by arbitrary semi-simple Lie algebra

Schaveling These constructions are very similar to Rozansky-Overbay [Ro1, Ro2, Ro3, Ov] and hence to the "loop expansion" of the Kontsevich integral and the coloured Jones polynomial [Oh2].
$\varphi_{2}=1$ If this all reads like insanity to you, it should (and you haven't seen half of it). Simple things should have simple explanations.
21 Hence, Homework. Explain ρ_{1} with no reference to quantum voodoo and find it a topology home (large enough to house generalizations!). Make explicit the homomorphic properties of ρ_{1}. Use them to do topology!
P.S. As a friend of Δ, ρ_{1} gives a genus bound, sometimes better than Δ 's. How much further does this friendship extend?

