Dror Bar－Natan：Talks：Tokyo－230911： Rooting the BKT for FTI Thanks for inviting me to UTokyo！圆回 $\omega \varepsilon \beta:=h t t p: / / d r o r b n . n e t / t o k 2309$ 回粈

Abstract．Following joint work with Itai Bar－Natan，Iva Halache－ va，and Nancy Scherich，I will show that the Best Known Time （BKT）to compute a typical Finite Type Invariant（FTI）of type d on a typical knot with n crossings is roughly equal to $n^{d / 2}$ ，which is roughly the square root of what I believe was the standard be－ lief before，namely about n^{d} ．
Conventions．• $\underline{\mathrm{n}}:=\{1,2, \ldots, n\}$ ．• For complexity estimates we ignore constant and logarithmic terms：$n^{3} \sim 2023 d!(\log n)^{d} n^{3}$ ．
A Key Preliminary．Let $Q \subset$ \underline{n}^{l} be an enumerated subset，with $1 \ll q=|Q| \ll n^{l}$ ．In time $\sim q$ we can set up a lookup table of size $\sim q$ so that we will be able ． to compute $|Q \cap R|$ in time ~ 1 ， for any rectangle $R \subset \underline{\mathrm{n}}^{l}$ ．
Fails．－Count after R is prese－ nted．－Make a lookup table of $|Q \cap R|$ counts for all R＇s．

Unfail．Make a restricted loo－ kup table of the form

$$
\{\underset{\text { dyadic }}{R} \rightarrow \mid Q \underset{>0}{\cap R \mid}\} .
$$

－Make the table by running through $x \in Q$ ，and for each one increment by 1 only the entries for dyadic $R \ni x$（or create such an entry，if it di－ dn＇t exist already）．This takes $q \cdot\left(\log _{2} n\right)^{l} \sim q$ ops．

－Entries for empty dyadic R＇s are not needed and not created．
－Using standard sorting techniques，access takes $\log _{2} q \sim 1$ ops．
－A general R is a union of at most $\left(2 \log _{2} n\right)^{l} \sim 1$ dyadic ones， so counting $|Q \cap R|$ takes ~ 1 ops．
Generalization．Without changing the conclusion，replace counts $|Q \cap R|$ with summations $\sum_{R} \theta$ ，where $\theta: \underline{\mathrm{n}}^{l} \rightarrow V$ is suppor－ ted on a sparse Q ，takes values in a vector space \bar{V} with $\operatorname{dim} V \sim 1$ ， and in some basis，all of its coefficients are＂easy＂．

Here＇s $|G|=n=100$
Here＇s $|G|=n=100$
（signs suppressed）：

Acknowledgement．This work was partially supported by NSERC grant RGPIN－2018－04350 and by the Chu Family Foundation（NYC）．

My Primary Interest．Strong，fast，homomorphic knot and tan－ gle invariants． $\omega \varepsilon \beta /$ Nara，$\omega \varepsilon \beta /$ Kyoto，$\omega \varepsilon \beta /$ Tokyo

The［GPV］Theorem．A knot invariant is fi－ nite type of type d iff it is of the form $\omega \circ \varphi_{\leq d}$ for some $\omega \in \mathcal{G}_{\leq d}^{*}$ ．

－\Leftarrow is easy；\Rightarrow is hard and IMHO not well understood．
－$\varphi_{\leq d}$ is not an invariants and not every ω gives an invariant！
－The theory of finite type invariants is very rich．Many knot invariants factor through finite type invariants，and it is possible that they separate knots．
－We need a fast algorithm to compute $\varphi_{\leq d}$ ！
Our Main Theorem．On an n－arrow Gauss diagram，φ_{d} can be computed in time $\sim n^{[d / 2]}$ ．
Proof．With $d=p+l$（ p for＂put＂，l for＂lookup＂），pick p arrows and look up in how many ways the remaining l can be placed in between the legs of the first p ：

To reconstruct $D=P \#_{\lambda} L$ from P and L we need a non－decreasing ＇placement function＂$\lambda: \underline{2 l} \rightarrow \underline{2 p+1}$ ．

Define $\theta_{G}: \underline{2 n}^{2 l} \rightarrow \mathcal{G}_{l}$ by
$\left(L_{1}, \ldots, L_{2 l}\right) \mapsto \begin{cases}L & \text { if }\left(L_{1}, \ldots, L_{2 l}\right) \text { are the ends of some } L \subset G \\ 0 & \text { otherwise }\end{cases}$ and now $\varphi_{d}(G)=\binom{d}{p}^{-1} \sum_{P \in\binom{G}{p}} \sum_{\substack{\text { non－derecasing } \\:=\underline{l l} \rightarrow 2 p+1}} P \#_{\lambda}\left(\sum_{\prod_{i}\left(P_{\lambda(i)-1}, P_{\lambda(i)}\right)} \theta_{G}\right)$
can be computed in time $\sim n^{p}+n^{l}$ ．Now take $p=\lceil d / 2\rceil$ ．
 planar projections（here likely $n \sim L^{4 / 3}$ ）？
［BBHS］D．Bar－Natan，I．Bar－Natan，I．Halacheva，and N．Scherich，Yarn Ball Knots and Faster Computations，J．of Appl．and Comp．Topology（to appear），arXiv：2108．10923． ［GPV］M．Goussarov，M．Polyak，and O．Viro，Finite type invariants of classical and virtual knots，Topology 39 （2000）1045－1068，arXiv：math．GT／9810073．

