

In this example, if you ignore the dotted green line (marked " 6 "), you see the planar connection diagram D_{B}, which has three inputs $(1,2,3)$ and a single output, the cycle 0 . If you only look inside the green line, you see D_{I}, with inputs 2 and 3 and an output cycle 6 . If you ignore the inside of 6 you see D_{O}, with inputs 1 and 6 and output cycle 0 .
Let F_{B} (Big Faces) denote the vector space whose basis are the faces of D_{B}, let F_{I} (Inner Faces) be the space of faces of D_{I}, and let F_{O} (Outer Faces) be the space
 of faces of D_{O}. Let $G_{1}, G_{2}, G_{3}, G_{6}$, and G_{0} be the spaces of gaps (edges) along the cycles $1,2,3,6$, and 0 , respectively. Let $\psi:=\psi_{D_{B}}$ and $\phi:=\phi^{D_{B}}$ be the maps defining $\mathcal{S}\left(D_{B}\right)$ and let $\gamma:=\psi_{D_{o}}$ and $\delta:=\phi^{D_{o}}$ be the maps defining $\mathcal{S}\left(D_{O}\right)$. Further, let $\alpha:=\psi_{D_{I}}: F_{I} \rightarrow G_{2} \oplus G_{3}$ and $\beta:=\phi^{D_{I}}: F_{I} \rightarrow G_{6}$ be the maps defining $\mathcal{S}\left(D_{I}\right)$, and let $\alpha_{+}:=I \oplus \alpha$ and $\beta^{+}:=I \oplus \beta$ be the extensions of α and β by an identity on an extra factor of G_{1}, so that $\beta_{*}^{+} \alpha_{+}^{*}=I_{G_{1}} \oplus \mathcal{S}\left(D_{I}\right)$. Let μ map any big face to the sum of G_{1} gaps around it, plus the sum of the inner faces it contains. Let v map any big face to the sum of the outer faces it contains. It is easy to see that the master diagram $(M D)$ shown on the right, made of all of these spaces and maps, is commutative.
Claim. The bottom right square of $(M D)$ is an equalizer square, namely $F_{B} \simeq E Q\left(\beta^{+}, \gamma\right)$. Hence $v_{*} \mu^{*}=\gamma^{*} \beta_{*}^{+}$. $\vec{*} \mu_{*}$. $\quad G_{1} \oplus F_{I} \overrightarrow{\beta^{+}} G_{1} \oplus G_{6}$ Proof. A big face (an element of F_{B}) is a sum of outer faces f_{o} and a sum of inner faces f_{i}, and it has a boundary g_{1} on input cycle 1 , such that the boundary of the outer pieces f_{o} is equal to the boundary of the inner pieces f_{i} plus g_{1}. That matches perfectly with the definition of the equalizer: $E Q\left(\beta^{+}, \gamma\right)=\left\{\left(g_{1}, f_{i}, f_{o}\right): \beta^{+}\left(g_{1}, f_{i}\right)=\gamma\left(f_{o}\right)\right\}=$ $\left\{\left(g_{1}, f_{i}, f_{o}\right): \gamma\left(f_{o}\right)=\left(g_{1}, \beta\left(f_{i}\right)\right)\right\}$.
Proof of Theorem 4. With notation as above, with the example above (which is general enough), and with the claim above, and also using functoriality, we have $\mathcal{S}\left(D_{B}\right)=\phi_{*} \psi^{*}=\delta_{*} v_{*} \mu^{*} \alpha_{+}^{*}=\delta_{*} \gamma^{*} \beta_{*}^{+} \alpha_{+}^{*}=$ $\mathcal{S}\left(D_{O}\right) \circ\left(I_{G_{1}} \oplus \mathcal{S}\left(D_{I}\right)\right)$, as required.
Proof of Theorem 5. We need to verify the Reidemeister moves and that was done in the computational section, and the statement about the restriction to links, which is easy: simply assemble an n-crossing knot using an n-input planar connection diagram, and the formulas clearly match.
Further Homework.
Exercise 6. By taking $U=0$ in the reciprocity statement, prove that always $\sigma\left(\phi_{*} S\right)=\sigma(S)$. But that seems wrong, if $\phi=0$. What saves the day?
Exercise 7. By taking $S=0$ in the reciprocity statement, frove that always $\sigma\left(\phi^{*} U\right)=\sigma(U)$. But wait, this is nonsense! What went wrong? Exercise 8. Given $\phi: V \rightarrow W$ and a subspace $D \subset V$, show that there is a unique subspace $\phi_{*} D \subset W$ such that for every quadratic Q on W, $\sigma\left(\left.\phi^{*} Q\right|_{D}\right)=\sigma\left(\left.Q\right|_{\phi_{*} D}\right)$.
Exercise 9. When are diagrams as on the right equalizer diagrams? What then do we learn from Theorem 3?

Exercise 10. There are 11 types or irreducible commutative squares:
 $0 \rightarrow 0 \quad 0 \rightarrow 0 \quad 1 \rightarrow 0 \quad 0 \rightarrow 1 \quad 0 \rightarrow 0 \quad 0 \rightarrow 1 \quad 0 \rightarrow 1 \quad 1 \stackrel{1}{\nrightarrow}$
 $1 \stackrel{1}{\rightarrow} 1 \quad 1 \rightarrow 0 \quad 1 \xrightarrow{1} 1$
ling for all but four of them. Compare with the statement of Theorem 3. Exercise 11. Prove that a square is admissible iff it is an equalizer square, with an additional direct summand A added to the Y term, and with the maps μ and v extended by 0 on A.
Exercise 12. Prove that the direct sum of two admissible squares is admissible. Warning: Harder than it seems! Not all quadratics on $V_{1} \oplus V_{2}$ are direct sums of quadratics on V_{1} and on V_{2}.
Exercise 13. Given a quadratic Q on a space V, let π be the projection $V \rightarrow V / \operatorname{rad}(Q)$ and show that $\pi_{*} Q=Q / \operatorname{rad}(Q)$, with the obvious definition for the latter.
Exercise 14. Show that for any partial quadratic Q on a space W there exists a space A and a fully-defined quadratic F on $W \oplus A$ such that $\pi_{*} F=Q$, where $\pi: W \oplus A \rightarrow W$ is the projection (these are not unique). Furthermore, if $\phi: V \rightarrow W$, then $\phi^{*} Q=\pi_{*} \phi_{+}^{*} F$, where $\phi_{+}=\phi \oplus I: V \oplus A \rightarrow W \oplus A$ and π also denotes the projection $V \oplus A \rightarrow V$.

Solutions / Hints.

