Dror Bar-Natan - Handout Portfolio

As of April 16, 2024 - see also http://drorbn.net/hp - paper copies are available from the author, at a muffin plus cappuccino each or the monetary equivalent (to offset printing costs). This document has 49 pages.

Warning. This is a reduced quality version with some content removed to control file size. My full handout portfolio is at the URL above.

Abstract. Following a general discussion of the computation of zombians of unfinished columbaria (with examples), I will tell you about my recent joint work w/ Jessica Liu on what we feel is the "textbook" extension of knot signatures to tangles, which for unknown reasons, is not in any of the textbooks that we know.

Kashatv's-Conjecture [Ka] Liu's Theorem [Li].

For links, $\sigma_{K a s}=2 \sigma_{T L}$.
A Partial Quadratic ($P Q$) on V is a quadratic Q defined only on a subspace $\mathcal{D}_{Q} \subset V$. We add PQs with $\mathcal{D}_{Q_{1}+Q_{2}}:=\mathcal{D}_{Q_{1}} \cap \mathcal{D}_{Q_{2}}$.
Given a linear $\psi: V \rightarrow W$ and a PQ Q on W, there is an obvious pullback $\psi^{*} Q$, a PQ on V.
Theorem 1. Given a linear $\phi: V \rightarrow W$ and a PQ Q on V, there is a unique pushforward PQ $\phi_{*} Q$ on W such that for every $P Q U$ on $W, \sigma_{V}\left(Q+\phi^{*} U\right)=\sigma_{\text {ker } \phi}\left(\left.Q\right|_{\text {ker } \phi}\right)+\sigma_{W}\left(U+\phi_{*} Q\right)$.
(If you must, $\mathcal{D}\left(\phi_{*} Q\right)=\phi\left(\operatorname{ann}_{Q}(\mathcal{D}(Q) \cap \operatorname{ker} \phi)\right)$ and $\left(\phi_{*} Q\right)(w)=Q(v)$, where v is s.t. $\phi(v)=w$ and $\left.Q\left(v,\left.\operatorname{rad} Q\right|_{\text {ker } \phi}\right)=0\right)$.
Prior Art on signatures for tangles / braids. Gambaudo and Ghys [GG], Cimasoni and Conway [CC], Conway [Co], Merz [Me]. All define signatures of tangles / braids by first closing them to links and then work hard to derive composition properties.

Why Tangles? • Faster!

- Conceptually clearer proofs of invariance (and of skein relations).
- Often fun and consequential:

- The Jones Polynomial \leadsto The Temperley-Lieb Algebra.
- Khovanov Homology \sim "Unfinished complexes", complexes in a category.
- The Kontsevich Integral \sim Associators.
- HFK \leadsto OMG, type D, type $A, \mathcal{A}_{\infty}, \ldots$

Gist of the Proof.

$\sigma\left(\left.Q\right|_{\text {ker } \phi}\right)$

.. and the quadratic $F=: \phi_{*} Q$ is well-defined only on $D:=\operatorname{ker} C$. Exactly what we want, if the Zombian is the signature!
V : The full space of faces.
W : The boundary, made of gaps.
Q : The known parts.
U : The part yet unknown.
$\sigma_{V}\left(Q+\phi^{*}(U)\right)$: The overall Zombian.

$\sigma\left(\left.Q\right|_{\text {ker } \phi}\right)$: An internal bit. $U+\phi_{*} Q:$ A boundary bit.
And so our ZPUC is the pair $S=\left(\sigma\left(\left.Q\right|_{\operatorname{ker} \phi}\right), \phi_{*} Q\right)$.
Computing Zombians of Unfinished Columbaria.

- Must be no slower than for finished ones.
- Future zombies must be able to complete the computation.
- Future zombies must not even know the size
of the task that today's zombies were facing.
- We must be able to extend to ZPUCs, Zombie

Processed Unfinished Columbaria!
Example / Exercise. Compute the determinant of a $1,000 \times 1,000$ matrix in which 50 entries are not yet given.
Homework / Research Projects. • What with ZPUCs? • Use this to get an Alexander tangle invariant.
Reminders. \{links\} \rightrightarrows \{matrices / quadratic forms $\} \xrightarrow[\sigma]{\text { signature }} \mathbb{Z}$:

A Shifted Partial Quadratic (SPQ) on V is a pair $S=(s \in$ \mathbb{Z}, Q a PQ on V). addition also adds the shifts, pullbacks keep the shifts, yet $\phi_{*} S:=\left(s+\sigma_{\text {ker } \phi}\left(\left.Q\right|_{\operatorname{ker} \phi}\right), \phi_{*} Q\right)$ and $\sigma(S):=s+\sigma(Q)$. Theorem 1' (Reciprocity). Given $\phi: V \rightarrow W$, for SPQs S on V and U on W we have $\sigma_{V}\left(S+\phi^{*} U\right)=\sigma_{W}\left(U+\phi_{*} S\right)$ (and this characterizes $\left.\phi_{*} S\right)$. Note. ψ^{*} is additive but ϕ_{*} is not. Theorem 2. ψ^{*} and ϕ_{*} are functorial. $Y \xrightarrow{v} W$ Theorem 3. "The pullback of a pushforward scene is $\mu \downarrow$, $\downarrow \gamma$ a pushforward scene": If, on the right, β and δ are ar- $V \underset{\beta}{\rightarrow} Z$ bitrary, $Y=\mathrm{EQ}(\beta, \gamma)=V \oplus_{Z} W=\{(v, w): \beta v=\gamma w\}$ and μ and v are the obvious projections, then $\gamma^{*} \beta_{*}=v_{*} \mu^{*}$.
Definition. $\mathcal{S}\left(\begin{array}{ll}\left.\begin{array}{ll}g_{2} & g_{1} \\ y_{1} & g_{1}\end{array}\right)\end{array}\right):=\left\{\begin{array}{l}\operatorname{SPQ} S \\ \text { on }\left\langle g_{i}\right\rangle\end{array}\right\}$. Theorem 4. $\{\mathcal{S}$ (cyclic sets) $\}$ is a planar algebra, with compositions $\mathcal{S}(D)\left(\left(S_{i}\right)\right):=\phi_{*}^{D}\left(\psi_{D}^{*}\left(\bigoplus_{i} S_{i}\right)\right)$, where $\psi_{D}:\left\langle f_{i}\right\rangle \rightarrow\left\langle g_{\alpha i}\right\rangle$ maps every face of D to the sum of the input gaps adjacent to
 it and $\phi^{D}:\left\langle f_{i}\right\rangle \rightarrow\left\langle g_{i}\right\rangle$ maps every face to the sum of the output
$\overline{\mathrm{With}}|\bar{\omega}|=\overline{1}, \bar{t}=\overline{1}-\bar{\omega}, \bar{r}=\bar{t}+\bar{t}, \bar{v}=\overline{\operatorname{Re}} \bar{\omega}(\bar{\omega}), \overline{\mathrm{and}} \bar{u}=\overline{\operatorname{Re}}\left(\bar{\omega}{ }^{\mathrm{T} / 2}\right):$
 gaps adjacent to it. So for our $D, \psi_{D}: f_{1} \mapsto g_{34}, f_{2} \mapsto g_{31}+g_{14}+g_{24}+g_{33}$,
$f_{3} \mapsto g_{32}, f_{4} \mapsto g_{11}, f_{5} \mapsto g_{13}+g_{21}, f_{6} \mapsto g_{23}, f_{7} \mapsto g_{12}+g_{22}$ and $\phi^{D}:$
$f_{1} \mapsto g_{1}, f_{2} \mapsto g_{2}+g_{6}, f_{3} \mapsto 0, f_{4} \mapsto g_{3}, f_{5} \mapsto 0, f_{6} \mapsto g_{5}, f_{7} \mapsto g_{4}$.
Theorem 5. TL and Kas, defined on
X and \bar{X} as before, extend to planar
algebra morphisms $\{$ tangles $\} \rightarrow\{\mathcal{S}\}$.

Restricted to links, $T L=\sigma_{T L}$ and Kas $=\sigma_{\text {Kas }}$.

Implementation (sources: http://drorbn.net/icerm23/ ap). I like it most when the implementation matches the math perfectly. We failed here.

Once[<< KnotTheory`];

Loading KnotTheory` version
of February 2, 2020, 10:53:45.2097.
Read more at http://katlas.org/wiki/KnotTheory.
Utilities. The step function, algebraic numbers, canonical forms.
$\theta\left[x_{-}\right] / ;$NumericQ[x]:=UnitStep [x]
$\omega \mathbf{2}\left[v_{-}\right]\left[p_{-}\right]:=\operatorname{Module}[\{q=\operatorname{Expand}[p], n, c\}$, $\operatorname{If}[q==0,0$, $c=\operatorname{Coefficient}[q, \omega, n=\operatorname{Exponent}[q, \omega]]$;
$\left.\left.c v^{n}+\omega \mathbf{2}[v]\left[q-c\left(\omega+\omega^{-1}\right)^{n}\right]\right]\right]$;
$\operatorname{sign}\left[\mathcal{E}_{-}\right]:=\operatorname{Module}[\{n, d, v, p, r s, e, k\}$,
$\{\mathrm{n}, \mathrm{d}\}=$ NumeratorDenominator $[\mathcal{E}]$;
$\{\mathrm{n}, \mathrm{d}\} /=\omega^{\text {Exponent }[\mathrm{n}, \omega] / 2+\text { Exponent }[\mathrm{n}, \omega, \text { Min }] / 2}$; $\mathrm{p}=$ Factor $\left[\omega 2[\mathrm{v}] @ \mathrm{n} * \omega 2[\mathrm{v}] @ \mathrm{~d} / . \mathrm{v} \rightarrow 4 \mathrm{u}^{2}-2\right]$; rs = Solve [p = 0, u, Reals];
If [rs === \{\}, Sign [p/.u $\rightarrow 0$],
rs = Union@ (u /. rs) ;
$\operatorname{Sign}\left[(-1)^{\mathrm{e}=\text { Exponent }[p, u]} \operatorname{Coefficient[p,u,e]]+\operatorname {Sum}[~}\right.$
$\mathrm{k}=0$;
While $\left[\left(d=\operatorname{RootReduce}\left[\partial_{\{u,++k\}} p / . u \rightarrow r\right]\right)=0\right]$;
If[EvenQ[k], 0, 2 Sign[d]] * $\theta[u-r]$, $\{r, r s\}]$
]
]
SetAttributes [B, Orderless];
CF[b_B]:=RotateLeft[\#, First@Ordering[\#] - 1] \& /@ DeleteCases [$b,\{ \}]$
CF $\left[\mathcal{E}_{-}\right]:=\operatorname{Module}\left[\left\{\gamma s=\right.\right.$ Union@Cases $\left.\left[\varepsilon, \gamma_{-} \mid \bar{\gamma}_{-}, \infty\right]\right\}$,
Total[CoefficientRules $[\mathcal{E}, \gamma s] /$. $\left(p s_{-} \rightarrow c_{-}\right): \rightarrow$ Factor $[c] \times$ Times @@ $\left.\left.\gamma s^{p s}\right]\right]$
CF[\{\}] = \{\};
CF[C_List]: $=$
Module [$\left\{\gamma s=\right.$ Union@Cases $\left.\left[C, \gamma_{-}, \infty\right], \gamma\right\}$, CF /@ DeleteCases [0] [

RowReduce[Table[$\left.\left.\left.\partial_{\gamma} r,\{r, C\},\{\gamma, \gamma s\}\right]\right] \cdot \gamma s\right]$]
$\left(\delta_{-}\right)^{*}:=\varepsilon / \cdot\left\{\bar{\gamma} \rightarrow \gamma, \gamma \rightarrow \bar{\gamma}, \omega \rightarrow \omega^{-1}, c_{-}\right.$Complex $\left.: \rightarrow c^{*}\right\}$;
$r_{-} R u L e^{+}:=\left\{r, r^{*}\right\}$
RulesOf $\left[\gamma_{i_{-}}+r e s t_{-} \cdot\right]:=\left(\gamma_{i} \rightarrow-r e s t\right)^{+}$;
$\mathrm{CF}\left[\mathrm{PQ}\left[C_{-}, q_{-}\right]\right]:=\operatorname{Module}[\{n C=\operatorname{CF}[C]\}$,
$\mathrm{PQ}[\mathrm{nc}, \mathrm{CF}[q /$ Union @@RulesOf /@ nc$]$]]
$\mathrm{CF}\left[\Sigma_{b_{-}}\left[\sigma_{-}, p q_{-}\right]\right]:=\Sigma_{\mathrm{CF}[b]}[\sigma, \mathrm{CF}[p q]]$

Pretty-Printing.

```
Format[\mp@subsup{\Sigma}{\mp@subsup{b}{-}{\prime}}{}[\mp@subsup{\sigma}{-}{},\operatorname{PQ[C_, q_]]]:= Module[{\gammas},}
    \gammas = \gamma# & /@ Join @@ b;
    Column[{TraditionalForm@ }\sigma\mathrm{ ,
    TableForm[Join[
        Prepend[""] /@Table[TraditionalForm[\partialcr],
            {r, C}, {c, rs}],
            {Prepend[""][
                Join@@
                    (b /. {L_, m___, r_} : 
                    {DisplayForm@RowBox[{"(", L}],
                    m, DisplayForm@RowBox[{r, ")"}]}) /.
                i_Integer: }->\mp@subsup{\gamma}{i}{\prime}]}
        MapThread[Prepend,
        {Table[TraditionalForm[就cq],{r,\gammas*},
            {c, rs}], rs*}]
        ], TableAlignments }->\mathrm{ Center]
    }, Center] ];
```

The Face-Centric Core.

```
\(\Sigma_{b 1_{-}}\left[\sigma 1_{-}, \mathrm{PQ}\left[c 1_{-}, q 1_{-}\right]\right] \oplus \Sigma_{b 2_{-}}\left[\sigma 2_{-}, \mathrm{PQ}\left[c 2_{-}, q 2_{-}\right]\right]{ }^{\wedge}:=\)
    CF@ \(\Sigma_{\text {Join }}{ }_{b 1, b 2]}[\sigma 1+\sigma 2, \operatorname{PQ}[C 1 \cup C 2, q 1+q 2]] ;\)
```

GT for Gap Touch:

Strand Operations. c for contract, mc for magnetic contract:

The Crossings (and empty strands).
$\operatorname{Kas@} \mathrm{P}_{i_{-}, j_{-}}:=\operatorname{CF@} \Sigma_{\mathrm{B}}{ }_{[\{, j, j\}]}[0, \operatorname{PQ}[\{ \}, 0]] ;$
$T L @ P_{i_{-}, j_{-}}:=\operatorname{CF} @ \Sigma_{B[\{i, j\}]}[0, \operatorname{PQ}[\{ \}, 0]]$

```
Kas[x:X[i_, \(\left.\left.j_{-}, k_{-}, l_{-}\right]\right]:=\)
    Kas@If[PositiveQ[x], \(\left.\mathbf{X}_{-i, j, k,-l}, \overline{\mathbf{X}}_{-j, k, l,-i}\right]\);
\(\operatorname{Kas}\left[(x: X \mid \bar{X})_{f s_{-}}\right]:=\operatorname{Module}\left[\left\{v=2 u^{2}-1, p, \gamma s, m\right\}\right.\),
    \(\gamma s=\gamma_{\#} \& / @\{f s\} ; p=(x===X) ;\)
    \(m=\operatorname{If}\left[p,\left(\begin{array}{cccc}v & u & 1 & u \\ u & 1 & u & 1 \\ 1 & u & v & u \\ u & 1 & u & 1\end{array}\right),-\left(\begin{array}{cccc}v & u & 1 & u \\ u & 1 & u & 1 \\ 1 & u & v & u \\ u & 1 & u & 1\end{array}\right)\right] ;\)
    CF@ \(\left.\Sigma_{\text {B[\{fs\}] }}\left[\operatorname{If}[p,-1,1], \operatorname{PQ}\left[\{ \}, \gamma s^{*} \cdot m \cdot \gamma s\right]\right]\right]\)
```

$\operatorname{TL}\left[x: X\left[i_{-}, j_{-}, k_{-}, L_{-}\right]\right]:=$
TL@If[PositiveQ[x], $\left.\mathbf{X}_{-i, j, k,-l}, \overline{\mathbf{X}}_{-j, k, l,-i}\right]$;
$\operatorname{TL}\left[(x: X \mid \overline{\mathbf{X}})_{f s_{--}}\right]:=\operatorname{Module}[\{t=1-\omega, r, \gamma s, m\}$,
$r=t+t^{*} ; \gamma s=\gamma_{\#} \& / @\{f s\} ;$
$\mathrm{m}=\mathbf{I f}[x==\mathbf{x}$,
$\left.\left(\begin{array}{cccc}-r & -t & 2 t & t^{*} \\ -t^{*} & 0 & t^{*} & 0 \\ 2 t^{*} & t & -r & -t^{*} \\ t & 0 & -t & 0\end{array}\right),\left(\begin{array}{cccc}r & -t & -2 t^{*} & t^{*} \\ -t^{*} & 0 & t^{*} & 0 \\ -2 t & t & r & -t^{*} \\ t & 0 & -t & 0\end{array}\right)\right] ;$
$\left.\mathbf{C F @} \Sigma_{\mathrm{B}[\{f s\}]}\left[0, \mathrm{PQ}\left[\{ \}, \gamma \mathrm{s}^{*} \cdot \mathrm{~m} \cdot \gamma \mathrm{~s}\right]\right]\right]$

Evaluation on Tangles and Knots.

```
Kas[K_] := Fold[mc[#1\oplus#2] &, \mp@subsup{\Sigma}{\textrm{B}[]}{[0, PQ[{}, 0]],}
    List@@ (Kas /@PD@K)];
KasSig[K_] := Expand[Kas[K][1]/2]
```

TL[K_] :=
Fold [mc $[\# 1 \oplus \# 2] \&, \Sigma_{\mathrm{B}[]}[0, \mathrm{PQ}[\{ \}, 0]]$,
List @@ (TL /@PD@K)] /.
$\theta\left[c_{-}+u\right] /$; Abs $[c] \geq 1: \rightarrow \theta[c]$;
TLSig[K_] := TL[K]【1】

Reidemeister 3.
R3L $=P D\left[X_{-2,5,4,-1}, X_{-3,7,6,-5}\right.$,

$$
X_{-6,9,8,-4]} ;
$$

R3R $=$ PD $\left[X_{-3,5,4,-2,} X_{-4,6,8,-1,}\right.$
$X_{-5,7,9,-6]}$;

\{TL@R3L == TL@R3R, Kas@R3L == Kas@R3R\}
\{True, True \}

Kas@R3L

$\bar{\gamma}-3$	$\begin{gathered} (\gamma-3 \\ 2 u^{2}\left(4 u^{2}-3\right) \end{gathered}$
	$\frac{(2 u-1)(2 u+1)}{(2)}$
87	$u\left(4 u^{2}-3\right)$
	$\frac{(2 u-1)(2 u+1)}{}$
89	1
	(2u-1) $(2 u+1)$
7_{8}	$2 u$
	(2u-1) (2u+1)
$\bar{\gamma}-1$	1
	(2u-1) (2u+1)
8-2	$u\left(4 u^{2}-3\right)$
	(2u-1)

$\gamma 7$ $\frac{u\left(4 u^{2}-3\right)}{(2 u-1)(2 u+1)}$ $\frac{2\left(2 u^{2}-1\right)}{(2 u-1)(2 u+1)}$ $\frac{u\left(4 u^{2}-3\right)}{(2 u-1)(2 u+1)}$ $-\frac{1}{(2 u-1)\langle 2 u+1)}$ $-\frac{2 u}{(2 u-1)(2 u+1)}$ $-\frac{1}{(2 u-1)(2 u-1)}$

$2 \theta\left(u-\frac{1}{2}\right)-2 \theta\left(u+\frac{1}{2}\right)$

γ_{9}	
$-\frac{1}{(2 u-1)(2 u+1)}$	$-\frac{\gamma_{8}}{(2 u-1)(2 u+1)}$
$\frac{u\left(4 u^{2}-3\right)}{(2 u-1)(2 u+1)}$	$-\frac{1}{(2 u-1)(2 u+1)}$
$\frac{2 u^{2}\left(4 u^{2}-3\right)}{(2 u-1)(2 u+1)}$	$\frac{u\left(4 u^{2}-3\right)}{(2 u-1)(2 u+1)}$
$\frac{u\left(4 u^{2}-3\right)}{(2 u-1)(2 u+1)}$	$\frac{2 u^{2}\left(4 u^{2}-3\right)}{(2 u-1)(2 u+1)}$
$-\frac{1}{(2 u-1)(2 u+1)}$	$\frac{u\left(4 u^{2}-3\right)}{(2 u-1)(2 u+1)}$
$-\frac{2 u}{(2 u-1)(2 u+1)}$	$-\frac{1}{(2 u-1)(2 u+1)}$

$\gamma-1$	
$-\frac{1}{(2 u-1)(2 u+1)}$	$\gamma-2)$ $-\frac{u\left(4 u^{2}-3\right)}{(2 u-1)(2 u+1)}$
$-\frac{2 u}{(2 u-1)(2 u+1)}$	$-\frac{1}{(2 u-1)(2 u+1)}$
$-\frac{1}{(2 u-1)(2 u+1)}$	$-\frac{2 u}{(2 u-1)(2 u+1)}$
$\frac{u\left(4 u^{2}-3\right)}{(2 u-1)(2 u+1)}$	$-\frac{1}{(2 u-1)(2 u+1)}$
$\frac{2\left(2 u^{2}-1\right)}{(2 u-1)(2 u+1)}$	$\frac{u\left(4 u^{2}-3\right)}{(2 u-1)(2 u+1)}$
$\frac{u\left(4 u^{2}-3\right)}{(2 u-1)(2 u+1)}$	$\frac{2 u^{2}\left(4 u^{2}-3\right)}{(2 u-1)(2 u+1)}$

Reidemeister 2.

TL@PD[$\left.\mathbf{X}_{-2,4,3,-1,}, \overline{\mathbf{X}}_{-4,6,5,-3}\right]$				
	0	0	-1	0
	$\left(\gamma_{-2}\right.$	γ_{6}	γ_{5}	$\left.\gamma_{-1}\right)$
$\bar{\gamma}_{-2}$	0	0	0	0
$\bar{\gamma}_{6}$	0	0	0	0
$\bar{\gamma}_{5}$	0	0	0	0
$\bar{\gamma}_{-1}$	0	0	0	0

$\left\{\right.$ TL@PD $\left[X_{-2,4,3,-1}, \bar{X}_{-4,6,5,-3}\right]=$ GT $_{5,-2} @ T L @ P D\left[P_{-1,5}, P_{-2,6}\right]$, Kas@PD $\left[X_{-2,4,3,-1}, \bar{X}_{-4,6,5,-3}\right]=$ GT $\left._{5,-2} @ \operatorname{Kas@PD}\left[P_{-1,5}, P_{-2,6}\right]\right\}$
\{True, True \}
Reidemeister 1.

$$
\begin{aligned}
& \left\{\operatorname { T L @ P D } \left[X_{-3,3,2,-1]}=\text { TL@ }_{-1,2},\right.\right. \\
& \text { Kas@PD }\left[X_{-3,3,2,-1]}==\operatorname{Kas@}_{-1,2}\right\}
\end{aligned}
$$

\{True, True \}
A Knot.
$\mathrm{f}=\mathrm{TLSig}[\operatorname{Knot}[8,5]]$
$2 \theta\left[-\frac{\sqrt{3}}{2}+u\right]-2 \theta\left[\frac{\sqrt{3}}{2}+u\right]-$

$$
2 \ominus[u-\sqrt{(\sqrt{ }}-0.630 \ldots]+2 \ominus[u-\sqrt{ } 0.630 \ldots
$$

Plot[f, \{u, -1, 1\}]

Video: http://www.math.toronto.edu/~drorbn/Talks/Geneva-231201. Handout: http://www.math.toronto.edu/~drorbn/Talks/USC-240205.

The Conway-KinoshitaTerasaka Tangles.

$$
\left.\bar{X}_{-4,12,5,-11}, \bar{X}_{-10,15,11,-14}, \bar{X}_{-15,10,16,-9}\right] ;
$$

Column@ \{TL[T1], Kas [T1] \}

Column@ \{TL[T2], Kas [T2] \}

	$(\gamma-14$	γ_{16}	γ_{-1}	γ_{13})	
$\bar{\gamma}-14$	0	1- ω	0	$\omega-1$	
$\bar{\gamma}_{16}$	$\frac{\omega-1}{\omega}$	$-\frac{2(\omega-1)^{2} \omega}{\omega^{4}-3 \omega^{3}+5 \omega^{2}-3 \omega+1}$	$-\frac{\omega-1}{\omega}$	$\frac{2(\omega-1)^{2} \omega}{\omega^{4}-3 \omega^{3}+5 \omega^{2}-3 \omega+1}$	
$\bar{\gamma}-1$	0	ω - 1	0	$1-\omega$	
$\bar{\gamma} 13$	$-\frac{\omega-1}{\omega}$	$\frac{2(\omega-1)^{2} \omega}{\omega^{4}-3 \omega^{3}+5 \omega^{2}-3 \omega+1}$	$\frac{\omega-1}{\omega}$	$\frac{2(\omega-1)^{2} \omega}{\omega^{4}-3 \omega^{3}+5 \omega^{2}-3 \omega+1}$	
			1		
		$\gamma-14$	γ_{16}	$\gamma-1$	γ_{13})
$\bar{\gamma}-14$	$\frac{1}{2}(-16$	+ $28 u^{2}-13$)	0	$\frac{1}{2}\left(16 u^{4}-28 u^{2}+13\right)$	0
$\bar{\gamma} 16$		0	$\frac{2(u-1)(u+1)}{16 u^{4}-28 u^{2}+13}$	0	$\frac{2(u-1)(u+1)}{16 u^{4}-28 u^{2}+13}$
$\bar{\gamma}-1$	$\frac{1}{2}(16$	$\left.-28 u^{2}+13\right)$	0	$\frac{1}{2}\left(-16 u^{4}+28 u^{2}-13\right)$	0
$\bar{\gamma} 13$		0	$\frac{2(u-1)(u+1)}{16 u^{4}-28 u^{2}+13}$	0	$-\frac{2(u-1)(u+1)}{16 u^{4}-28 u^{2}+13}$

Examples with non-trivial codimension.
B1 $=$ PD $\left[X_{-5,2,6,-1}, \bar{X}_{-8,3,9,-2,}\right.$
$X_{-11,4,12,-3}, X_{-12,10,13,-9,}$
$\bar{X}_{-13,7,14,-6]}$;
$B 2=P D\left[X_{-5,2,6,-1}, \bar{X}_{-9,3,10,-2}\right.$,

$\left.X_{-10,7,11,-6}, \bar{X}_{-12,4,13,-3}, X_{-13,8,14,-7}\right]$;

Column@ \{TL[B1], Kas [B1] \}

Column@ \{TL[B2], Kas[B2] \}

Questions. 1. Does this have a topological meaning? 2. Is there a version of the Kashaev Conjecture for tangles? 3. Find all solutions of R123 in our "algebra". 4. Braids and the Burau representation. 5. Recover the work in "Prior Art". 6. Are there any concordance properties? 7. What is the "SPQ group"? 8. The jumping points of signatures are the roots of the Alexander polynomial. Does this generalize to tangles? 9. Which of the three Cordon cases is the most common? 10. Are there interesting examples of tangles for which rels is non-trivial? 11. Is the $p q$ part determined by Γ-calculus? 12. Is the $p q$ part determined by finite type invariants? 13. Does it work with closed components / links? 14. Strand-doubling formulas? 15. A multivariable version? 16. Mutation invariance? 17. Ribbon knots? 18. Are there "face-virtual knots"? 19. Does the pushforward story extend to ranks? To formal Gaussian measures? To super Gaussian measures?

References.

[CC] D. Cimasoni, A. Conway, Colored Tangles and Signatures, Math. Proc. Camb. Phil. Soc. 164 (2018) 493-530, arxiv: 1507.07818.
[Co] A. Conway, The Levine-Tristram Signature: A Survey, arXiv: 1903.04477.
[GG] J-M. Gambaudo, É. Ghys, Braids and Signatures, Bull. Soc. Math. France 133-4 (2005) 541-579.
[Ka] R. Kashaev, On Symmetric Matrices Associated with Oriented Link Diagrams, in Topology and Geometry, A Collection of Essays Dedicated to Vladimir G. Turaev, EMS Press 2021, arXiv:1801.04632.
[Li] J. Liu, A Proof of the Kashaev Signature Conjecture, arxiv: 2311.01923.
[Me] A. Merz, An Extension of a Theorem by Cimasoni and Conway, arXiv:2104.02993.

Acknowledgement. This work was partially supported by NSERC grant RGPIN-2018-04350 and by the Chu Family Foundation (NYC).

Some Rigor.

(Exercises hints and partial solutions at end) Exercise 1. Show that if two SPQ's S_{1} and S_{2} on V satisfy $\sigma\left(S_{1}+U\right)=$ $\sigma\left(S_{2}+U\right)$ for every quadratic U on V, then they have the same shifts and the same domains.
Exercise 2. Show that if two full quadratics Q_{1} and Q_{2} satisfy $\sigma\left(Q_{1}+\right.$ $U)=\sigma\left(Q_{2}+U\right)$ for every U, then $Q_{1}=Q_{2}$.
Proof of Theorem 1'. Fix W and consider triples ($V, S, \phi: V \rightarrow W$) where $S=(s, D, Q)$ is an SPQ on V. Say that two triples are "pushequivalent", $\left(V_{1}, S_{1}, \phi_{1}\right) \sim\left(V_{2}, S_{2}, \phi_{2}\right)$ if for every quadratic U on W,

$$
\sigma_{V_{1}}\left(S_{1}+\phi_{1}^{*} U\right)=\sigma_{V_{2}}\left(S_{2}+\phi_{2}^{*} U\right) .
$$

Given our (V, S, ϕ), we need to show:

1. There is an SPQ S^{\prime} on W such that $(V, S, \phi) \sim\left(W, S^{\prime}, I\right)$.
2. If $\left(W, S^{\prime}, I\right) \sim\left(W, S^{\prime \prime}, I\right)$ then $S^{\prime}=S^{\prime \prime}$.

Property 2 is easy (Exercises 1, 2). Property 1 follows from the following three claims, each of which is easy.
Claim 1. If $v \in \operatorname{ker} \phi \cap D(S)$, and $\lambda:=Q(v, v) \neq 0$, then $(V, S, \phi) \sim$

$$
\left(V /\langle v\rangle,\left(s+\operatorname{sign}(\lambda), D(S) /\langle v\rangle, Q-\lambda^{-1} Q(-, v) \otimes Q(v,-)\right), \phi /\langle v\rangle\right) .
$$

So wlog $\left.Q\right|_{\text {ker } \phi}=0\left(\right.$ meaning, $\left.\left.Q\right|_{\text {ker } \phi \otimes \text { ker } \phi}=0\right)$.
Claim 2. If $\left.Q\right|_{\text {ker } \phi}=0$ and $v \in \operatorname{ker} \phi \cap D(S)$, let $V^{\prime}=\operatorname{ker} Q(v,-)$ and then $(V, S, \phi) \sim\left(V^{\prime},\left.S\right|_{V^{\prime}},\left.\phi\right|_{V^{\prime}}\right)$ so wlog $\left.Q\right|_{V \otimes \operatorname{ker} \phi+\operatorname{ker} \phi \otimes V}=0$.
Claim 3. If $\left.Q\right|_{V \otimes \text { ker } \phi+\text { ker } \phi \otimes V}=0$ then $S=\phi^{*} S^{\prime}$ for some SPQ S^{\prime} on im ϕ and then $(V, S, \phi) \sim\left(W, S^{\prime}, I\right)$.
Proof of Theorem 2. The functoriality of pullbacks needs no proof.
Now assume $V_{0} \xrightarrow{\alpha} V_{1} \xrightarrow{\beta} V_{2}$ and that S is an SPQ on V_{0}. Then for every SPQ U on V_{2} we have, using reciprocity three times, that $\sigma\left(\beta_{*} \alpha_{*} S+U\right)=\sigma\left(\alpha_{*} S+\beta^{*} U\right)=\sigma\left(S+\alpha^{*} \beta^{*} U\right)=\sigma\left(S+(\beta \alpha)^{*} U\right)=$ $\sigma\left((\beta \alpha)_{*} S+U\right)$. Hence $\beta_{*} \alpha_{*} S=(\beta \alpha)_{*} S$.
Definition. A commutative square as on the right is called admissible if $\gamma^{*} \beta_{*}=v_{*} \mu^{*}$.
Lemma 1. If $V=W=Y=Z$ and $\beta=\gamma=\mu=v=I$, the
square is admissible.
Lemma 2. The following are equivalent:

1. A square as above is admissible.
2. The Pairing Condition holds. Namely, if S_{1} is an SPQ on V (write $S_{1} \vdash V$) and $S_{2} \vdash W$, then $\sigma\left(\mu^{*} S_{1}+v^{*} S_{2}\right)=\sigma\left(\beta_{*} S_{1}+\gamma_{*} S_{2}\right)$.
3. The square is mirror admissible: $\beta^{*} \gamma_{*}=\mu_{*} v^{*}$.

Proof. Using Exercises 1 and 2 below, and then using re- $\quad \mu \downarrow \downarrow \downarrow \gamma$ ciprocity on both sides, we have $\forall S_{1} \gamma^{*} \beta_{*} S_{1}=v_{*} \mu^{*} S_{1} \Leftrightarrow \quad V \overrightarrow{\overbrace{2}} Z$
$\forall S_{1} \forall S_{2} \sigma\left(\gamma^{*} \beta_{*} S_{1}+S_{2}\right)=\sigma\left(v_{*} \mu^{*} S_{1}+S_{2}\right) \Leftrightarrow \forall S_{1} \forall S_{2} \sigma\left(\beta_{*} S_{1}+\gamma_{*} S_{2}\right)=$ $\sigma\left(\mu^{*} S_{1}+v^{*} S_{2}\right)$, and thus $1 \Leftrightarrow 2$. But the condition in 2 is symmetric under $\beta \leftrightarrow \gamma, \mu \leftrightarrow \nu$, so also $2 \Leftrightarrow 3$.
Lemma 3. If the first diagram below is admissible, then so is the second.

$$
\begin{gathered}
Y \xrightarrow{v} W \\
\mu \downarrow \vec{~} W \gamma \\
V \xrightarrow[\beta]{\rightarrow} Z
\end{gathered}
$$

Lemma 4. A pushforward by an inclusion is the do nothing operation (though note that the pushforward via an inclusion of a fully defined quadratic retains its domain of definition, which now may become partial).
Lemma 5. For any linear $\phi: V \rightarrow W$, the diagram on the right is admissible, where ι denotes the inclusion maps.
Proof. Follows easily from Lemma 4.
Definition. If S is an SPQ with domain D and quadratic Q, the radical of S is the radical of Q considered as a fully-defined quadratic on D. Namely, $\operatorname{rad} S:=\{u \in D: \forall v \in D, Q(u, v)=0\}$.

Lemma 6. Always, $\phi(\operatorname{rad} S) \subset \operatorname{rad} \phi_{*} S$.
Proof. Pick $w \in \phi(\operatorname{rad} S)$ and repeat the proof of Theorem 1' but now considering quadruples (V, S, ϕ, v), where (V, S, ϕ) are as before and $v \in \operatorname{rad} S$ satisfies $\phi(v)=w$. Clearly our initial triple (V, S, ϕ) can be extended to such a quadruple, and it is easy to repeat the steps of the proof of Theorem 1' extending everything to such quadruples.
We have to acknowledge that our proof of Lemma 6 is ugly. We wish we had a cleaner one.
Exercise 3. Show that if two SPQ's S_{1} and S_{2} on $V \oplus A$ satisfy $A \subset \operatorname{rad} S_{i}$ and $\sigma\left(S_{1}+\pi^{*} U\right)=\sigma\left(S_{2}+\pi^{*} U\right)$ for every quadratic U on V, where $\pi: V \oplus A \rightarrow V$ is the projection, then $S_{1}=S_{2}$.
Exercise 4. Show that if $\phi: V \rightarrow W$ is surjective and Q is a quadratic on W, then $\sigma(Q)=\sigma\left(\phi^{*} Q\right)$.
Exercise 5. Show that always, $\phi_{*} \phi^{*} S=\left.S\right|_{\mathrm{im} \phi}$.
Lemma 7. For any linear $\phi: V \rightarrow W$, the diagram on the right is admissible, where $\phi^{+}:=\phi \oplus I$ and α and β denote the projection maps.
Proof. Let S be an SPQ on V. Clearly $C \subset$

$\beta^{*} \phi_{*} S$. Also, $C \subset \operatorname{rad} \alpha^{*} S$ so by Lemma $6, C=\phi^{+}(C) \subset \phi^{+}\left(\operatorname{rad} \alpha^{*} S\right) \subset$ $\operatorname{rad} \phi_{*}^{+} \alpha^{*} S$. Hence using Exercise 3, it is enough to show that $\sigma\left(\phi_{*}^{+} \alpha^{*} S+\right.$ $\left.\beta^{*} U\right)=\sigma\left(\beta^{*} \phi_{*} S+\beta^{*} U\right)$ for every U on W. Indeed, $\sigma\left(\phi_{*}^{+} \alpha^{*} S+\beta^{*} U\right) \stackrel{(1)}{=}$ $\sigma\left(\beta_{*} \phi_{*}^{+} \alpha^{*} S+U\right) \stackrel{(2)}{=} \sigma\left(\phi_{*} \alpha_{*} \alpha^{*} S+U\right) \stackrel{(3)}{=} \sigma\left(\phi_{*} S+U\right) \stackrel{(4)}{=} \sigma\left(\beta^{*}\left(\phi_{*} S+U\right)\right) \stackrel{(5)}{=}$ $\sigma\left(\beta^{*} \phi_{*} S+\beta^{*} U\right)$, using (1) reciprocity, (2) the commutativity of the diagram and the functoriality of pushing, (3) Exercise 5, (4) Exercise 4, and (5) the additivity of pullbacks.
Lemma 8. If the first diagram below is admissible, then so are the other

$$
\begin{gathered}
Y \oplus E \xrightarrow{\stackrel{v_{0}}{\longrightarrow}} W \\
\mu \oplus I \downarrow \\
V \oplus E \xrightarrow[\beta \oplus 0]{ } Z
\end{gathered}
$$

Proof. In the diagram
with π marking projections and ι inclusions, the left square is admissible by Lemma 7, the middle square by assumption, and the right square by Lemma 5. Along with the functoriality of pushforwards this shows the admissibility of both the left and the right 1×2 subrectangles, and these are the diagrams we wanted.
Proof of Theorem 3. Decompose $Z=$ $A \oplus B \oplus C \oplus D$, where $A=\operatorname{im} \beta \cap \operatorname{im} \gamma$, $\operatorname{im} \beta=A \oplus B$, and $\operatorname{im} \gamma=A \oplus C$. Write $\quad A \oplus B \oplus E \rightarrow A \oplus B \oplus C \oplus D$ $V \simeq A \oplus B \oplus E$ with $\beta=I$ on $A \oplus B$ yet $\beta=0$ on E, and write $W \simeq A \oplus C \oplus F$ with $\gamma=I$ on $A \oplus C$ yet $\gamma=0$ on F. Then $Y=V \oplus_{Z} W \simeq A \oplus E \oplus F$ and our square is as shown on the right, with all maps equal to I on like-named summands and equal to 0 on non-like-named summands. But this diagram is admissible: build it up using Lemma 1 for the A 's, and then Lemma 8 for E and C, and then again Lemma 8 along with the mirror property of Lemma 2 for B and F, and then Lemma 3 for D.

To prove Theorem 4, given three ${ }^{1}$ SPQ's S_{1}, S_{2}, and S_{3}, we need to show that planar-multiplying them in two steps, first using a planar connection diagram $D_{I}\left(I\right.$ for Inner) to yield $S_{6}=\mathcal{S}\left(D_{I}\right)\left(S_{2}, S_{3}\right)$ and then using a second planar connection diagram $D_{O}(O$ for Outer) to yield $\mathcal{S}\left(D_{O}\right)\left(S_{1}, S_{6}\right)$, gives the same answer as multiplying them all at once using the composition planar connection diagram $D_{B}=D_{O} \circ_{6} D_{I}(B$ for Big) to yield $\mathcal{S}\left(D_{B}\right)\left(S_{1}, S_{2}, S_{3}\right) .^{2}$ An example should help:

[^0]

In this example, if you ignore the dotted green line (marked " 6 "), you see the planar connection diagram D_{B}, which has three inputs $(1,2,3)$ and a single output, the cycle 0 . If you only look inside the green line, you see D_{I}, with inputs 2 and 3 and an output cycle 6 . If you ignore the inside of 6 you see D_{O}, with inputs 1 and 6 and output cycle 0 .
Let F_{B} (Big Faces) denote the vector space whose basis are the faces of D_{B}, let F_{I} (Inner Faces) be the space of faces of D_{I}, and let F_{O} (Outer Faces) be the space
 of faces of D_{O}. Let $G_{1}, G_{2}, G_{3}, G_{6}$, and G_{0} be the spaces of gaps (edges) along the cycles $1,2,3,6$, and 0 , respectively. Let $\psi:=\psi_{D_{B}}$ and $\phi:=\phi^{D_{B}}$ be the maps defining $\mathcal{S}\left(D_{B}\right)$ and let $\gamma:=\psi_{D_{o}}$ and $\delta:=\phi^{D_{o}}$ be the maps defining $\mathcal{S}\left(D_{O}\right)$. Further, let $\alpha:=\psi_{D_{I}}: F_{I} \rightarrow G_{2} \oplus G_{3}$ and $\beta:=\phi^{D_{I}}: F_{I} \rightarrow G_{6}$ be the maps defining $\mathcal{S}\left(D_{I}\right)$, and let $\alpha_{+}:=I \oplus \alpha$ and $\beta^{+}:=I \oplus \beta$ be the extensions of α and β by an identity on an extra factor of G_{1}, so that $\beta_{*}^{+} \alpha_{+}^{*}=I_{G_{1}} \oplus \mathcal{S}\left(D_{I}\right)$. Let μ map any big face to the sum of G_{1} gaps around it, plus the sum of the inner faces it contains. Let v map any big face to the sum of the outer faces it contains. It is easy to see that the master diagram $(M D)$ shown on the right, made of all of these spaces and maps, is commutative.
Claim. The bottom right square of $(M D)$ is an equalizer square, namely $F_{B} \simeq E Q\left(\beta^{+}, \gamma\right)$. Hence $v_{*} \mu^{*}=\gamma^{*} \beta_{*}^{+}$.

$$
\underset{\psi^{\mu}}{F_{B} \xrightarrow{\nu} \underset{\psi^{\gamma}}{F_{O}}{ }^{2}}
$$

 Proof. A big face (an element of F_{B}) is a sum of outer faces f_{o} and a sum of inner faces f_{i}, and it has a boundary g_{1} on input cycle 1 , such that the boundary of the outer pieces f_{o} is equal to the boundary of the inner pieces f_{i} plus g_{1}. That matches perfectly with the definition of the equalizer: $E Q\left(\beta^{+}, \gamma\right)=\left\{\left(g_{1}, f_{i}, f_{o}\right): \beta^{+}\left(g_{1}, f_{i}\right)=\gamma\left(f_{o}\right)\right\}=$ $\left\{\left(g_{1}, f_{i}, f_{o}\right): \gamma\left(f_{o}\right)=\left(g_{1}, \beta\left(f_{i}\right)\right)\right\}$.
Proof of Theorem 4. With notation as above, with the example above (which is general enough), and with the claim above, and also using functoriality, we have $\mathcal{S}\left(D_{B}\right)=\phi_{*} \psi^{*}=\delta_{*} v_{*} \mu^{*} \alpha_{+}^{*}=\delta_{*} \gamma^{*} \beta_{*}^{+} \alpha_{+}^{*}=$ $\mathcal{S}\left(D_{O}\right) \circ\left(I_{G_{1}} \oplus \mathcal{S}\left(D_{I}\right)\right)$, as required.
Proof of Theorem 5. We need to verify the Reidemeister moves and that was done in the computational section, and the statement about the restriction to links, which is easy: simply assemble an n-crossing knot using an n-input planar connection diagram, and the formulas clearly match.
Further Homework.
Exercise 6. By taking $U=0$ in the reciprocity statement, prove that always $\sigma\left(\phi_{*} S\right)=\sigma(S)$. But that seems wrong, if $\phi=0$. What saves the day?
Exercise 7. By taking $S=0$ in the reciprocity statement, frove that always $\sigma\left(\phi^{*} U\right)=\sigma(U)$. But wait, this is nonsense! What went wrong? Exercise 8. Given $\phi: V \rightarrow W$ and a subspace $D \subset V$, show that there is a unique subspace $\phi_{*} D \subset W$ such that for every quadratic Q on W, $\sigma\left(\left.\phi^{*} Q\right|_{D}\right)=\sigma\left(\left.Q\right|_{\phi_{*} D}\right)$.
Exercise 9. When are diagrams as on the right equalizer diagrams? What then do we learn from Theorem 3?

Exercise 10. There are 11 types or irreducible commutative squares:
 $0 \rightarrow 0 \quad 0 \rightarrow 0 \quad 1 \rightarrow 0 \quad 0 \rightarrow 1 \quad 0 \rightarrow 0 \quad 0 \rightarrow 1 \quad 0 \rightarrow 1 \quad 1 \stackrel{1}{\nrightarrow}$
 $1 \stackrel{1}{\rightarrow} 1 \quad 1 \rightarrow 0 \quad 1 \xrightarrow{1} 1$
ling for all but four of them. Compare with the statement of Theorem 3. Exercise 11. Prove that a square is admissible iff it is an equalizer square, with an additional direct summand A added to the Y term, and with the maps μ and v extended by 0 on A.
Exercise 12. Prove that the direct sum of two admissible squares is admissible. Warning: Harder than it seems! Not all quadratics on $V_{1} \oplus V_{2}$ are direct sums of quadratics on V_{1} and on V_{2}.
Exercise 13. Given a quadratic Q on a space V, let π be the projection $V \rightarrow V / \operatorname{rad}(Q)$ and show that $\pi_{*} Q=Q / \operatorname{rad}(Q)$, with the obvious definition for the latter.
Exercise 14. Show that for any partial quadratic Q on a space W there exists a space A and a fully-defined quadratic F on $W \oplus A$ such that $\pi_{*} F=Q$, where $\pi: W \oplus A \rightarrow W$ is the projection (these are not unique). Furthermore, if $\phi: V \rightarrow W$, then $\phi^{*} Q=\pi_{*} \phi_{+}^{*} F$, where $\phi_{+}=\phi \oplus I: V \oplus A \rightarrow W \oplus A$ and π also denotes the projection $V \oplus A \rightarrow V$.

Solutions / Hints.

Dror Bar-Natan: Talks: Tokyo-230911: Rooting the BKT for FTI Thanks for inviting me to UTokyo! 圆回

Acknowledgement. This work was partially supported by NSERC grant RGPIN-2018-04350 and by the Chu Family Foundation (NYC).

Abstract. Following joint work with Itai Bar-Natan, Iva Halacheva, and Nancy Scherich, I will show that the Best Known Time (BKT) to compute a typical Finite Type Invariant (FTI) of type d on a typical knot with n crossings is roughly equal to $n^{d / 2}$, which is roughly the square root of what I believe was the standard belief before, namely about n^{d}.
Conventions. • $\underline{\mathrm{n}}:=\{1,2, \ldots, n\}$. • For complexity estimates we ignore constant and logarithmic terms: $n^{3} \sim 2023 d!(\log n)^{d} n^{3}$.
A Key Preliminary. Let $Q \subset$ \underline{n}^{l} be an enumerated subset, with $1 \ll q=|Q| \ll n^{l}$. In time $\sim q$ we can set up a lookup table of size $\sim q$ so that we will be able . to compute $|Q \cap R|$ in time ~ 1, for any rectangle $R \subset \underline{\mathrm{n}}^{l}$.
Fails. - Count after R is presented. - Make a lookup table of $|Q \cap R|$ counts for all R 's.

Unfail. Make a restricted lookup table of the form

$$
\{\underset{\text { dyadic }}{R} \rightarrow \mid Q \underset{>0}{\cap R \mid}\} .
$$

- Make the table by running through $x \in Q$, and for each one increment by 1 only the entries for dyadic $R \ni x$ (or create such an entry, if it didn't exist already). This takes $q \cdot\left(\log _{2} n\right)^{l} \sim q$ ops.

- Entries for empty dyadic R 's are not needed and not created.
- Using standard sorting techniques, access takes $\log _{2} q \sim 1$ ops.
- A general R is a union of at most $\left(2 \log _{2} n\right)^{l} \sim 1$ dyadic ones, so counting $|Q \cap R|$ takes ~ 1 ops.
Generalization. Without changing the conclusion, replace counts $|Q \cap R|$ with summations $\sum_{R} \theta$, where $\theta: \underline{\mathrm{n}}^{l} \rightarrow V$ is supported on a sparse Q, takes values in a vector space \bar{V} with $\operatorname{dim} V \sim 1$, and in some basis, all of its coefficients are "easy".

Here's $|G|=n=100$
Here's $|G|=n=100$
(signs suppressed):

My Primary Interest. Strong, fast, homomorphic knot and tangle invariants. $\omega \varepsilon \beta /$ Nara, $\omega \varepsilon \beta /$ Kyoto, $\omega \varepsilon \beta /$ Tokyo

The [GPV] Theorem. A knot invariant is finite type of type d iff it is of the form $\omega \circ \varphi_{\leq d}$ for some $\omega \in \mathcal{G}_{\leq d}^{*}$.

- \Leftarrow is easy; \Rightarrow is hard and IMHO not well understood.
- $\varphi_{\leq d}$ is not an invariants and not every ω gives an invariant!
- The theory of finite type invariants is very rich. Many knot invariants factor through finite type invariants, and it is possible that they separate knots.
- We need a fast algorithm to compute $\varphi_{\leq d}$!

Our Main Theorem. On an n-arrow Gauss diagram, φ_{d} can be computed in time $\sim n^{[d / 2]}$.
Proof. With $d=p+l$ (p for "put", l for "lookup"), pick p arrows and look up in how many ways the remaining l can be placed in between the legs of the first p :

To reconstruct $D=P \#_{\lambda} L$ from P and L we need a non-decreasing "placement function" $\lambda: \underline{2 l} \rightarrow \underline{2 p+1}$.

Define $\theta_{G}: \underline{2 n}^{2 l} \rightarrow \mathcal{G}_{l}$ by
$\left(L_{1}, \ldots, L_{2 l}\right) \mapsto \begin{cases}L & \text { if }\left(L_{1}, \ldots, L_{2 l}\right) \text { are the ends of some } L \subset G \\ 0 & \text { otherwise }\end{cases}$ and now $\varphi_{d}(G)=\binom{d}{p}^{-1} \sum_{P \in\binom{G}{\hline}} \sum_{\substack{\text { non-dereasing } \\ \lambda: 2 l-2 p+1}} P \#_{\lambda}\left(\sum_{\prod_{i}\left(P_{\lambda(i)-1}, P_{\lambda(i)}\right)} \theta_{G}\right)$
can be computed in time $\sim n^{p}+n^{l}$. Now take $p=\lceil d / 2\rceil$.

Faster Computations, J. of Appl. and Comp. Topology (to appear), arXiv:2108.10923.
[GPV] M. Goussarov, M. Polyak, and O. Viro, Finite type invariants of classical and virtual knots, Topology 39 (2000) 1045-1068, arXiv:math.GT/9810073.

Abstract. Reporting on joint work with Roland van der Veen, I'll tell you some stories about ρ_{1}, an easy to define, strong, fast to compute, homomorphic, Veen and well-connected knot invariant. ρ_{1} was first studied by Rozansky and Overbay [Ro1, Ro2, Ro3, Ov] and Ohtsuki [Oh2], it has far-reaching generalizations, it is elementary and dominated by the coloured Jones polynomial, and I wish I understood it. Common misconception. Dominated, elementary \Rightarrow lesser.
We seek strong, fast, homomorphic knot and tangle invariants. Strong. Having a small "kernel".
Fast. Computable even for large knots (best: poly time).

Homomorphic. Extends to tangles and behaves under tangle operations; especially gluings and doublings:

Why care for "Homomorphic"? Theorem. A knot K is ribbon iff there exists a $2 n$-component tangle T with skeleton as below such that $\tau(T)=K$ and where $\delta(T)=U$ is the untangle:

Acknowledgement. This work was supported by NSERC grant RGPIN-2018-04350 and by the Chu Family Foundation (NYC).
[BV1] D. Bar-Natan and R. van der Veen, A Polynomial Time Knot References. Polynomial, Proc. Amer. Math. Soc. 147 (2019) 377-397, arXiv:1708.04853.
[BV2] D. Bar-Natan and R. van der Veen, Perturbed Gaussian Generating Functions for Universal Knot Invariants, arXiv:2109.02057.
[Dr] V. G. Drinfel'd, Quantum Groups, Proc. Int. Cong. Math., 798-820, Berkeley, 1986.
[Jo] V. F. R. Jones, Hecke Algebra Representations of Braid Groups and Link Polynomials, Annals Math., 126 (1987) 335-388.
[La] R. J. Lawrence, Universal Link Invariants using Quantum Groups, Proc. XVII Int. Conf. on Diff. Geom. Methods in Theor. Phys., Chester, England, August 1988. World Scientific (1989) 55-63.
[LTW] X-S. Lin, F. Tian, and Z. Wang, Burau Representation and Random Walk on String Links, Pac. J. Math., 182-2 (1998) 289-302, arXiv:q-alg/9605023.
[Oh1] T. Ohtsuki, Quantum Invariants, Series on Knots and Everything 29, World Scientific 2002.
[Oh2] T. Ohtsuki, On the 2-loop Polynomial of Knots, Geom. Top. 11 (2007) 1357-1475.
[Ov] A. Overbay, Perturbative Expansion of the Colored Jones Polynomial, Ph.D. thesis, University of North Carolina, August 2013, $\omega \varepsilon \beta / \mathrm{Ov}$.
[Ro1] L. Rozansky, A Contribution of the Trivial Flat Connection to the Jones Polynomial and Witten's Invariant of 3D Manifolds, I, Comm. Math. Phys. 175-2 (1996) 275-296, arXiv:hep-th/9401061.
[Ro2] L. Rozansky, The Universal R-Matrix, Burau Representation and the Melvin-Morton Expansion of the Colored Jones Polynomial, Adv. Math. 134-1 (1998) 1-31, arXiv:q-alg/9604005.
[Ro3] L. Rozansky, A Universal U(1)-RCC Invariant of Links and Rationality Conjecture, arXiv:math/0201139.
[Sch] S. Schaveling, Expansions of Quantum Group Invariants, Ph.D. thesis, Universiteit Leiden, September 2020, $\omega \varepsilon \beta /$ Scha.

Jones:
Formulas stay; interpretations change with time. Formulas. Draw an n-crossing knot K as on the right: all crossings face up, and the edges are marked with a running index $k \in\{1, \ldots, 2 n+1\}$ and with rotation numbers φ_{k}. Let A be the $(2 n+1) \times(2 n+1)$ matrix constructed by starting with the identity matrix I, and adding a 2×2 block for each crossing:

A	$\operatorname{col} i+1$	$\operatorname{col} j+1$
row i	$-T^{s}$	$T^{s}-1$
row j	0	-1

Let $G=\left(g_{\alpha \beta}\right)=A^{-1}$. For the trefoil example, it is:
$A=\left(\begin{array}{ccccccc}1 & -T & 0 & 0 & T-1 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & -T & 0 & 0 & T-1 \\ 0 & 0 & 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & T-1 & 0 & 1 & -T & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1\end{array}\right)$

$$
\begin{gathered}
G=\left(\begin{array}{cccc}
1 & T & 1 & T \\
0 & 1 & \frac{1}{T^{2}-T+1} & \frac{T}{T^{2}-T+1} \\
0 & 0 & \frac{1}{T^{2}-T_{1}+1} & \frac{T}{T^{2}-T+1} \\
0 & 0 & \frac{1-T}{T^{2}-T+1} & \frac{1}{T^{2} T+1}+ \\
0 & 0 & \frac{1-T}{T^{2}-T+1} & -\frac{(T-1) T}{T^{2}-T+1} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\text { "The Green Function" }
\end{array}\right. \\
\hline
\end{gathered}
$$

$$
\left.\begin{array}{ccc}
1 & T & 1 \\
\frac{T}{T^{2}-T+1} & \frac{T^{2}}{T^{2}-T+1} & 1 \\
\frac{T}{T^{2}-T+1} & \frac{T^{2}}{T^{2}-T+1} & 1 \\
\frac{1}{T^{2}-T+1} & \frac{T}{T^{2}-T+1} & 1 \\
\frac{1}{T^{2}-T+1} & \frac{T}{T^{2}-T+1} & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)
$$

Note. The Alexander polynomial Δ is given by

$$
\Delta=T^{(-\varphi-w) / 2} \operatorname{det}(A), \quad \text { with } \varphi=\sum_{k} \varphi_{k}, w=\sum_{c} s .
$$

Classical Topologists: This is boring. Yawn.
Formulas, continued. Finally, set

$$
\begin{aligned}
& \qquad R_{1}(c):=s\left(g_{j i}\left(g_{j+1, j}+g_{j, j+1}-g_{i j}\right)-g_{i i}\left(g_{j, j+1}-1\right)-1 / 2\right) \\
& \rho_{1}:=\Delta^{2}\left(\sum_{c} R_{1}(c)-\sum_{k} \varphi_{k}\left(g_{k k}-1 / 2\right)\right) . \\
& \text { In our example } \rho_{1}=-T^{2}+2 T-2+2 T^{-1}-T^{-2}
\end{aligned}
$$

Theorem. ρ_{1} is a knot invariant.
Proof: later.
Classical Topologists: Whiskey Tango Foxtrot?
Cars, Interchanges, and Traffic Counters. Cars always drive forward. When a car crosses over a bridge t goes through with (algebraic) probability $T^{s} \sim 1$, but falls off with probability $1-T^{s} \sim 0^{*}$. At the very end, cars fall off and disappear. See also [Jo, LTW].

Preliminaries

This is Rho．nb of http：／／drorbn．net／oa22／ap．
Once［＜＜KnotTheory ；＜＜Rot．m］；
Loading KnotTheory｀version of February 2，2020，10：53：45．2097．
Read more at http：／／katlas．org／wiki／KnotTheory．
Loading Rot．m from http：／／drorbn．net／la22／ap to compute rotation numbers．

The Program

$$
\begin{aligned}
& \mathbf{R}_{1}\left[S_{-}, i_{-}, j_{-}\right]:= \\
& s\left(g_{j i}\left(g_{j^{+}, j}+g_{j, j^{+}}-g_{i j}\right)-g_{i i}\left(g_{j, j^{+}}-1\right)-1 / 2\right) ; \\
& \text { Z [K_] := Module }[\{C s, \varphi, n, A, s, i, j, k, \Delta, G, \rho 1\} \text {, } \\
& \{\mathrm{Cs}, \varphi\}=\operatorname{Rot}[K] ; \mathrm{n}=\text { Length[Cs]; } \\
& \text { A = IdentityMatrix[2n+1]; } \\
& \text { Cases }\left[C s,\left\{s, i_{-}, j_{-}\right\}: \rightarrow\right. \\
& \left.\left(A \llbracket\{i, j\},\{i+1, j+1\} \rrbracket+=\left(\begin{array}{cc}
-\mathrm{T}^{s} \mathrm{~T}^{s}-1 \\
0 & -1
\end{array}\right)\right)\right] ; \\
& \Delta=T^{(-\operatorname{Total}[\varphi]-\operatorname{Total}[\operatorname{Cs}[A 11,1 \rrbracket]) / 2} \operatorname{Det}[A] ; \\
& \mathrm{G}=\text { Inverse [A]; } \\
& \rho 1=\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{R}_{1} \text { @@Cs【k】-} \sum_{\mathrm{k}=1}^{2 \mathrm{n}} \varphi \llbracket \mathrm{k} \rrbracket\left(\mathrm{~g}_{\mathrm{kk}}-1 / 2\right) ; \\
& \text { Factor@ } \\
& \left.\left\{\Delta, \Delta^{2} \rho 1 / \cdot \alpha_{-}^{+}: \rightarrow \alpha+1 / \cdot \mathrm{g}_{\alpha_{-}, \beta_{-}}: \rightarrow \mathrm{G} \llbracket \alpha, \beta \rrbracket\right\}\right] ;
\end{aligned}
$$

The First Few Knots

Timing＠

$$
\begin{aligned}
& Z\left[\text { GST48 }=\operatorname{EPD}\left[X_{14,1}, \bar{X}_{2,29}, X_{3,40}, X_{43,4}, \bar{X}_{26,5}, X_{6,95}\right. \text {, }\right. \\
& X_{96,7}, X_{13,8}, \bar{X}_{9,28}, X_{10,41}, X_{42,11}, \bar{X}_{27,12}, X_{30,15} \text {, } \\
& \bar{X}_{16,61}, \bar{X}_{17,72}, \bar{X}_{18,83}, X_{19,34}, \bar{X}_{89,28}, \bar{X}_{21,92}, \\
& \overline{\mathrm{X}}_{79,22}, \overline{\mathrm{x}}_{68,23}, \overline{\mathrm{x}}_{57,24}, \overline{\mathrm{X}}_{25,56}, \mathrm{X}_{62,31}, \mathrm{X}_{73,32} \text {, } \\
& x_{84,33}, \bar{X}_{50,35}, x_{36,81}, x_{37,70}, X_{38,59}, \bar{X}_{39,54}, X_{44,55}, \\
& X_{58,45}, X_{69,46}, X_{80,47}, X_{48,91}, X_{90,49}, X_{51,82}, X_{52,71}, \\
& X_{53,68}, \bar{X}_{63,74}, \bar{X}_{64,85}, \bar{X}_{76,65}, \bar{X}_{87,66}, \bar{X}_{67,94}, \\
& \left.\left.\bar{X}_{75,86}, \bar{X}_{88,77}, \bar{X}_{78,93}\right]\right] \\
& \left\{170.313,\left\{-\frac{1}{\mathrm{~T}^{8}}\left(-1+2 \mathrm{~T}-\mathrm{T}^{2}-\mathrm{T}^{3}+2 \mathrm{~T}^{4}-\mathrm{T}^{5}+\mathrm{T}^{8}\right)\right.\right. \\
& \left(-1+T^{3}-2 T^{4}+T^{5}+T^{6}-2 T^{7}+T^{8}\right), \frac{1}{T^{16}} \\
& (-1+T)^{2}\left(5-18 T+33 T^{2}-32 T^{3}+2 T^{4}+42 T^{5}-62 T^{6}-\right. \\
& 8 T^{7}+166 T^{8}-242 T^{9}+108 T^{10}+132 T^{11}-226 T^{12}+ \\
& 148 T^{13}-11 T^{14}-36 T^{15}-11 T^{16}+148 T^{17}-226 T^{18}+ \\
& 132 \mathrm{~T}^{19}+108 \mathrm{~T}^{2 \theta}-242 \mathrm{~T}^{21}+166 \mathrm{~T}^{22}-8 \mathrm{~T}^{23}-62 \mathrm{~T}^{24}+ \\
& \left.\left.\left.42 T^{25}+2 T^{26}-32 T^{27}+33 T^{28}-18 T^{29}+5 T^{30}\right)\right\}\right\}
\end{aligned}
$$

Strong！

\｛NumberOfKnots［ \｛ 3，12\}],

Length＠

Union＠Table［Z［K］，\｛K，AllKnots［\｛3，12\}]\}],
Length＠
Union＠Table［ \｛HOMFLYPT［K］，Kh［K］\},
$\{K, A l l K n o t s[\{3,12\}]\}]\}$
\｛2977，2882， 2785$\}$
So the pair（ Δ, ρ_{1} ）attains 2,882 distinct values on the 2,977 prime knots with up to 12 crossings（a deficit of 95），whereas the pair （HOMFLYPT，Khovanov Homology）attains only 2，785 distinct values on the same knots（a deficit of 192）．

Theorem. The Green function $g_{\alpha \beta}$ is the reading of a traffic counter at β, if car traffic is injected at α (if $\alpha=\beta$, the counter is after the injection point).
Example.

皆
Wearing my Quantum Algebra hat, I spy a Heisenberg algebra $\mathbb{H}=A\langle p, x\rangle /([p, x]=1):$

$$
\text { cars } \leftrightarrow p \quad \text { traffic counters } \leftrightarrow x
$$

HEEMET
Where did it come from? Consider $\mathfrak{g}_{\epsilon}:=s l_{2+}^{\epsilon}:=L\langle y, b, a, x\rangle$ with relations

$$
\begin{gathered}
{[b, x]=\epsilon x, \quad[b, y]=-\epsilon y, \quad[b, a]=0} \\
{[a, x]=x, \quad[a, y]=-y, \quad[x, y]=b+\epsilon a .}
\end{gathered}
$$

At invertible ϵ, it is isomorphic to $s l_{2}$ plus a central factor, and it can be quantized à la Drinfel'd [Dr] much like $s l_{2}$ to get an algebra $Q U=A\langle y, b, a, x\rangle$ subject to (with $q=\mathbb{e}^{\hbar \epsilon}$):

$$
[b, a]=0, \quad[b, x]=\epsilon x, \quad[b, y]=-\epsilon y,
$$

$$
[a, x]=x, \quad[a, y]=-y, \quad x y-q y x=\frac{1-\mathbb{e}^{-\hbar(b+\epsilon a)}}{\hbar}
$$

Invariance of ρ_{1}. We start with the hardest, Reidemeister 3:

\Rightarrow Overall traffic patterns are unaffected by Reid3!
\Rightarrow Green's $g_{\alpha \beta}$ is unchanged by Reid3, provided the cars injection site α and the traffic counters β are away.
\Rightarrow Only the contribution from the R_{1} terms within the Reid3 move matters, and using g-rules the relevant $g_{\alpha \beta}$'s can be pu-

```
shed outside of the Reid3 area:
\deltai_,j_
```



```
{\mp@subsup{g}{i\mp@subsup{\beta}{-}{}}{}:->\mp@subsup{\delta}{i\beta}{}+\mp@subsup{T}{}{s}\mp@subsup{\mathbf{gi}}{\mp@subsup{i}{}{+},\beta}{+}+(1-\mp@subsup{T}{}{s})\mp@subsup{g}{\mp@subsup{j}{}{+},\beta}{},\mp@subsup{g}{j\mp@subsup{\beta}{-}{}}{}:->\mp@subsup{\delta}{j\beta}{}+\mp@subsup{g}{\mp@subsup{j}{}{+},\beta}{},
    \mp@subsup{g}{\mp@subsup{\alpha}{-}{\prime},i}{}:->\mp@subsup{\textrm{T}}{}{-s}(\mp@subsup{\textrm{g}}{\alpha,\mp@subsup{i}{}{+}}{}-\mp@subsup{\delta}{\alpha,\mp@subsup{i}{}{+}}{}),
    g}\mp@subsup{\alpha}{~}{\prime}j:->\mp@subsup{g}{\alpha,\mp@subsup{j}{}{+}}{-
```


Ihs $=R_{1}[1, j, k]+R_{1}\left[1, i, k^{+}\right]+R_{1}\left[1, i^{+}, j^{+}\right] / /$.
gRules $_{1, j, k}$ grules $_{1, i, k^{+}}$g gRules $_{1, \mathrm{i}^{+}, \mathrm{j}^{+}}$;
$r h s=R_{1}[1, i, j]+R_{1}\left[1, i^{+}, k\right]+R_{1}\left[1, j^{+}, k^{+}\right] / /$.
gRules $_{1, i, j} \cup$ gRules $_{1, \mathrm{i}^{+}, k} \cup$ gRules $_{1, \mathrm{j}^{+}, \mathrm{k}^{+}}$;
Simplify[lhs == rhs]
True

Next comes Reid1, where we use results from an earlier example:
$R_{1}[1,2,1]-1\left(g_{22}-1 / 2\right) / \cdot g_{\alpha_{-}, \beta_{-}}: \rightarrow\left(\begin{array}{ccc}1 & \mathrm{~T}^{-1} & 1 \\ 0 & \mathrm{~T}^{-1} & 1 \\ 0 & 0 & 1\end{array}\right) \llbracket \alpha, \beta \rrbracket$
$\frac{1}{\mathrm{~T}^{2}}-\frac{1}{\mathrm{~T}}-\frac{-1+\frac{1}{\mathrm{~T}}}{\mathrm{~T}}=$

Invariance under the other moves is proven similarly.
Wearing my Topology hat the formula for R_{1}, and even the idea to look for R_{1}, remain a complete mystery to me. seen half of it). Simple things should have simple explanations.
21 Hence, Homework. Explain ρ_{1} with no reference to quantum voodoo and find it a topology home (large enough to house generalizations!). Make explicit the homomorphic properties of ρ_{1}. Use them to do topology!
P.S. As a friend of Δ, ρ_{1} gives a genus bound, sometimes better than Δ 's. How much further does this friendship extend?

A Small-Print Page on ρ_{d}, $d>1$.
Definition. $\left\langle f\left(z_{i}\right), h\left(\zeta_{i}\right)\right\rangle_{\left\{z_{i}\right\}}:=\left.f\left(\partial_{\zeta_{i}}\right) h\right|_{\zeta_{i}=0}$, so $\left\langle p^{2} x^{2}, \mathbb{e}^{g \pi \xi}\right\rangle=2 g^{2}$. Baby Theorem. There exist (non unique) power series $r^{ \pm}\left(p_{1}, p_{2}, x_{1}, x_{2}\right)=\sum_{d} \epsilon^{d} r_{d}^{ \pm}\left(p_{1}, p_{2}, x_{1}, x_{2}\right) \in$ $\mathbb{Q}\left[T^{ \pm 1}, p_{1}, p_{2}, x_{1}, x_{2}\right] \llbracket \epsilon \rrbracket$ with $\operatorname{deg} r_{d}^{ \pm} \leq 2 d+2$ ("docile") such that the power series $Z^{b}=\sum \rho_{d}^{b} \epsilon^{d}:=$

$$
\left\langle\exp \left(\sum_{c} r^{s}\left(p_{i}, p_{j}, x_{i}, x_{j}\right)\right), \exp \left(\sum_{\alpha, \beta} g_{\alpha \beta} \pi_{\alpha} \xi_{\beta}\right)\right\rangle_{\left\{p_{\alpha}, x_{\beta}\right\}}
$$

is a bnot invariant. Beyond the once-and-for-all computation of $g_{\alpha \beta}$ (a matrix inversion), Z^{b} is computable in $O\left(n^{d}\right)$ operations in the ring $\mathbb{Q}\left[T^{ \pm 1}\right]$.
(Bnots are knot diagrams modulo the braid-like Reidemeister moves, but not the cyclic ones).
Theorem. There also exist docile power series $\gamma^{\varphi}(\bar{p}, \bar{x})=$ $\sum_{d} \epsilon^{d} \gamma_{d}^{\varphi} \in \mathbb{Q}\left[T^{ \pm 1}, \bar{p}, \bar{x}\right] \llbracket \epsilon \rrbracket$ such that the power series $Z=$ $\sum \rho_{d} \epsilon^{d}:=$

$$
\begin{aligned}
& \left\langle\exp \left(\sum_{c} r^{s}\left(p_{i}, p_{j}, x_{i}, x_{j}\right)+\sum_{k} \gamma^{\varphi_{k}}\left(\bar{p}_{k}, \bar{x}_{k}\right)\right)\right. \\
& \left.\quad \exp \left(\sum_{\alpha, \beta} g_{\alpha \beta}\left(\pi_{\alpha}+\bar{\pi}_{\alpha}\right)\left(\xi_{\beta}+\bar{\xi}_{\beta}\right)+\sum_{\alpha} \pi_{\alpha} \bar{\xi}_{\alpha}\right)\right\rangle_{\left\{p_{\alpha}, \bar{p}_{\alpha},, x_{\beta}, \bar{x}_{\beta}\right\}}
\end{aligned}
$$

is a knot invariant, as easily computable as Z^{b}.
Implementation. Data, then program (with output using the Conway variable $z=\sqrt{T}-1 / \sqrt{T}$), and then a demo. See Rho.nb of $\omega \varepsilon \beta / \mathrm{ap}$.

```
v@\mp@subsup{\gamma}{1,\varphi-}{l}}[\mp@subsup{k}{-}{\prime}]=\varphi(1/2-\mp@subsup{\overline{p}}{\textrm{k}}{}\mp@subsup{\overline{x}}{\textrm{k}}{});\mathbf{v@\mp@subsup{\gamma}{2,\varphi}{-}
V@\mp@subsup{\gamma}{3,\varphi}{-}
v@\mp@subsup{r}{1,\mp@subsup{s}{-}{}}{[i_, j_] :=}
    s(-1+2 pi x i - 2p p}\mp@subsup{x}{i}{}+(-1+\mp@subsup{T}{}{s})\mp@subsup{p}{i}{}\mp@subsup{p}{j}{}\mp@subsup{x}{i}{2}+(1-\mp@subsup{T}{}{s})\mp@subsup{p}{j}{2}\mp@subsup{x}{i}{2}-2\mp@subsup{p}{i}{}\mp@subsup{p}{j}{}\mp@subsup{x}{i}{}\mp@subsup{x}{j}{}+2\mp@subsup{p}{j}{2}\mp@subsup{x}{i}{}\mp@subsup{x}{j}{\prime})/
V@\mp@subsup{r}{2,1}{}[\mp@subsup{i}{-}{\prime},\mp@subsup{j}{-}{\prime}]:=
```



```
        18 p
        6 pi p p
v@r 2,-1[i_, j_] :=
    (-6 T 2 p}\mp@subsup{p}{i}{}\mp@subsup{x}{i}{}+6\mp@subsup{T}{}{2}\mp@subsup{p}{j}{}\mp@subsup{x}{i}{}+3(-3+T)T\mp@subsup{p}{i}{}\mp@subsup{p}{j}{}\mp@subsup{x}{i}{2}-3(-3+T)T\mp@subsup{p}{j}{2}\mp@subsup{x}{i}{2}
```



```
        6T (1+T) p
```

```
V@r}\mp@subsup{r}{3,1}{[i_, j_] ]:=
    (4 pi x i - 4 pj m
        4(-16+17T+2 T') pi p
        3(-1+T)(4+3T) pi p p
        (-1+T)}(4+13T+\mp@subsup{T}{}{2})\mp@subsup{p}{j}{4}\mp@subsup{x}{i}{4}-28\mp@subsup{p}{i}{}\mp@subsup{p}{j}{}\mp@subsup{x}{i}{}\mp@subsup{x}{j}{}+28\mp@subsup{p}{j}{2}\mp@subsup{x}{i}{}\mp@subsup{x}{j}{}+36\mp@subsup{p}{i}{2}\mp@subsup{p}{j}{}\mp@subsup{x}{i}{2}\mp@subsup{x}{j}{}
```



```
        4(-6+17T+T'T) pi p
        24 p
        4 p}\mp@subsup{p}{i}{}\mp@subsup{\mathbf{p}}{j}{3}\mp@subsup{\mathbf{x}}{i}{}\mp@subsup{\mathbf{x}}{j}{3}+4\mp@subsup{\mathbf{p}}{j}{4}\mp@subsup{\mathbf{x}}{i}{}\mp@subsup{\mathbf{x}}{j}{3})/\mathbf{24
```

$\mathrm{V} @ r_{3,-1}\left[i_{-}, j_{-}\right]:=$
$\left(-4 T^{3} p_{i} x_{i}+4 T^{3} p_{j} x_{i}-2 T^{2}(7+5 T) p_{i} p_{j} x_{i}^{2}+2 T^{2}(7+5 T) p_{j}^{2} x_{i}^{2}-\right.$
$4 \mathrm{~T}^{2}(-6+5 \mathrm{~T}) \mathrm{p}_{i}^{2} \mathrm{p}_{j} \mathrm{x}_{i}^{3}+4 \mathrm{~T}\left(-2-17 \mathrm{~T}+16 \mathrm{~T}^{2}\right) \mathrm{p}_{i} \mathrm{p}_{j}^{2} \mathrm{x}_{i}^{3}-$
$4 \mathrm{~T}\left(-2-11 \mathrm{~T}+11 \mathrm{~T}^{2}\right) \mathrm{p}_{j}^{3} \mathrm{x}_{i}^{3}+3(-1+\mathrm{T}) \mathrm{T}^{2} \mathrm{p}_{i}^{3} \mathrm{p}_{j} \mathrm{x}_{i}^{4}-3(-1+\mathrm{T}) \mathrm{T}(3+4 \mathrm{~T}) \mathrm{p}_{i}^{2} \mathrm{p}_{j}^{2} \mathrm{x}_{i}^{4}+$
$(-1+T)\left(1+22 T+13 T^{2}\right) p_{i} p_{j}^{3} x_{i}^{4}-(-1+T)\left(1+13 T+4 T^{2}\right) p_{j}^{4} x_{i}^{4}+$
$28 \mathrm{~T}^{3} \mathrm{p}_{i} \mathrm{p}_{j} \mathrm{x}_{i} \mathrm{x}_{j}-28 \mathrm{~T}^{3} \mathrm{p}_{j}^{2} \mathrm{x}_{i} \mathrm{x}_{j}-36 \mathrm{~T}^{3} \mathrm{p}_{i}^{2} \mathrm{p}_{j} \mathrm{x}_{i}^{2} \mathrm{x}_{j}+12 \mathrm{~T}^{2}(2+9 \mathrm{~T}) \mathrm{p}_{i} \mathrm{p}_{j}^{2} \mathrm{x}_{i}^{2} \mathrm{x}_{j}-$
$24 \mathrm{~T}^{2}(1+3 \mathrm{~T}) \mathrm{p}_{j}^{3} \mathrm{x}_{i}^{2} \mathrm{x}_{j}+4 \mathrm{~T}^{3} \mathrm{p}_{i}^{3} \mathrm{p}_{j} \mathrm{x}_{i}^{3} \mathrm{x}_{j}-28 \mathrm{~T}^{2} \mathrm{p}_{i}^{2} \mathrm{p}_{j}^{2} \mathrm{x}_{i}^{3} \mathrm{x}_{j}-$
$4 \mathrm{~T}\left(-1-17 \mathrm{~T}+6 \mathrm{~T}^{2}\right) \mathrm{p}_{i} \mathrm{p}_{j}^{3} \mathrm{x}_{i}^{3} \mathrm{x}_{j}+4 \mathrm{~T}\left(-1-10 \mathrm{~T}+5 \mathrm{~T}^{2}\right) \mathrm{p}_{j}^{4} \mathrm{x}_{i}^{3} \mathrm{x}_{j}-$
$24 \mathrm{~T}^{3} \mathrm{p}_{i} \mathrm{p}_{j}^{2} \mathrm{x}_{i} \mathrm{x}_{j}^{2}+24 \mathrm{~T}^{3} \mathrm{p}_{j}^{3} \mathrm{x}_{i} \mathrm{x}_{j}^{2}+24 \mathrm{~T}^{3} \mathrm{p}_{i}^{2} \mathrm{p}_{j}^{2} \mathrm{x}_{i}^{2} \mathrm{x}_{j}^{2}-6 \mathrm{~T}^{2}(1+10 \mathrm{~T}) \mathrm{p}_{i} \mathrm{p}_{j}^{3} \mathrm{x}_{i}^{2} \mathrm{x}_{j}^{2}+$
$\left.6 \mathrm{~T}^{2}(1+6 \mathrm{~T}) \mathrm{p}_{j}^{4} \mathrm{x}_{i}^{2} \mathrm{x}_{j}^{2}+4 \mathrm{~T}^{3} \mathrm{p}_{i} \mathrm{p}_{j}^{3} \mathrm{x}_{i} \mathrm{x}_{j}^{3}-4 \mathrm{~T}^{3} \mathrm{p}_{j}^{4} \mathrm{x}_{i} \mathrm{x}_{j}^{3}\right) /\left(24 \mathrm{~T}^{3}\right)$
$\left\{\mathrm{p}^{*}, \mathrm{x}^{*}, \overline{\mathrm{p}}^{*}, \overrightarrow{\mathrm{x}}^{*}\right\}=\{\pi, \xi, \bar{\pi}, \bar{\xi}\} ; \quad\left(z_{-i_{-}}\right)^{*}:=\left(z^{*}\right)_{i} ;$
$\operatorname{Zip}_{\{ \}}\left[\varepsilon_{-}\right]:=\varepsilon$;
$\mathrm{Zip}_{\left\{Z_{-}, z s_{-}\right\}}\left[\delta_{-}\right]:=$
$\left(\operatorname{Collect}\left[\varepsilon / / \mathrm{Zip}_{\{z s\}}, z\right] / \cdot f_{-} \cdot z^{d_{-}} \rightarrow\left(\mathrm{D}\left[f,\left\{z^{*}, d\right\}\right]\right)\right) / \cdot z^{*} \rightarrow 0$
gPair[fs_, $\left.w_{-}\right]:=$
gPair [fs, w] =
Collect $\left[\right.$ zip $_{\text {Joineetable }}\left[\left\{p_{\alpha}, \overline{\mathrm{p}}_{\alpha},,_{\alpha}, \overline{\mathrm{x}}_{\alpha}\right\},\{\alpha, w\}\right][$
(Times @@ (V/@fs))
$\left.\operatorname{Exp}\left[\operatorname{Sum}\left[g_{\alpha, \beta}\left(\pi_{\alpha}+\bar{\pi}_{\alpha}\right)\left(\xi_{\beta}+\bar{\xi}_{\beta}\right),\{\alpha, w\},\{\beta, w\}\right]-\operatorname{Sum}\left[\bar{\xi}_{\alpha} \pi_{\alpha},\{\alpha, w\}\right]\right]\right]$,
g_{Z}, Factor]
T2z[p_]:=Module[$\{q=\operatorname{Expand}[p], n, c\}$,
If $[q==0,0, c=$ Coefficient $[q, T, n=$ Exponent $[q, T]]$;
$\left.\left.\mathrm{c} \mathrm{z}^{2 \mathrm{n}}+\mathrm{T} 2 \mathrm{z}\left[\mathrm{q}-\mathrm{c}\left(\mathrm{T}^{1 / 2}-\mathrm{T}^{-1 / 2}\right)^{2 \mathrm{n}}\right]\right]\right] ;$
$Z_{d_{-}}\left[K_{-}\right]:=\operatorname{Module}[\{\mathrm{Cs}, \varphi, \mathrm{n}, \mathrm{A}, \mathrm{s}, \mathrm{i}, \mathrm{j}, \mathrm{k}, \Delta, \mathrm{G}, \mathrm{d} 1, \mathrm{z} 1, \mathrm{z} 2, \mathrm{z} 3\}$,
$\{C s, \varphi\}=\operatorname{Rot}[K] ; \mathrm{n}=$ Length $[\mathrm{Cs}] ; \mathrm{A}=$ IdentityMatrix[2n+1];
$\operatorname{Cases}\left[C s,\left\{s_{-}, i_{-}, j_{-}\right\}: \rightarrow\left(A \llbracket\{i, j\},\{i+1, j+1\} \rrbracket+=\left(\begin{array}{cc}-T^{s} T^{s}-1 \\ 0 & -1\end{array}\right)\right)\right] ;$
$\{\Delta, G\}=$ Factor@ $\left\{T^{(-T o t a l}[\varphi]-\right.$ Total $\left.\left.[\operatorname{cs} \llbracket A 11,1]\right]\right) / 2 \operatorname{Det@A}$, Inverse@A $\} ;$
z1 =
$\operatorname{Exp}\left[\operatorname{Total}\left[\operatorname{Cases}\left[C s,\left\{s_{-}, i_{-}, j_{-}\right\}: \rightarrow \operatorname{Sum}\left[\epsilon^{\mathrm{d} 1} \mathrm{r}_{\mathrm{d} 1, s}[i, j],\{\mathrm{d} 1, d\}\right]\right]\right]+\right.$
$\left.\operatorname{Sum}\left[\epsilon^{d 1} \gamma_{d 1, \varphi \mathbb{I} \mathbb{1}}[k],\{k, 2 n\},\{d 1, d\}\right] / . \gamma_{-}, \theta\left[_\right] \rightarrow \theta\right] ;$
$Z 2=\operatorname{Expand}[F[\{ \},\{ \}] \times$ Normal@Series $[Z 1,\{\in, 0, d\}]] / /$.
$\mathrm{F}\left[f s_{-},\left\{e s_{-}\right\}\right] \times\left(f:(r \mid \gamma)_{p s_{-}}\left[i s_{-}\right]\right)^{p_{-}}: \rightarrow$
F[Join [$f s$, Table[$f, p]$], DeleteDuplicates@\{es, is\}];
Z3 $=$ Expand $\left[Z 2 / . \mathrm{F}^{2}\left[s_{-}\right.\right.$, es_] $: \rightarrow$ Expand [gPair [
Replace[$f s$, Thread [es \rightarrow Range@Length@es], \{2\}], Length@es
] /. $\mathrm{g}_{\alpha_{-}, \beta_{-}}: \rightarrow G \llbracket e s \llbracket \alpha \rrbracket$, es $\left.\left.\llbracket \beta \rrbracket \rrbracket\right]\right]$;
$\left.\operatorname{Collect}\left[\left\{\Delta, \mathrm{zz} / . \epsilon^{p_{-}} \rightarrow \mathrm{p}!\Delta^{2 p} \epsilon^{p}\right\}, \in, \mathrm{T} 2 \mathrm{z}\right]\right]$;
$\mathbf{Z}_{\mathbf{2}}$ [GST48] (* takes a few minutes *)
$\left\{1-4 z^{2}-61 z^{4}-207 z^{6}-296 z^{8}-210 z^{10}-77 z^{12}-14 z^{14}-z^{16}\right.$,
$1+\left(38 z^{2}+255 z^{4}+1696 z^{6}+16281 z^{8}+86952 z^{1 \theta}+259994 z^{12}+487372 z^{14}+615066 z^{16}+543148 z^{18}+341714 z^{2 \theta}+\right.$
$\left.153722 z^{22}+48983 z^{24}+10776 z^{26}+1554 z^{28}+132 z^{30}+5 z^{32}\right) \in+$
$\left(-8-484 z^{2}+9709 z^{4}+165952 z^{6}+1590491 z^{8}+16256508 z^{10}+115341797 z^{12}+432685748 z^{14}+395838354 z^{16}-4017557792 z^{18}-23300064167 z^{2 \theta}-\right.$
$70082264972 z^{22}-142572271191 z^{24}-209475503700 z^{26}-221616295209 z^{28}-151502648428 z^{38}-23700199243 z^{32}+$
$99462146328 z^{34}+164920463074 z^{36}+162550825432 z^{38}+119164552296 z^{4 \theta}+69153062608 z^{42}+32547596611 z^{44}+12541195448 z^{46}+$
$\left.\left.3961384155 z^{48}+1021219696 z^{50}+212773106 z^{52}+35264208 z^{54}+4537548 z^{56}+436600 z^{58}+29536 z^{60}+1252 z^{62}+25 z^{64}\right) \epsilon^{2}\right\}$
TableForm [Table[Join $\left.\left[\{K \llbracket 1]_{K \llbracket 2 \mathbb{1}}\right\}, Z_{3}[K]\right],\{K$, AllKnots $\left.[\{3,6\}]\}\right]$, TableAlignments \rightarrow Center] (* takes a few minutes *)
$3_{1} \quad 1+z^{2}$
$1+\left(2 z^{2}+z^{4}\right) \in+\left(2-4 z^{2}+3 z^{4}+4 z^{6}+z^{8}\right) \epsilon^{2}+\left(-12+74 z^{2}-27 z^{4}-20 z^{6}+8 z^{8}+6 z^{10}+z^{12}\right) \epsilon^{3}$
$\begin{array}{r}1+z^{2} \\ 1-z^{2}\end{array} \quad 1+\left(2 z^{2}+z^{4}\right) \epsilon+\left(2-4 z^{2}+3 z^{4}+4 z^{6}+z^{8}\right) \epsilon^{2}+\left(-12+74{ }^{2}+\left(-2+2 z^{4}\right) \epsilon^{2}\right.$

$\begin{array}{cc}1+3 z^{2}+z^{4} \\ 1+2 z^{2} & 1+\left(19 z^{2}+21 z^{4}+12 z^{6}+2 z^{8}\right) \epsilon+\left(6-28 z^{2}+33 z^{4}+364 z^{6}+655 z^{8}+536 z^{19}+227 z^{12}+48 z^{19}+4 z^{16}\right) \epsilon^{2}+\left(-6 \theta+978 z^{2}+645 z^{4}-3380 z^{6}-3288 z^{8}+7478 z^{10}+19475 z^{12}+2856\right. \\ 1+\left(6 z^{2}+5 z^{4}\right) \epsilon+\left(4-29 z^{2}+43 z^{4}+64 z^{6}+26 z^{8}\right) \epsilon^{2}+\left(-36+498 z^{2}-883 z^{4}+100 z^{6}+816 z^{8}+556 z^{10}+146 z^{12}\right) \epsilon^{3}\end{array}$

$1-2 z^{2}$
$\left.+29 z^{4}+28 z^{6}+42 z^{8}-8 z^{19}-2 z^{12}+4 z^{14}+z^{16}\right) \epsilon^{2}+\left(12+166 z^{2}+155 z^{4}-194 z^{6}-2453 z^{8}-1622 z^{19}-1967 z^{12}-258 z^{14}+49 z^{16}-30 z^{18}+z^{29}+6 z^{22}+z^{24}\right) \epsilon^{3}$
$\begin{array}{lr}1-z^{2}-z^{4} \\ 1+z^{2}+z^{4} & 1+\left(-2 z^{2}-3 z^{4}+2 z^{6}+z^{8}\right) \in+\left(-2-4 z^{2}+29 z^{4}+28 z^{6}+42 z^{8}-8 z^{19}-2 z^{12}+4 z^{14}+z^{16}\right) \epsilon^{2}+\left(12+166 z^{2}+155 z^{4}-194 z^{6}\right. \\ 1+\left(2+8 z^{2}-16 z^{6}-24 z^{8}-16 z^{19}-2 z^{12}\right) \epsilon^{2}\end{array}$

Why Tangles? - As common as knots!

- Faster computations!
- Conceptually clearer proofs of invariance (and of skein relations).

- Often fun and consequential:
- The Alexander polynomial \leadsto Zombian $=$ det .
\circ Knot signatures \leadsto Pushforwards of quadratic forms.
\circ The Jones Polynomial \leadsto The Temperley-Lieb Algebra.
- Khovanov Homology \leadsto "Unfinished complexes", complexes in a category.
- The Kontsevich Integral \leadsto Drinfel'd Associators.

One more story is left to tell, of knot tabulation.
Two slides from R. Jason Parsley's $\omega \varepsilon \beta /$ history:
 of the task that today's zombies were facing.

- We must be able to extend to ZPUCs, Zombie Processed Unfinished Columbaria!
Exercise 1. Compute the sum of 1,000 numbers, the last 50 of which are still unknown.
Exercise 2. Compute the determinant of a
 $1,000 \times 1,000$ matrix in which 50 entries are not yet given. Example 3. Same, for signatures of matrices / quadratic forms.
A quadratic form on a v.s. V over \mathbb{C} is a quadratic $Q: V \rightarrow \mathbb{C}$ crossing knots and all 11 crossing alternating knots or a sesquilinear Hermitian $\langle\cdot, \cdot\rangle$ on $V \times V$ (so $\langle x, y\rangle=\overline{\langle y, x\rangle}$ and Embarrassment 1 (personal). I don't know how to reproduce $Q(y)=\langle y, y\rangle$), or given a basis η_{i} of V^{*}, a matrix $A=\left(a_{i j}\right)$ with the Rolfsen table of knots! Many others can, yet I still take it on $A=\bar{A}^{T}$ and $Q=\sum a_{i j} \bar{\eta}_{i} \eta_{j}$. The signature σ of Q is $\sigma_{+}-\sigma_{-}$, faith, contradicting one of the tenets of our practice, "thou shalt where for some $P, \bar{P}^{T} A P=\operatorname{diag}\left(1, \stackrel{\sigma}{+}^{\circ}, 1,-1, \stackrel{\sigma-}{\sigma},-1,0, \ldots\right)$.

A Partial Quadratic ($P Q$) on V is a quadratic Q defined only on a subspace $\mathcal{D}_{Q} \subset V$. We add PQs with $\mathcal{D}_{Q_{1}+Q_{2}}:=\mathcal{D}_{Q_{1}} \cap \mathcal{D}_{Q_{2}}$. Given a linear $\psi: V \rightarrow W$ and a PQ Q on W, there is an obvious pullback $\psi^{*} Q$, a PQ on V.
Theorem 1 (with Jessica Liu). Given a linear $\phi: V \rightarrow$ W and a PQ Q on V, there is a unique pushforward PQ $\phi_{*} Q$ on W such that for every $P Q U$ on W,

$$
\sigma_{V}\left(Q+\phi^{*} U\right)=\sigma_{\operatorname{ker} \phi}\left(\left.Q\right|_{\operatorname{ker} \phi}\right)+\sigma_{W}\left(U+\phi_{*} Q\right)
$$

Gist of the Proof. $\quad W$ Jessica Liu

not use what thou canst not prove".
It's harder than it seems! Producing all knot diagrams is a mess, identifying all available Reidemeister moves is a mess, and you sometimes have to go up in crossing number before you can go down again.
Embarrassment 2 (communal). There isn't anywhere a tabulation of tangles! When you want to test your new discoveries, where do you go?
Dream. Conquer both embarrassments at once. Reproduce the Rolfsen table, and extend it to tangles, using code of the highest level of beauty. The algorithm should be so clear and simple that anyone should be able to easily implement it in an afternoon without messing with any technicalities.

We don't even need to look at all knot diagrams!

The dreaded slide moves, which go up in crossing number, are parametrized by tangles!

R-moves are tangle equalities!

Preliminary Definitions．Fix $p \in \mathbb{N}$ and $\mathbb{F}=\mathbb{Q} / \mathbb{C}$ ． Let $D_{p}:=D^{2} \backslash(p \mathrm{pts})$ ，and let the Pole Dance Studio be $P D S_{p}:=D_{p} \times I$ ．
Abstract．I will report on joint work with Zsuzsanna Dancso，Tamara Hogan，Jessica Liu，and Nancy Sche－ rich．Little of what we do is original，
and much of it is simply a reading of Massuyeau［Ma］and Alek－ seev and Naef［AN1］．
We study the pole－strand and strand－strand double filtration on the space of tangles in a pole dance studio（a punctured disk cross an interval），the correspon－ ding homomorphic expansions， and a strand－only HOMFLY－PT
 relation．When the strands are transparent or nearly transparent to each other we recover and perhaps simplify substantial parts of the work of the aforementioned authors on expansions for the Goldman－Turaev Lie bi－algebra．

Definitions．Let $\pi:=F G\left\langle X_{1}, \ldots, X_{p}\right\rangle$ be the free group（of defor－ mation classes of based curves in D_{p} ）， $\bar{\pi}$ be the framed free group （deformation classes of based immersed curves），$|\pi|$ and $|\bar{\pi}|$ deno－ te \mathbb{F}－linear combinations of cyclic words $\left(\left|x_{i} w\right|=\left|w x_{i}\right|\right.$ ，unbased curves），$A:=F A\left\langle x_{1}, \ldots, x_{p}\right\rangle$ be the free associative algebra，and let $|A|:=A /\left(x_{i} w=w x_{i}\right)$ denote cyclic algebra words．

Theorem 1 （Goldman，Turaev，Massuyeau，Alekseev，Kawazu－ mi，Kuno，Naef）．$|\bar{\pi}|$ and $|A|$ are Lie bialgebras，and there is a ＂homomorphic expansion＂$W:|\bar{\pi}| \rightarrow|A|:$ a morphism of Lie bial－ gebras with $W\left(\left|X_{i}\right|\right)=1+\left|x_{i}\right|+\ldots$
Further Definitions．$\bullet \mathcal{K}=\mathcal{K}_{0}=\mathcal{K}_{0}^{0}=\mathcal{K}(S):=$ $\mathbb{F}\left\langle\right.$ framed tangles in $\left.P D S_{p}\right\rangle$ ．
－ $\mathcal{K}_{t}^{s}:=\left(\right.$ the image via $\times \rightarrow \pi-\lambda^{*}$ of tangles in $P D S_{p}$ that have t double points，of which s are strand－strand）．
E．g．，

$$
\mathcal{K}_{5}^{2}(\bigcirc)=\langle\underset{\text { 团 }}{\text { 团 }}\rangle / . x \rightarrow \pi-\pi
$$

－ $\mathcal{K}^{/ s}:=\mathcal{K} / \mathcal{K}^{s}$ ．Most important， $\mathcal{K}^{/ 1}(\bigcirc)=|\bar{\pi}|$ ，and there is $P: \mathcal{K}(\bigcirc) \rightarrow|\bar{\pi}|$.
－ $\mathcal{A}:=\prod \mathcal{K}_{t} / \mathcal{K}_{t+1}, \quad \mathcal{A}^{s}:=\prod \mathcal{K}_{t}^{s} / \mathcal{K}_{t+1}^{s} \subset \mathcal{A}, \quad \mathcal{A}^{s}:=\mathcal{A} / \mathcal{A}^{s}$ ．
Fact 1．The Kontsevich Integral is an＂expansion＂$Z: \mathcal{K} \rightarrow \mathcal{A}$ ， compatible with several noteworthy structures．
Fact 2 （Le－Murakami，［LM1］）．Z satisfies the strand－strand HOMFLY－PT relations：It descends to $Z_{H}: \mathcal{K}_{H} \rightarrow \mathcal{A}_{H}$ ，where

$$
\begin{aligned}
& \mathcal{K}_{H}:=\mathcal{K} /\left(\AA-\AA^{\pi}=\left(\mathbb{e}^{\hbar / 2}-\mathbb{e}^{-\hbar / 2}\right) \cdot \Gamma て\right)
\end{aligned}
$$

and $\operatorname{deg} \hbar=(1,1)$ ．
Proof of Fact 2．$Z(\approx)-Z\left(\mathbb{N}^{*}\right)=X \cdot\left(\mathbb{e}^{H / 2}-\mathbb{e}^{-\mathcal{H} / 2}\right)$
（2）$=\chi \cdot\left(\mathbb{e}^{\hbar \times / 2}-\mathbb{e}^{-\hbar \times / 2}\right)=\left(\mathbb{e}^{\hbar / 2}-\mathbb{e}^{-\hbar / 2}\right) \varsigma \tau . \quad \square$

Other Passions．With Roland van der Veen，I use＂so－ lvable approximation＂and＂Perturbed Gaussian Differe－ ntial Operators＂to unveil simple，strong，fast to compu－ te，and topologically meaningful knot invariants near the Alexander polynomial．（ \subset polymath！）van der Veen

Key 1．$W:|\bar{\pi}| \rightarrow|A|$ is $Z_{H}^{/ 1}: \mathcal{K}_{H}^{/ 1}(\bigcirc) \rightarrow \mathcal{A}_{H}^{11}(\bigcirc)$ ．
Key 2 （Schematic）．Suppose $\lambda_{0}, \lambda_{1}:|\bar{\pi}| \rightarrow \mathcal{K}(\bigcirc)$ are two ways of lifting plane curves into knots in $P D S_{p}$（namely，$P \circ \lambda_{i}=I$ ）． Then for $\gamma \in|\bar{\pi}|$ ，

Lemma 1．＂Division by \hbar＂is well－defined．

$$
\eta(\gamma):=\left(\lambda_{0}(\gamma)-\lambda_{1}(\gamma)\right) / \hbar \in \mathcal{K}_{H}^{/ 1}(\bigcirc \bigcirc)=|\bar{\pi}| \otimes|\bar{\pi}|
$$

and we get an operation η on plane curves．If Kontsevich likes λ_{0} and λ_{1}（namely if there are λ_{i}^{a} with $Z^{2}\left(\lambda_{i}(\gamma)\right)=\lambda_{i}^{a}(W(\gamma))$ ），then η will have a compatible algebraic companion η^{a} ：

$$
\eta^{a}(\alpha):=\left(\lambda_{0}^{a}(\alpha)-\lambda_{1}^{a}(\alpha)\right) / \hbar \in \mathcal{A}_{H}^{11}(\bigcirc \bigcirc)=|A| \otimes|A|
$$

For indeed，in $\mathcal{A}_{H}^{\prime 2}$ we have $\hbar W(\eta(\gamma))=\hbar Z(\eta(\gamma))=Z\left(\lambda_{0}(\gamma)\right)-$ $Z\left(\lambda_{1}(\gamma)\right)=\lambda_{0}^{a}(W(\gamma))-\lambda_{1}^{a}(W(\gamma))=\hbar \eta^{a}(W(\gamma))$.

Example 1．With $\gamma_{1}, \gamma_{2} \in$ $|\pi|($ or $|\bar{\pi}|)$ set $\lambda_{0}\left(\gamma_{1}, \gamma_{2}\right)=$
 $\tilde{\gamma}_{1} \cdot \tilde{\gamma}_{2}$ and $\lambda_{1}\left(\gamma_{1}, \gamma_{2}\right)=\tilde{\gamma}_{2}$
$\tilde{\gamma}_{1}$ where $\tilde{\gamma}_{i}$ are arbitrary lifts of γ_{i} ．Then η_{1} is the Gol－ dman bracket！Note that here λ_{0} and λ_{1} are not well－ defined，yet η_{1} is．
Example 2．With $\gamma_{1}, \gamma_{2} \in \pi$（or $\bar{\pi}$ ）and with λ_{0}, λ_{1} as on the right，we get the＂double bra－ cket＂$\eta_{2}: \pi \otimes \pi \rightarrow \pi \otimes \pi$（ or $\bar{\pi} \otimes \bar{\pi} \rightarrow \bar{\pi} \otimes \bar{\pi}$ ）．
Example 3．With $\gamma \in \bar{\pi}$ and $\lambda_{0}(\gamma)$ its ascending realization as a bottom tangle and $\lambda_{1}(\gamma)$ its descending realization as a bottom tangle，we get $\eta_{3}: \bar{\pi} \rightarrow \bar{\pi} \otimes|\bar{\pi}|$ ．Closing the first component and anti－symmetrizing，this is the Turaev cobracket．

Example 4 ［Ma］．With $\gamma \in \bar{\pi}$ and $\lambda_{0}(\gamma)$ its ascending outer double and $\lambda_{1}(\gamma)$ its ascen－ ding inner double we get $\eta_{4}: \bar{\pi} \rightarrow \bar{\pi} \otimes \bar{\pi}$ ．A－ fter some massaging，it too becomes the Tu－ raev cobracket．

The rest is essentially Exercises：1．Lemma 1？

2．Fact 2 ？	4． $\mathcal{A}^{/ 1}$ ？Especially， $\mathcal{A}^{/ 1}(\bigcirc) \cong\|A\|!$
3．Explain	
why Kontsevich likes our λ＇s．	6．Figure out $\eta_{i}^{a}, i=1, \ldots, 4$ ．

3．Fact 2？4． $\mathcal{A}^{/ 1}$ ？Especially， $\mathcal{A}^{1 /}(\bigcirc) \cong|A|!$ 5．Explain why Kontsevich likes our λ＇s．6．Figure out $\eta_{i}^{a}, i=1, \ldots, 4$ ．

Kontsevich in a Pole Dance Studio. (w/o poles? See [Ko, BN]) Unignoring the Complications. We need λ_{0} and λ_{1} such that:

Comments on the Kontsevich Integral.

1. In the tangle case, the endpoints are fixed at top and bottom.
2. The $(\cdots)^{\sim}$ means "a correction is needed near the caps and the cups" (for the framed version, see [LM2, Da]).
3. There are never $p p$ chords, and no $4 T_{p p s}$ and $4 T_{p p p}$ relations.
4. Z is an "expansion".
5. Z respects the $s s$ filtration and so descends to $Z^{/ s}: \mathcal{K}^{1 s} \rightarrow \mathcal{F}^{/ s}$.

Comments on \mathcal{A}. In $\mathcal{A}^{/ 1}$ legs on poles commute,
so $\mathcal{A}^{/ 1}(\bigcirc)=|A|$!
$\hat{p}_{p=1}^{A}+\underset{s_{s}}{t_{s}} \uparrow$
In $\mathcal{A}_{H}^{12-\cdots e ~ h a v e: ~}$

Example 3^{a}. Ignoring complications, $\eta_{3}^{a}(x x y x y x)=$

Proof of Lemma 1. We partially prove Theorem 2 instead:
Theorem 2. gr ${ }^{\bullet} \mathcal{K}_{H} \cong \mathbb{F} \llbracket \hbar \rrbracket \otimes\left(\mathcal{K}^{/ 1}\right)_{0}$.
Proof mod \hbar^{2}. The map \leftarrow is obvious. To go \rightarrow, map $\mathcal{K}_{H} \rightarrow$
 functor gr^{\bullet}.

1. $\lambda_{1}(\gamma)$ is obtained from $\lambda_{0}(\gamma)$ by flipping all self-intersections from ascending to descending.
2. Up to conjugation, $\lambda_{1}(\gamma)$ is obtained from $\lambda_{0}(\gamma)$ by a global flip.
3. $Z\left(\lambda_{i}(\gamma)\right)$ is computable from $W(\gamma)$ and $Z^{/ 1}\left(\lambda_{i}(\gamma)\right)=W(\gamma)$.

4. Is there more than Examples 1-4?

Homework
2. Derive the bialgebra axioms from this perspective.
3. What more do we get if we don't mod out by HOMFLY-PT?
4. What more do we get if we allow more than one strand-strand interaction?
5. In this language, recover KashiwaraVergne [AKKN1, AKKN2].
6. How is all this related to w-knots?

7. Do the same with associators. Use that to derive formulas for solutions of Kashiwara-Vergne.
8. What's the relationship with the Habiro-Massuyeau invariants of links in handlebodies [HM] (different filtration!).
9. Pole dance on other surfaces!
10. Explore the action of the mapping class group.

Acknowledgement. This work was partially supported by NSERC grant RGPIN-2018-04350 and by the Chu Family Foundation (NYC). I also wish to thanks A. Alekseev, F. Naef, and M. Ren for listening to an earlier version and catching some bugs, and Dhanya S. for the dance studio photos. And of course, thanks for listening!
[AKKN1] A. Alekseev, N. Kawazumi, Y. Kuno, \& F. Naef, References The Goldman-Turaev Lie Bialgebra in Genus Zero and the KashiwaraVergne Problem, Adv. Math. 326 (2018) 1-53, arXiv:1703.05813.
[AKKN2] A. Alekseev, N. Kawazumi, Y. Kuno, \& F. Naef, Goldman-Turaev formality implies Kashiwara-Vergne, Quant. Topol. 11-4 (2020) 657-689, arXiv:1812.01159.
[AN1] A. Alekseev \& F. Naef, Goldman-Turaev Formality from the KnizhnikZamolodchikov Connection, Comp. Rend. Math. 355-11 (2017) 1138-1147, arXiv:1708.03119.
[BN] D. Bar-Natan, On the Vassiliev Knot Invariants, Top. 34 (1995) 423-472.
[Da] Z. Dancso, On the Kontsevich Integral for Knotted Trivalent Graphs, Alg. Geom. Topol. 10 (2010) 1317-1365, arXiv:0811.4615.
[HM] K. Habiro \& G. Massuyeau, The Kontsevich Integral for Bottom Tangles in Handlebodies, Quant. Topol. 12-4 (2021) 593-703, arXiv:1702.00830.
[Ko] M. Kontsevich, Vassiliev's Knot Invariants, Adv. in Sov. Math. 16(2) (1993) 137-150.
[LM1] T. Q. T. Le \& J. Murakami, Kontsevich's Integral for the HOMFLY Polynomial and Relations Between Values of Multiple Zeta Functions, Top. and its Appl. 62-2 (1995) 193-206.
[LM2] T. Q. T. Le \& J. Murakami, The Universal Vassiliev-Kontsevich Invariant for Framed Oriented Links, Comp. Math. 102-1 (1996) 41-64, arXiv: hep-th/9401016.
[Ma] G. Massuyeau, Formal Descriptions of Turaev's Loop Operations, Quant. Topol. 9-1 (2018) 39--117, arXiv:1511.03974.

Kashaev's Signature Conjecture

CMS Winter 2021 Meeting, December 4, 2021
Dror Bar-Natan with Sina Abbasi
Agenda. Show and tell with signatures
Abstract. I will display side by side two nearly identical computer programs whose inputs are knots and whose outputs seem to always be the same. I'll then admit, very reluctantly, that I don't know how to prove that these outputs are always the same. One program I wrote mostly in Bedlewo, Poland, in the summer of 2003 and as of recently I understand why it computes the Levine-Tristram signature of a knot. The other is based on the 2018 preprint On Symmetric Matrices Associated with Oriented Link Diagrams by Rinat Kashaev (arXiv:1801.04632), where he conjectures that a certain simple algorithm also computes that same signature.
If you can, please turn your video on! (And mic, whenever needed).

```
Med [\mp@subsup{K}{_}{\prime},\mp@subsup{\omega}{_}{\prime}]:=
    xingsByArmpits =
```



```
        If[PositiveQ [x], X+[-i,j,k,-l], X [ [-j,k,l,-i]];
        ds = Times @e XingsByarmpits /,
```



```
    = Table [@, Length@ faces, Lengthe faces];
    Do[is = Position[faces,#]\llbracket1, 1] & /® List @ e x;
        A[is, is] += If[Head[x] === X (,
        ([-r -t crc
        (x, XingsByArmpits)];
    MatrixSignature[A] ];
    Kas[\mp@subsup{K}{-}{\prime},\mp@subsup{\omega}{-}{\prime}]:=
    Kas[\mp@subsup{K}{~}{\prime,}\mp@subsup{\omega}{-}{\prime}]:=
    Module [u,v, XingsByArmp
    u=Re[\mp@subsup{\omega}{}{1/2}];
        List @@PD[K]/. X= X[i, j_, , _, l_]
```



```
        nds = Times ee XingsByarmpits /.
        [x][\mp@subsup{a}{-}{\prime},\mp@subsup{b}{-}{\prime},\mp@subsup{c}{-}{},\mp@subsup{d}{-}{\prime}]\mapsto~\mp@subsup{p}{a,-a}{}\mp@subsup{p}{b,-a}{}\mp@subsup{p}{c,-b}{}\mp@subsup{p}{d,-c}{};
        = Table [0, Lengthefaces, Lengthefaces],
        = [is = Position[faces, [][1, 1] & 得];
        Do is = Position[faces,#] \llbracket1, 1| & /e List e@;
        A[is, is| += If [Head[x] === X,
        ( (\begin{array}{llll}{v}&{u}&{1}&{u}\\{u}&{1}&{u}&{1}\\{1}&{u}&{v}&{u}\\{u}&{1}&{u}&{1}\end{array}),(\begin{array}{llll}{v}&{u}&{1}&{u}\\{u}&{1}&{u}&{1}\\{1}&{u}&{v}&{|}\\{u}&{1}&{u}&{1}\end{array})]
        (x, Xingsbyarmpits)];
        (MatrixSignature[A] - Writhe[K])/2];
```


Verification.

Once [<< KnotTheory ${ }^{`}$]
Loading KnotTheory` version of February 2, 2020, 10:53:45.2097.
Read more at http://katlas.org/wiki/KnotTheory.
MatrixSignature[A_{-}] :=
Total[Sign[Select[Eigenvalues [A], Abs[\#] > 10^{-12} \&]]];
Writhe [K_{-}] := Sum[If[PositiveQ[x], 1, -1], \{x, List @@ PD@K\}];
$\operatorname{Sum}\left[\omega=e^{\text {ii RandomReal }[\{0,2 \pi\}]} ; \operatorname{Bed}[K, \omega]=\operatorname{Kas}[K, \omega],\{10\}\right.$,
$\{K$, AllKnots [\{3, 10\}] $\}]$
... KnotTheory: Loading precomputed data in PD4Knots
2490 True

Why am I showing you \times code ?

- I love code - it's fun!
- Believe it or not, it is more expressive than math-talk (though I'll do the math-talk as well, to confirm with prevailing norms).
- It is directly verifiable. Once it is up and running, you'll never ask yourself "did he misplace a sign somewhere"?
Mod $\left[K_{\sim}, \omega_{1}\right]:=$
Modele $\{t, r$, xingsbyarmpits, bends, faces, $p, A, i s\}$,
$t=1-\omega ; r=t+t^{*} ;$
Xings eyarmpits $=$
List ee PD $[k] /$.
If Positiveq $\left.[x], x_{-}, j_{-}, k_{-}, l_{-}\right]:$
$\mathrm{If}\left[\right.$ Positive $\left.[x], \mathrm{X},[-i, j, k,-L], \mathrm{X}_{-}[-j, k, l,-i]\right]$;

faces = bends $/ / \cdot p_{x} \quad p_{y} p_{y},-p_{b} \rightarrow p_{x,-a} p_{c,-b} p_{d,-c}$
$A=$ Table [θ, Lengthe faces, Lengthe faces];
Do $[$ is $=$ Position $[f a c e s, \#] \llbracket 1,1 \rrbracket \& / e$ List e x ;
A[IIS, is $]+=\mathrm{If}\left[\right.$ Head $[\mathrm{x}]==\mathrm{X}_{\mathrm{t}}$,
$\left.\left(\begin{array}{cccc}-r & -t & 2 t & t^{*} \\ -t^{*} & \theta & t^{*} & 0 \\ 2 t^{*} & t & -r & -t^{*} \\ t & 0 & -t & \theta\end{array}\right),\left(\begin{array}{cccc}r & -t & -2 t^{*} & t^{*} \\ -t^{*} & \theta & t^{*} & \theta \\ -2 t & t & r & -t^{*} \\ t & 0 & -t & 0\end{array}\right)\right]$,
\{ x, Xingsbyarmpits $\}$];
$\boldsymbol{K a s}\left[K_{-}, \omega_{-}\right]:=$
Kas $\left[K_{-}, \omega_{-}\right]:=$
$\operatorname{Module}[\{u, v$, XingsByarmpits, bends, faces, $p, A, i s\}$,
$u=\operatorname{Re}\left[\omega^{1 / 2}\right] ; \quad v=\operatorname{Re}[\omega] ;$
Xings Byarmpits $=$
List ee PD $\left.[K] / . x: \mathrm{X}_{[} i_{-}, j_{-}, k_{-}, L_{-}\right]:$
If [Positiveq $\left.[x], \mathrm{X}_{+}[-i, j, k,-l], \mathrm{X}_{-}[-j, k, l,-i]\right]$;
bends $=$ Times ee \times ings Byarmpits /.
${ }_{-}^{[X]}\left[a_{-}, b_{-}, c_{-}, d_{-}\right] \rightarrow P_{a,-d} p_{b,-a} p_{c,-b} p_{d_{,-c}} ;$
faces $=$ bends $/ / . p_{x}, y_{-} p_{y}, z_{z} \Rightarrow p_{x, y, z} ;$
$\mathrm{D}_{\circ}[$ Table $[\theta$, Lengthe faces, Lengthe faces] ;
${ }^{\circ}[15=$ Position [faces, $\left.\#] \llbracket 1,1\right] \& / e$ List x;
A $\left[1 \mathrm{is}, \mathrm{is} \rrbracket \mathrm{f}=\mathrm{If}\left[\right.\right.$ Head $[\mathrm{x}]==\mathrm{X}_{\mathrm{t}}$,
$\left.\left(\begin{array}{llll}v & u & 1 & u \\ u & 1 & 1 & 1 \\ 1 & u & v & u \\ u & 1 & u & 1\end{array}\right),-\left(\begin{array}{llll}v & u & 1 & u \\ u & 1 & u & 1 \\ 1 & u & v & u \\ u & 1 & u & 1\end{array}\right)\right]$,
(x, Xingsbyarmpits)];
(MatrixSignature[A] - Writhe [K_{K})/2];

Label everything!

Lets run our code line by line. $\operatorname{PD}\left[8_{2}\right]=\operatorname{PD}[X[10,1,11,2]$, $X[2,11,3,12], X[12,3,13,4]$, $x[4,13,5,14], x[14,5,15,6]$, $X[8,16,9,15], X[16,8,1,7]$, $X[6,9,7,10]]$;
$K=8{ }_{2}$;

$P D[X[10,1,11,2], X[2,11,3,12], \ldots] \quad\left\{X_{-}[-1,11,2,-10], X_{-}[-11,3,12,-2], \ldots\right\}$

Video and more at http://www.math.toronto.edu/~drorbn/Talks/CMS-2112/

XingsByArmpits =

List @@ PD[K] / .
$x: \mathrm{X}\left[i_{-}, j_{-}, k_{-}, l_{-}\right]: \rightarrow$
If [PositiveQ $[x], X_{+}[-i, j, k,-l]$, $\left.\mathrm{X}_{-}[-j, k, l,-i]\right]$
$\left\{X_{-}[-1,11,2,-10], X_{-}[-11,3,12,-2]\right.$, $X_{-}[-3,13,4,-12], X_{-}[-13,5,14,-4]$, $X_{-}[-5,15,6,-14], X_{+}[-8,16,9,-15]$, $\left.X_{+}[-16,8,1,-7], X_{-}[-9,7,10,-6]\right\}$

bends = Times @@ XingsByArmpits /.
_ $[\mathrm{X}]\left[a_{-}, b_{-}, c_{-}, d_{-}\right]: \rightarrow$

$$
\mathbf{P}_{a,-d} \mathbf{P}_{b,-a} \mathbf{P}_{c,-b} \mathbf{p}_{d,-c}
$$

$\mathrm{p}_{-16,7} \mathrm{P}_{-15,-9} \mathrm{P}_{-14,-6} \mathrm{P}_{-13,4} \mathrm{P}_{-12,-4} \mathrm{P}_{-11,2}$ $\mathrm{P}_{-10,-2} \mathrm{P}_{-9,6} \mathrm{P}_{-8,15} \mathrm{P}_{-7,-1} \mathrm{P}_{-6,-10} \mathrm{P}_{-5,14}$ $p_{-4,-14} \mathrm{P}_{-3,12} \mathrm{p}_{-2,-12} \mathrm{p}_{-1,10} \mathrm{p}_{1,-8} \mathrm{P}_{2,-11}$ $p_{3,11} p_{4,-13} p_{5,13} p_{6,-15} p_{7,9} p_{8,16} p_{9,-16}$ $p_{10,-7} p_{11,1} p_{12,-3} p_{13,3} p_{14,-5} p_{15,5} p_{16,8}$ faces $=$ bends $/ / \cdot \mathbf{p}_{x_{-}, y_{-}} \mathbf{p}_{y_{-}, z_{--}}: \rightarrow \mathbf{p}_{x, y, z}$
$\mathrm{p}_{-13,4,-13} \mathrm{p}_{-11,2,-11} \mathrm{p}_{-5,14,-5} \mathrm{P}_{-3,12,-3}$
$\mathrm{P}_{8,16,8} \mathrm{P}_{6,-15,-9,6} \mathrm{P}_{9,-16,7,9} \mathrm{P}_{10,-7,-1,10}$
$\mathrm{P}_{-10,-2,-12,-4,-14,-6,-10} \mathrm{P}_{1,-8,15,5,13,3,11,1}$

A = Table[0, Length@faces, Length@faces];

A // MatrixForm

$\left(\begin{array}{llllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$

Do [is = Position[faces, \#] [1, 1] \& /@ List @@ \mathbf{x}; A\llbracket is, is $\rrbracket+=\mathrm{If}\left[\operatorname{Head}[\mathbf{x}]===\mathrm{X}_{+}\right.$,
$\left.\left(\begin{array}{llll}\mathbf{v} & \mathbf{u} & 1 & \mathbf{u} \\ \mathbf{u} & 1 & \mathbf{u} & 1 \\ 1 & \mathbf{u} & \mathbf{v} & \mathbf{u} \\ \mathbf{u} & 1 & \mathbf{u} & 1\end{array}\right),-\left(\begin{array}{llll}\mathbf{v} & \mathbf{u} & 1 & \mathbf{u} \\ \mathbf{u} & 1 & \mathbf{u} & 1 \\ 1 & \mathbf{u} & \mathbf{v} & \mathbf{u} \\ \mathbf{u} & 1 & \mathbf{u} & 1\end{array}\right)\right]$,
\{x, XingsByArmpits \}];
$\mathrm{x}=$ XingsByArmpits$\llbracket 1 \rrbracket$
X_[-1, 11, $2,-10]$
faces
$\mathrm{P}_{-13,4,-13} \mathrm{P}_{-11,2,-11} \mathrm{P}_{-5,14,-5} \mathrm{P}_{-3,12,-3} \mathrm{P}_{8,16,8} \mathrm{P}_{6,-15,-9,6}$
$\mathrm{P}_{9,-16,7,9} \mathrm{P}_{10,-7,-1,10} \mathrm{P}_{-10,-2,-12,-4,-14,-6,-10} \mathrm{P}_{1,-8,15,5,13,3,11,1}$ is = Position[faces, \#] [1, 1】 \& /@ List @@ x $\{8,10,2,9\}$

A【is, is $\rrbracket+=\operatorname{If}\left[\operatorname{Head}[x]===X_{+}\right.$,
$\left.\left(\begin{array}{llll}v & u & 1 & u \\ u & 1 & u & 1 \\ 1 & u & v & u \\ u & 1 & u & 1\end{array}\right),-\left(\begin{array}{llll}v & u & 1 & u \\ u & 1 & u & 1 \\ 1 & u & v & u \\ u & 1 & u & 1\end{array}\right)\right] ;$
A // MatrixForm
$\left(\begin{array}{cccccccccc}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -v & 0 & 0 & 0 & 0 & 0 & -1 & -u & -u \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 & 0 & -v & -u & -u \\ 0 & -u & 0 & 0 & 0 & 0 & 0 & -u & -1 & -1 \\ 0 & -u & 0 & 0 & 0 & 0 & 0 & -u & -1 & -1\end{array}\right)$

Do [is = Position [faces, \#] $\llbracket 1,1 \rrbracket \& / @$ List @@ \times;
$A \llbracket i s, i s \rrbracket+=I f\left[\operatorname{Head}[x]===X_{+}\right.$,
$\left.\left(\begin{array}{llll}v & u & 1 & u \\ u & 1 & u & 1 \\ 1 & u & v & u \\ u & 1 & u & 1\end{array}\right),-\left(\begin{array}{llll}v & u & 1 & u \\ u & 1 & u & 1 \\ 1 & u & v & u \\ u & 1 & u & 1\end{array}\right)\right]$,
\{x, Rest@XingsByArmpits \}]
$\left(\begin{array}{cccccccccc}-2 v & 0 & -1 & -1 & 0 & 0 & 0 & 0 & -2 u & -2 u \\ 0 & -2 v & 0 & -1 & 0 & 0 & 0 & -1 & -2 u & -2 u \\ -1 & 0 & -2 v & 0 & 0 & -1 & 0 & 0 & -2 u & -2 u \\ -1 & -1 & 0 & -2 v & 0 & 0 & 0 & 0 & -2 u & -2 u \\ 0 & 0 & 0 & 0 & 2 & 1 & 2 u & 1 & 0 & 2 u \\ 0 & 0 & -1 & 0 & 1 & 1-2 v & 0 & -1 & -2 u & 0 \\ 0 & 0 & 0 & 0 & 2 u & 0 & -1+2 v & 0 & -1 & 2 \\ 0 & -1 & 0 & 0 & 1 & -1 & 0 & 1-2 v & -2 u & 0 \\ -2 u & -2 u & -2 u & -2 u & 0 & -2 u & -1 & -2 u & -6 & -5 \\ -2 u & -2 u & -2 u & -2 u & 2 u & 0 & 2 & 0 & -5 & -5+2 v\end{array}\right)$
$\operatorname{Plot}\left[\omega=e^{\text {it } t} ; u=\operatorname{Re}\left[\omega^{1 / 2}\right] ; v=\operatorname{Re}[\omega] ;\right.$
(MatrixSignature [A] - Writhe[K]) / 2,
$\{t, 0,2 \pi\}$]

http://drorbn.net/cms2.

Bedlewo for Mathematicians.

For a knot K and a complex unit ω set $t=1-\omega, r=2 \Re(t)$, make an $F \times F$ matrix A with contributions

Why are they equal?

I dunno, yet note that

- Kashaev is over the \mathbb{R} eals, Bedlewo is over the Complex numbers.
- There's a factor of 2 between them, and a shift.
...so it's not merely a matrix manipulation.

and output $\frac{1}{2}(\sigma(A)-w(K))$.

(conjugate if going against the flow) and output $\sigma(A)$.

Theorem. The Bedlewo program computes the Levine-Tristram signature of K at ω.
(Easy) Proof. Levine and Tristram tell us to look at $\sigma\left((1-\omega) L+\left(1-\omega^{*}\right) L^{T}\right)$, where L is the linking matrix for a Seifert surface S for $K: L_{i j}=\operatorname{Ik}\left(\gamma_{i}, \gamma_{i}^{+}\right)$where γ_{i} run over a basis of $H_{1}(S)$ and γ_{i}^{+} is the pushout of γ_{i}. But signatures don't change if you run over and overdetermined basis, and the faces make such and over-determined basis whose linking numbers are controlled by the crossings. The rest is details.

Warning. The second formula on page (-2) "Conclusion" is silly-wrong. A fix will be posted here soon: some of the numbers written in this handout are a bit off, yet the qualitative results remain exactly the same (namely, for finite type, 3D seems to beat 2D, with the same algorithms).

Yarn-Ball Knots

[K-OS] on October 21, 2021
Dror Bar-Natan with Itai Bar-Natan, Iva Halacheva, and Nancy Scherich
Agenda. A modest light conversation on how knots should be measured.
Abstract. Let there be scones! Our view of knot theory is biased in favour of pancakes.
Technically, if K is a 3D knot that fits in volume V (assuming fixed-width yarn) then its projection to 2D will have about $V^{4 / 3}$ crossings. You'd expect genuinely 3D quantities associated with K to be computable straight from a 3D presentation of K. Yet we can hardly ever circumvent this $V^{4 / 3} \gg V$ "projection fee".
Exceptions include linking numbers (as we shall prove), the hyperbolic volume, and likely finite type invariants (as we shall discuss in detail). But knot polynomials and knot homologies seem to always pay the fee. Can we exempt them?
More at http://drorbn.net/kos21

A recurring question in knot theory is "do we have a 3D understanding of our invariant?"

- See Witten and the Jones polynomial.
- See Khovanov homology.

I'll talk about my perspective on the matter...

If you can, please turn your video on! (And mic, whenever needed).

Knot by Lisa Piccirillo, pancake by DBN

We often think of knots as planar diagrams. 3-dimensionally, they are embedded in "pancakes".

'Connector' by Alexandra Griess and Jorel Heid (Hamburg, Germany). Image from www.waterfrontbia.com/ice-breakers-2019-presented-by-ports/.

A Yarn Ball

The difference matters when

- We make statements about "random knots".
- We figure out computational complexity. Let's try to make it quantitative. . .

Theorem 1. Let $l k$ denote the linking number of a 2-component link. Then $C_{l k}(2 D, n) \sim n$ while $C_{l k}(3 D, V) \sim V$, so $l k$ is C3D!
Proof. WLOG, we are looking at a link in a grid, which we project as on the right:

/green

And here's a bigger knot.

This may look like a lot of information, but if V is big, it's less than the information in a planar diagram, and it is easily computable.

So $2 L^{2}$ times we have to solve the problem "given two sets R and G of integers in $[0, L]$, how many pairs $\{(r, g) \in R \times G: r<g\}$ are there?". This takes time $\sim L$ (see below), so the overall computation takes time $\sim L^{3}$.

Below. Start with $r b=c f=0$ ("reds before" and "cases found") and slide ∇ from left to right, incrementing $r b$ by one each time you cross a \bullet and incrementing of by $r b$ each time you cross a \bullet :

Conversation Starter 1. A knot invariant ζ is said to be Computationally 3D, or C3D, if

$$
C_{\zeta}(3 D, V) \ll C_{\zeta}\left(2 D, V^{4 / 3}\right)
$$

This isn't a rigorous definition! It is time- and naïveté-dependent! But there's room for less-stringent rigour in mathematics, and on a philosophical level, our definition means something.

Here's what it look like, in the case of a knot:

There are $2 L^{2}$ triangular "crossings fields" F_{k} in such a projection.

WLOG, in each F_{k} all over strands and all under strands are oriented in the same way and all green edges belong to one component and all red edges to the other.

In general, with our limited tools, speedup arises because appropriately projected 3D knots have many uniform "red over green" regions:

Great Embarrassment 1. I don't know if any of the Alexander, Jones,
HOMFLY-PT, and Kauffman polynomials is C3D. I don't know if any
Reshetikhin-Turaev invariant is C3D. I don't know if any knot homology is C3D.

Or maybe it's a cause for optimism - there's still something very basic we don't know about (say) the Jones polynomial. Can we understand it well enough 3-dimensionally to compute it well? If not, why not?
(What a weak statement!)

All pre-categorification knot polynomials are power series whose coefficients are finite type invariants. (This is sometimes helpful for the computation of finite type invariants, but rarely helpful for the computation of knot polynomials).

Conversation Starter 2. Similarly, if η is a stingy quantity (a quantity we expect to be small for small knots), we will say that η has Savings in 3D, or "has S3D" if $M_{\eta}(3 D, V) \ll M_{\eta}\left(2 D, V^{4 / 3}\right)$.

Example (R. van der Veen, D. Thurston, private communications). The hyperbolic volume has S3D.

Great Embarrassment 2. I don't know if the genus of a knot has S3D! In other words, even if a knot is given in a 3-dimensional, the best way I know to find a Seifert surface for it is to first project it to 2D, at a great cost.

Theorem FT2D. If ζ is a finite type invariant of type d then $C_{\zeta}(2 D, n)$ is at most $\sim n^{\lfloor 3 d / 4\rfloor}$.

With more effort, $C_{\zeta}(2 D, n) \lesssim n^{\left(\frac{2}{3}+\epsilon\right) d}$.
Note that there are some exceptional finite type invariants, e.g. high coefficients of the Alexander polynomial and other poly-time knot polynomials, which can be computed much faster!

Theorem FT3D. If ζ is a finite type invariant of type d then $C_{\zeta}(3 D, V)$ is at most $\sim V^{6 d / 7+1 / 7}$.

With more effort, $C_{\zeta}(2 D, V) \lesssim V^{\left(\frac{4}{5}+\epsilon\right) d}$.
Tentative Conclusion. As
$n^{3 d / 4} \sim\left(V^{4 / 3}\right)^{3 d / 4}=V \gg V^{6 d / 7+1 / 7} \quad n^{2 d / 3} \sim\left(V^{4 / 3}\right)^{2 d / 3}=V^{8 d / 9} \gg V^{4 d / 5}$
these theorems say "most finite type invariants are probably C3D; the ones in greater doubt are the lucky few that can be computed unusually quickly".

Theorem FT2D. If ζ is a finite type invariant of type d then $C_{\zeta}(2 D, n)$ is at most $\sim n^{\lfloor 3 d / 4\rfloor}$. With more effort, $C_{\zeta}(2 D, n) \lesssim n^{\left(\frac{2}{3}+\epsilon\right) d}$.

With an appropriate look-up table, it can also be done in time $\sim n^{2}$ (in general, $\sim n^{d-1}$). That look-up table ($T_{q_{1}, q_{2}}^{p_{1}, p_{2}}$) is of size (and production cost) $\sim n^{4}$ if you are naive, and $\sim n^{2}$ if you are just a bit smarter. Indeed

$$
T_{q_{1}, q_{2}}^{p_{1}, p_{2}}=T_{0, q_{2}}^{0, p_{2}}-T_{0, q_{2}}^{0, p_{1}}-T_{0, q_{1}}^{0, p_{2}}+T_{0, q_{1}}^{0, p_{1}},
$$

and $\left(T_{0, q}^{0, p}\right)$ is easy to compute.

With multiple uses of the same lookup table, what naively takes $\sim n^{5}$ can be reduced to $\sim n^{3}$

In general within a big d-arrow diagram we need to find an as-large-as possible collection of arrows to delay. These must be non-adjacent to each other. As the adjacency graph for the arrows is at worst quadrivalent, we can always find $\left\lceil\frac{d}{4}\right\rceil$ non-adjacent arrows, and hence solve the counting problem in time
$\sim n^{d-\left\lceil\frac{d}{4}\right\rceil}=n^{\lfloor 3 d / 4\rfloor}$.

On to

Theorem FT3D. If ζ is a finite type invariant of type d then $C_{\zeta}(3 D, V)$ is at most
$\sim V^{6 d / 7+1 / 7}$.
With more effort, $C_{\zeta}(2 D, V) \lesssim V^{\left(\frac{4}{5}+\epsilon\right) d}$

The line/feather method:

Accurate but takes forever.

In reality, you take a few shark bites and feather the rest ...

... and then there's an optimization problem to solve: when to stop biting and start feathering.

Note that this counting argument works equally well if each of the d arrows is pulled from a different set!
It follows that we can compute φ_{d} in time $\sim n^{\lfloor 3 d / 4\rfloor}$.

With bigger look-up tables that allow looking up "clusters" of G arrows, we can reduce this to $\sim n^{\left(\frac{2}{3}+\epsilon\right) d}$

An image editing problem:

(Yarn ball and background coutesy of Heather Young)

The rectangle/shark method:

Coarse but fast.

The structure of a crossing field.

There are about $\log _{2} L$ "generations". There are 2^{g} bites in generation g, and the total number of crossings in them is $\sim L^{2} / 2^{g}$

Let's go hunt!

Video and more at http://www.math.toronto.edu/~drorbn/Talks/KOS-211021/

The effort to take a single multi-bite is tiny. Indeed,
Lemma Given $2 d$ finite sets $B_{i}=\left\{t_{i 1}, t_{i 2}, \ldots\right\} \subset\left[1 . . L^{3}\right]$ and a permutation $\pi \in S_{2 n}$ the quantity

$$
N=\mid\left\{\left(b_{i}\right) \in \prod_{i=1}^{2 d} B_{i}: \text { the } b_{i} \text { 's are ordered as } \pi\right\} \mid
$$

can be computed in time $\sim \sum\left|B_{i}\right| \sim \max \left|B_{i}\right|$.
Proof. WLOG $\pi=I d$. For $\iota \in[1 . .2 d]$ and $\beta \in B:=\cup B_{i}$ let

$$
N_{\iota, \beta}=\left|\left\{\left(b_{i}\right) \in \prod_{i=1}^{\iota} B_{i}: b_{1}<b_{2}<\ldots<b_{\iota} \leq \beta\right\}\right|
$$

We need to know $N_{2 d, \max B}$; compute it inductively using $N_{\iota, \beta}=$ $N_{\iota, \beta^{\prime}}+N_{\iota-1, \beta^{\prime}}$, where β^{\prime} is the predecessor of β in B.

$t_{41} t_{42} t_{43}$

Conclusion. We wish to compute the contribution to φ_{d} coming from d-tuples of crossings of multi-generation \bar{g}.

- The multi-shark method does it in time

$$
\sim(\text { no. of bites }) \cdot(\text { time per bite })=L^{2 d} 2^{G} \cdot \frac{L}{2^{\min \bar{g}}}<L^{2 d+1} 2^{G}
$$

(increases with G).

- The multi-feather method (project and use the 2D algorithm) does it in time

$$
\sim(\text { no. of crossings })^{\left\lfloor\frac{3}{4} d\right\rfloor}=\left(\prod_{i=1}^{d} L^{2} \frac{L^{2}}{2^{g_{i}}}\right)^{\left\lfloor\frac{3}{4} d\right\rfloor}<\frac{L^{3 d}}{\left(2^{G}\right)^{3 / 4}}
$$

(decreases with G).
Of course, for any specific G we are free to choose whichever is better, shark or feather.

If time - a word about braids.

Thank You!

The two methods agree (and therefore are at their worst) if $2^{G}=L^{\frac{4}{7}(d-1)}$, and in that case, they both take time $\sim L^{\frac{18}{7}} d+\frac{3}{7}=V^{\frac{6}{7}} d+\frac{1}{7}$.
The same reasoning, with the $n^{\left(\frac{2}{3}+\epsilon\right) d}$ feather, gives $V^{\left(\frac{4}{5}+\epsilon\right) d}$.

I Still Don't Understand the Alexander Polynomial

Dror Bar-Natan, http://drorbn.net/mo21

Moscow by Web, April 2021

Abstract. As an algebraic knot theorist, I still don't understand the Alexander polynomial. There are two conventions as for how to present tangle theory in algebra: one may name the strands of a tangle, or one may name their ends. The distinction might seem too minor to matter, yet it leads to a completely different view of the set of tangles as an algebraic structure. There are lovely formulas for the Alexander polynomial as viewed from either perspective, and they even agree where they meet. But the "strands" formulas know about strand doubling while the "ends" ones don't, and the "ends" formulas know about skein relations while the "strands" ones don't. There ought to be a common generalization, but I don't know what it is.

I use talks to self-motivate; so often I choose a topic and write an abstract when I know I can do it, yet when I haven't done it yet. This time it turns out my abstract was wrong - I'm still uncomfortable with the Alexander polynomial, but in slightly different ways than advertised two slides before.

My discomfort.

- I can compute the multivariable Alexander polynomial real fast:

- But I can only prove "skein relations" real slow:

1. Virtual Skein Theory Heaven

Definition. A "Contraction Algebra" assigns a set $\mathcal{T}(\mathcal{X}, X)$ to any pair of finite sets $\mathcal{X}=\{\xi \ldots\}$ and $X=\{x, \ldots\}$ provided $|\mathcal{X}|=|X|$, and has operations

- "Disjoint union" $\sqcup: \mathcal{T}(\mathcal{X}, X) \times \mathcal{T}(\mathcal{Y}, Y) \rightarrow \mathcal{T}(\mathcal{X} \sqcup \mathcal{Y}, X \sqcup Y)$, provided $\mathcal{X} \cap \mathcal{Y}=X \cap Y=\emptyset$.
- "Contractions" $c_{x, \xi}: \mathcal{T}(\mathcal{X}, X) \rightarrow \mathcal{T}(\mathcal{X} \backslash \xi, X \backslash x)$, provided $x \in X$ and $\xi \in \mathcal{X}$.
- Renaming operations $\sigma_{\eta}^{\xi}: \mathcal{T}(\mathcal{X} \sqcup\{\xi\}, X) \rightarrow \mathcal{T}(\mathcal{X} \sqcup\{\eta\}, X)$ and $\sigma_{y}^{x}: \mathcal{T}(\mathcal{X}, X \sqcup\{x\}) \rightarrow \mathcal{T}(\mathcal{X}, X \sqcup\{y\})$.
Subject to axioms that will be specified right after the two examples in the next three slides.
If R is a ring, a contraction algebra is said to be " R-linear" if all the $\mathcal{T}(\mathcal{X}, X)$'s are R-modules, if the disjoint union operations are R-bilinear, and if the contractions $c_{x, \xi}$ and the renamings σ. are R-linear.
(Contraction algebras with some further "unit" properties are called "wheeled props" in [MMS, DHR])

Note 3. A contraction algebra morphism out of \mathcal{T} is an invariant of virtual tangles (and hence of virtual knots and links) and would be an ideal tool to prove Skein Relations:

Thanks for inviting me to Moscow! As most of you have never seen it, here's a picture of the lecture room:

If you can, please turn your video on! (And mic, whenever needed).

This talk is to a large extent an elucidation of the Ph.D. theses of my former students Jana Archibald and Iva Halacheva. See [Ar, Ha1, Ha2].

Also thanks to Roland van der Veen for comments.
A technicality. There's supposed to be fire alarm testing in my building today. Don't panic!

Example 1. Let $\mathcal{T}(\mathcal{X}, X)$ be the set of virtual tangles with incoming ends ("tails") labeled by \mathcal{X} and outgoing ends ("heads") labeled by X, with \sqcup and σ. the obvious disjoint union and end-renaming operations, and with $c_{X, \xi}$ the operation of attaching a head x to a tail ξ while introducing no new crossings.
Note 1. \mathcal{T} can be made linear by allowing formal linear combinations.
Note 2. \mathcal{T} is finitely presented, with generators the positive and negative crossings, and with relations the Reidemeister moves! (If you want, you can take this to be the definition of "virtual tangles").

Example 2. Let V be a finite dimensional vector space and set $\mathcal{V}(\mathcal{X}, X):=\left(V^{*}\right)^{\otimes \mathcal{X}} \otimes V^{\otimes X}$, with $\sqcup=\otimes$, with σ. the operation of renaming a factor, and with $c_{X, \xi}$ the operation of contraction: the evaluation of tensor factor ξ (which is a V^{*}) on tensor factor x (which is a V).

Axioms. One axiom is primary and interesting,

- Contractions commute! Namely, $c_{x, \xi} / / c_{y, \eta}=c_{y, \eta} / / c_{x, \xi}$ (or in old-speak, $\left.c_{y, \eta} \circ c_{x, \xi}=c_{x, \xi} \circ c_{y, \eta}\right)$.
And the rest are just what you'd expect:
- \sqcup is commutative and associative, and it commutes with $c_{\text {., }}$, and with σ. whenever that makes sense.

- $\sigma_{\xi}^{\xi}=\sigma_{x}^{x}=I d, \sigma_{\eta}^{\xi} / / \sigma_{\zeta}^{\eta}=\sigma_{\zeta}^{\xi}, \sigma_{y}^{x} / / \sigma_{z}^{y}=\sigma_{z}^{x}$, and renaming operations commute where it makes sense.

2. Heaven is a Place on Earth

(A version of the main results of Archibald's thesis, [Ar]).
Let us work over the base ring $\mathcal{R}=\mathbb{Q}\left[\left\{T^{ \pm 1 / 2}: T \in C\right\}\right]$. Set

$$
\mathcal{A}(\mathcal{X}, X):=\left\{w \in \Lambda(\mathcal{X} \sqcup X): \operatorname{deg}_{\mathcal{X}} w=\operatorname{deg}_{X} w\right\}
$$

(so in particular the elements of $\mathcal{A}(\mathcal{X}, X)$ are all of even degree). The union operation is the wedge product, the renaming operations are changes of variables, and $c_{x, \xi}$ is defined as follows. Write $w \in \mathcal{A}(\mathcal{X}, X)$ as a sum of terms of the form $u w^{\prime}$ where $u \in \Lambda(\xi, x)$ and $w^{\prime} \in \mathcal{A}(\mathcal{X} \backslash \xi, X \backslash x)$, and map u to 1 if it is 1 or $x \xi$ and to 0 is if is ξ or x :

$$
1 w^{\prime} \mapsto w^{\prime}, \quad \xi w^{\prime} \mapsto 0, \quad x w^{\prime} \mapsto 0, \quad x \xi w^{\prime} \mapsto w^{\prime} .
$$

Proposition. \mathcal{A} is a contraction algebra.

We construct a morphism of coloured contraction algebras $\mathcal{A}: \mathcal{T} \rightarrow \mathcal{A}$ by declaring

$$
\begin{aligned}
X_{i j k l}[S, T] & \mapsto T^{-1 / 2} \exp \left(\left(\begin{array}{ll}
\xi_{l} & \xi_{i}
\end{array}\right)\left(\begin{array}{cc}
1 & 1-T \\
0 & T
\end{array}\right)\binom{x_{j}}{x_{k}}\right) \\
\bar{X}_{i j k l}[S, T] & \mapsto T^{1 / 2} \exp \left(\left(\begin{array}{ll}
\xi_{i} & \xi_{j}
\end{array}\right)\left(\begin{array}{cc}
T^{-1} & 0 \\
1-T^{-1} & 1
\end{array}\right)\binom{x_{k}}{x_{l}}\right) \\
P_{i j}[T] & \mapsto \exp \left(\xi_{i} x_{j}\right)
\end{aligned}
$$

with

(Note that the matrices appearing in these formulas are the Burau matrices).

3. An Implementation of \mathcal{A}

If I didn't implement I wouldn't believe myself.

Written in Mathematica [Wo], available as the notebook Alpha.nb at http://drorbn.net/mo21/ap. Code lines are highlighted in grey, demo lines are plain. We start with an implementation of elements ("Wedge") of exterior algebras, and of the wedge product ("WP"):

```
WP[Wedge [u___], Wedge[v___]] := Signature [{u,v}] * Wedge @@ Sort[{u,v}];
WP[0, _] = WP[_, 0] = 0;
WP[\mp@subsup{A}{-}{\prime},\mp@subsup{B}{-}{\prime}]:=
    Expand[Distribute[A ** B] /.
        (a_. * u_Wedge) ** (b_. * v_Wedge) :-> abWP[u,v]];
WP[Wedge[^] + Wedge[a] - 2b^a, Wedge[^] - 3 Wedge[b] + 7 c^d]
Wedge [] + Wedge [a] - 3 Wedge[b] - a^b + 7c^d + 7a^c^d+ 14a^b^c^d
```


Comments.

- We can relax $|\mathcal{X}|=|X|$ at no cost.
- We can lose the distinction between \mathcal{X} and X and get "circuit algebras".
- There is a "coloured version", where $\mathcal{T}(\mathcal{X}, X)$ is replaced with $\mathcal{T}(\mathcal{X}, X, \lambda, I)$ where $\lambda: \mathcal{X} \rightarrow C$ and $I: X \rightarrow C$ are "colour functions" into some set C of "colours", and contractions $c_{x, \xi}$ are allowed only if x and ξ are of the same colour, $I(x)=\lambda(\xi)$. In the world of tangles, this is "coloured tangles".

Alternative Formulations.

$-\quad c_{x, \xi} w=\iota_{\xi} \iota_{x} \mathbb{e}^{\times \xi} w, \quad$ where ι. denotes interior multiplication.

- Using Fermionic integration,

$$
c_{x, \xi} w=\int \mathbb{e}^{x \xi} w d \xi d x
$$

- $c_{x, \xi}$ represents composition in exterior algebras! With $X^{*}:=\left\{x^{*}: x \in X\right\}$, we have that $\operatorname{Hom}(\wedge X, \wedge Y) \cong \wedge\left(X^{*} \sqcup Y\right)$ and the following square commutes:

- Similarly, $\Lambda(\mathcal{X} \sqcup X) \cong\left(H^{*}\right)^{\otimes \mathcal{X}} \otimes H^{\otimes X}$ where H is a 2-dimensional "state space" and H^{*} is its dual. Under this identification, $c_{X, \xi}$ becomes the contraction of an H factor with an H^{*} factor.

Theorem.

If D is a classical link diagram with k components coloured T_{1}, \ldots, T_{k} whose first component is open and the rest are closed, if MVA is the multivariable Alexander polynomial of the closure of D (with these colours), and if ρ_{j} is the counterclockwise rotation number of the j th component of D, then

$$
\mathcal{A}(D)=T_{1}^{-1 / 2}\left(T_{1}-1\right)\left(\prod_{j} T_{j}^{\rho_{j} / 2}\right) \cdot M V A \cdot\left(1+\xi_{\text {in }} \wedge x_{\mathrm{out}}\right)
$$

(\mathcal{A} vanishes on closed links).

We then define the exponentiation map in exterior algebras ("WExp") by summing the series and stopping the sum once the current term ("t") vanishes:
$\operatorname{WExp}\left[A_{-}\right]:=\operatorname{Module}\left[\left\{s=\operatorname{Wedge}\left[{ }_{\wedge}\right], \mathrm{t}=\right.\right.$ Wedge $\left.[\wedge], \mathrm{k}=0\right\}$,
While[t =! = 0, $s+=(t=\operatorname{Expand}[W P[t, A] /(++k)])]$; s]
$\boldsymbol{W E x p}[a \wedge b+c \wedge d+e \wedge f]$
Wedge [] $+a \wedge b+c \wedge d+e \wedge f+a \wedge b \wedge c \wedge d+a \wedge b \wedge e \wedge f+c \wedge d \wedge e \wedge f+a \wedge b \wedge c \wedge d \wedge e \wedge f$

Contractions!
$\mathbf{c}_{x_{-}, y_{-}}\left[{ }^{\prime}\right.$ _Wedge] $:=$ Module $[\{i, j\}$,

$c_{x, y}\left[\varepsilon_{-}\right]:=\varepsilon / . w_{-}$Wedge $: \rightarrow \mathbf{c}_{x, y}[w]$
WExp [a^b+2c^d]
$c_{d, c}$ @WExp [a^b+2c^d]
Wedge [] $+a \wedge b+2 c \wedge d+2 a \wedge b \wedge c \wedge d$
Wedge [] - $\mathrm{a} \wedge \mathrm{b}$

The negative crossing and the "point":


```
\mathcal{F}[\mp@subsup{\overline{\mathbf{X}}}{\mp@subsup{i}{-}{\prime},\mp@subsup{j}{-}{\prime},\mp@subsup{k}{-}{\prime},\mp@subsup{L}{-}{\prime}}{[S}\mp@subsup{S}{-}{\prime},\mp@subsup{T}{-}{\prime}]]:=\mathcal{F}[{i,j},{k,L},\langle|\mp@subsup{\xi}{i}{}->S,\mp@subsup{\xi}{j}{}->T,\mp@subsup{\mathbf{x}}{k}{}->S,\mp@subsup{\mathbf{x}}{L}{}->T|\rangle,
```



```
\mathscr{F}[\mp@subsup{\overline{\mathbf{X}}}{\mp@subsup{i}{-}{\prime},\mp@subsup{j}{-}{\prime},\mp@subsup{k}{-}{\prime},\mp@subsup{\iota}{-}{}]}{}]:=\mathscr{F}[\mp@subsup{\overline{X}}{i,j,k,l}{}[\mp@subsup{\tau}{i}{},\mp@subsup{\tau}{j}{}]];
```


\mathcal{A} [is,os,cs,w] is also a container for the values of the \mathcal{A}-invariant of a tangle. In it, is are the labels of the input strands, os are the labels of the output strands, cs is an assignment of colours (namely, variables) to all the ends $\left\{\xi_{i}\right\}_{i \in \mathrm{is}} \sqcup\left\{x_{j}\right\}_{j \in \text { os }}$, and w is the "payload": $\quad X_{i j k l}[S, T]$ an element of $\Lambda\left(\left\{\xi_{i}\right\}_{i \in \mathrm{is}} \sqcup\left\{x_{j}\right\}_{j \in \text { os }}\right)$.
$\mathscr{A}\left[\mathbf{X}_{i_{-}, j_{-}, k_{-}, L_{-}}\left[S_{-}, T_{-}\right]\right]:=\mathscr{A}\left[\{L, i\},\{j, k\},\langle | \xi_{i} \rightarrow S, \mathbf{x}_{j} \rightarrow T, X_{k} \rightarrow S, \xi_{L} \rightarrow T| \rangle\right.$, $\left.\operatorname{Expand}\left[T^{-1 / 2} \operatorname{WExp}\left[\operatorname{Expand}\left[\left\{\xi_{l}, \xi_{i}\right\} \cdot\left(\begin{array}{cc}1 & 1-T \\ 0 & T\end{array}\right) \cdot\left\{\mathbf{x}_{j}, \mathrm{x}_{k}\right\}\right] / \cdot \xi_{a_{-}} \mathrm{x}_{b_{-}}: \rightarrow \xi_{a} \wedge \mathrm{x}_{b}\right]\right]\right]$;
$\mathcal{F}\left[\mathrm{X}_{1,2,3,4}[\mathrm{u}, \mathrm{v}]\right]$
$\mathscr{F}\left[\{4,1\},\{2,3\},\langle | \xi_{1} \rightarrow u, x_{2} \rightarrow v, x_{3} \rightarrow u, \xi_{4} \rightarrow v| \rangle\right.$,
$\left.\frac{\text { Wedge }[]}{\sqrt{v}}-\frac{x_{2} \wedge \xi_{4}}{\sqrt{v}}-\sqrt{v} x_{3} \wedge \xi_{1}-\frac{x_{3} \wedge \xi_{4}}{\sqrt{v}}+\sqrt{v} x_{3} \wedge \xi_{4}+\sqrt{v} x_{2} \wedge x_{3} \wedge \xi_{1} \wedge \xi_{4}\right]$
$\mathscr{F}\left[\mathrm{X}_{\left.i_{-}, j_{-}, k_{-}, \iota_{-}\right]}\right]:=\mathcal{F}\left[\mathrm{X}_{i, j, k, l}\left[\tau_{i}, \tau_{l}\right]\right]$

The linear structure on \mathcal{A} 's:
$\mathcal{F} /: \alpha_{-} \times \mathcal{F}\left[i s_{-}, o s_{-}, c s_{-}, w_{-}\right]:=\mathcal{A}[i s, o s, c s$, Expand $[\alpha w]]$
$\mathcal{F} /: \mathcal{A}\left[i s 1_{-}\right.$, os1_, cs1_, w1_] + $\mathcal{H}\left[i s 2_{-}, o s 2_{-}, c s 2_{-}, w 2_{-}\right] / ;$
(Sort@is1 == Sort@is2) ^(Sort@os1 == Sort@os2) ^
(Sort@Normal@cs1 == Sort@Normal@cs2) := $\mathfrak{F}[i s 1, o s 1, c s 1, w 1+w 2]$
Deciding if two \mathcal{A} 's are equal:
$\mathcal{F} /: \mathcal{A}\left[i s 1_{-}, o s 1_{-}, \quad, w 1_{-}\right] \equiv \mathcal{F}\left[i s 2_{-}\right.$, os2_, _, w2_] :=
TrueQ [(Sort@is1 === Sort@is2) ^(Sort@os1 === Sort@os2) ^
PowerExpand [w1 == w2]]

The union operation on \mathcal{A} 's (implemented as "multiplication"):
$\mathcal{F} /: \mathcal{A}\left[i s 1_{-}, o s 1_{-}, c s 1_{-}, w 1_{-}\right] \times \mathcal{F}\left[i s 2_{-}, o s 2_{-}, c s 2_{-}, w 2_{-}\right]:=$
$\mathcal{A}[i s 1 \cup i s 2$, os1 Uos2, Join [cs1, cs2], WP [w1, w2]]
Short $\left[\mathscr{F}\left[\mathrm{X}_{2,4,3,1}[\mathrm{~S}, \mathrm{~T}]\right] \times \mathcal{F}\left[\overline{\mathrm{X}}_{3,4,6,5}\right], 5\right]$
$\mathcal{F}[\{1,2,3,4\},\{3,4,5,6\}$,
$\langle | \xi_{2} \rightarrow \mathbf{S}, \mathrm{x}_{4} \rightarrow \mathrm{~T}, \mathrm{X}_{3} \rightarrow \mathbf{S}, \xi_{1} \rightarrow \mathrm{~T}, \xi_{3} \rightarrow \tau_{3}, \xi_{4} \rightarrow \tau_{4}, \mathrm{X}_{6} \rightarrow \tau_{3}, \mathrm{x}_{5} \rightarrow \tau_{4}| \rangle, \frac{\sqrt{\tau_{4}} \text { Wedge }[]}{\sqrt{\mathrm{T}}}-$

$$
\frac{\sqrt{\tau_{4}} x_{3} \wedge \xi_{1}}{\sqrt{T}}+\sqrt{T} \sqrt{\tau_{4}} x_{3} \wedge \xi_{1}-\sqrt{T} \sqrt{\tau_{4}} \mathbf{x}_{3} \wedge \xi_{2}-\frac{\sqrt{\tau_{4}} \mathbf{x}_{4} \wedge \xi_{1}}{\sqrt{T}}-\frac{\sqrt{\tau_{4}} \mathbf{x}_{5} \wedge \xi_{4}}{\sqrt{T}}-
$$

$$
\frac{\mathbf{x}_{6} \wedge \xi_{3}}{\sqrt{T} \sqrt{\tau_{4}}}+\ll \mathbf{4 0} \gg+\frac{\sqrt{T} \mathbf{x}_{3} \wedge \mathbf{x}_{5} \wedge \mathbf{x}_{6} \wedge \xi_{1} \wedge \xi_{3} \wedge \xi_{4}}{\sqrt{\tau_{4}}}-\frac{\sqrt{T} \mathbf{x}_{3} \wedge \mathbf{x}_{5} \wedge \mathbf{x}_{6} \wedge \xi_{2} \wedge \xi_{3} \wedge \xi_{4}}{\sqrt{\tau_{4}}}-
$$

$$
\left.\frac{\mathbf{x}_{4} \wedge \mathbf{x}_{5} \wedge \mathbf{x}_{6} \wedge \xi_{1} \wedge \xi_{3} \wedge \xi_{4}}{\sqrt{T} \sqrt{\tau_{4}}}+\frac{\sqrt{T} \mathbf{x}_{3} \wedge \mathbf{x}_{4} \wedge \mathbf{x}_{5} \wedge \mathbf{x}_{6} \wedge \xi_{1} \wedge \xi_{2} \wedge \xi_{3} \wedge \xi_{4}}{\sqrt{\tau_{4}}}\right]
$$

```
Contractions of }\mathcal{A}\mathrm{ -objects:
c}\mp@subsup{\boldsymbol{h}}{-}{},\mp@subsup{t}{-}{\prime}@\mathcal{F}[i\mp@subsup{s}{-}{\prime},o\mp@subsup{s}{-}{\prime},c\mp@subsup{s}{-}{\prime},\mp@subsup{w}{-}{\prime}]:=\mathcal{F}
    DeleteCases[is, t], DeleteCases [os,h], KeyDrop[cs, {\mp@subsup{x}{h}{},\mp@subsup{\xi}{t}{}}],\mp@subsup{\mathbf{c}}{\mp@subsup{\mathbf{x}}{h}{},\mp@subsup{\xi}{t}{}}{[w]}][\mp@code{l}
    ] /. If[MatchQ[cs[\mp@subsup{\xi}{t}{\prime}],\mp@subsup{\tau}{-}{\prime}],\operatorname{cs}[\mp@subsup{\xi}{t}{}]->cs[\mp@subsup{x}{h}{}],\operatorname{cs}[\mp@subsup{x}{h}{}]->cs[\mp@subsup{\xi}{t}{\prime}]];
c
\mathcal{F}[{1,2,3},{3,5,6},\langle| \xi2->S, \mp@subsup{x}{3}{}->\textrm{S},\mp@subsup{\xi}{1}{}->\textrm{T},\mp@subsup{\xi}{3}{}->\mp@subsup{\tau}{3}{},\mp@subsup{\textrm{x}}{6}{}->\mp@subsup{\tau}{3}{},\mp@subsup{\textrm{x}}{5}{}->\textrm{T}|\rangle,
Wedge[] - 攵^
```



```
    \mp@subsup{x}{3}{}\wedge\mp@subsup{x}{6}{}\wedge\mp@subsup{\xi}{1}{}\wedge\mp@subsup{\xi}{3}{}
```

4. Skein relations and evaluations for \mathcal{A}

$$
\begin{aligned}
& \mathcal{F} @\left\{\bar{x}_{4,1,6,3}[v, u], \bar{x}_{3,2,5,4}\right\} \\
& \mathcal{F}\left[\{1,2\},\{5,6\},\langle | \xi_{2} \rightarrow v, x_{5} \rightarrow u, \xi_{1} \rightarrow u, x_{6} \rightarrow v| \rangle,\right. \\
& \sqrt{u} \sqrt{v} \text { Wedge }[]-\frac{\sqrt{u} x_{5} \wedge \xi_{1}}{\sqrt{v}}+\frac{\sqrt{u} x_{5} \wedge \xi_{2}}{\sqrt{v}}-\sqrt{u} \sqrt{v} x_{5} \wedge \xi_{2}+\frac{\sqrt{v} x_{6} \wedge \xi_{1}}{\sqrt{u}}-\sqrt{u} \sqrt{v} x_{6} \wedge \xi_{1} \\
& \left.\frac{\sqrt{v} x_{6} \wedge \xi_{2}}{\sqrt{u}}-\frac{\sqrt{u} x_{5} \wedge x_{6} \wedge \xi_{1} \wedge \xi_{2}}{\sqrt{v}}-\frac{\sqrt{v} x_{5} \wedge x_{6} \wedge \xi_{1} \wedge \xi_{2}}{\sqrt{u}}+\sqrt{u} \sqrt{v} x_{5} \wedge x_{6} \wedge \xi_{1} \wedge \xi_{2}\right]
\end{aligned}
$$

Automatic and intelligent multiple contractions:

$\mathcal{F} @\left\{\mathrm{X}_{2,4,3,1}[\mathrm{~S}, \mathrm{~T}], \overline{\mathrm{X}}_{3,4,6,5}\right\} \equiv \mathcal{F} @\left\{\mathrm{P}_{1,5}[\mathrm{~T}], \mathrm{P}_{2,6}[\mathrm{~S}]\right\}$
True
$\mathcal{F} @\left\{\bar{X}_{3,1,2,4}[\mathrm{~S}, \mathrm{~T}], \mathrm{X}_{6,5,3,4}\right\} \equiv \mathcal{F} @\left\{\mathrm{P}_{1,5}[\mathrm{~T}], \mathrm{P}_{6,2}[\mathrm{~S}]\right\}$
True

$\mathcal{H} @\left\{X_{2,5,4,1}\left[T_{2}, T_{1}\right], X_{3,7,6,5}\left[T_{3}, T_{1}\right], X_{6,9,8,4}\right\} \equiv$ $\mathcal{F} @\left\{X_{3,5,4,2}\left[T_{3}, T_{2}\right], X_{4,6,8,1}\left[T_{3}, T_{1}\right], X_{5,7,9,6}\right\}$ True

MVA $=u^{-1 / 2} v^{-1 / 2} w^{-1 / 2}(u-1)(v-1)(w-1) ;$
$A=\left\{\bar{X}_{1,12,2,13}[u, v], \bar{X}_{13,2,6,3}, X_{8,4,9,3}, X_{4,10,5,9}, X_{6,17,7,16}[v, w]\right.$,
$\left.\mathrm{X}_{15,8,16,7}, \overline{\mathrm{X}}_{14,10,15,11}, \overline{\mathrm{X}}_{11,17,12,14}\right\} / / \mathcal{F} / /$ Last // Factor
$\frac{(-1+u)^{2}(-1+v)(-1+w)\left(\text { Wedge }[]-x_{5} \wedge \xi_{1}\right)}{u v}$
$A==u^{-1 / 2}(u-1) u^{\theta} v^{-1 / 2} w^{1 / 2}$ MVA (Wedge $[\wedge]-x_{5} \wedge \xi_{1}$)
True

The Conway Relation
(see [Co])
$\mathcal{F} @\left\{\mathrm{X}_{2,3,4,1}[\mathrm{~T}, \mathrm{~T}]\right\}-\mathcal{F} @\left\{\overline{\mathrm{X}}_{1,2,3,4}[\mathrm{~T}, \mathrm{~T}]\right\} \equiv\left(\mathrm{T}^{-1 / 2}-\mathrm{T}^{1 / 2}\right) \mathcal{A} @\left\{\mathrm{P}_{1,4}[\mathrm{~T}], \mathrm{P}_{2,3}[\mathrm{~T}]\right\}$ True

Virtual versions (Archibald, [Ar])
(2
$\mathcal{F} @\left\{\mathrm{X}_{2,3,4,1}\right\}+\mathcal{F} @\left\{\overline{\mathrm{X}}_{2,1,4,3}\right\} \equiv\left(\tau_{1}^{1 / 2}+\tau_{1}^{-1 / 2}\right) \mathcal{F} @\left\{\mathrm{P}_{1,3}, \mathrm{P}_{2,4}\right\}$
True
$\mathcal{F} @\left\{\overline{\mathrm{X}}_{1,2,3,4}\right\}+\mathcal{F} @\left\{\mathrm{X}_{1,4,3,2}\right\} \equiv\left(\tau_{2}^{1 / 2}+\tau_{2}^{-1 / 2}\right) \mathcal{H} @\left\{\mathrm{P}_{1,3}, \mathrm{P}_{2,4}\right\}$
True

Jun Murakami's Fifth Axiom (see [Mu])

$\mathcal{F} @\left\{\mathrm{X}_{1,4,2,5}[\mathrm{~T}, \mathrm{~S}], \mathrm{X}_{4,3,5,2}\right\} \equiv \frac{\sqrt{S}(1-\mathrm{T})}{\sqrt{T}} \mathcal{A} @\left\{\mathrm{P}_{1,3}[\mathrm{~T}]\right\}$
True

Jun Murakami's Third Axiom
(see [Mu])

$\mathcal{F}_{2112}=\mathcal{A} @\left\{\mathrm{X}_{3,8,7,2}, \mathrm{X}_{7,10,9,1}, \mathrm{X}_{10,11,4,9}, \mathrm{X}_{8,6,5,11}\right\} ;$
$\mathcal{F}_{1221}=\mathcal{F} @\left\{\mathrm{X}_{2,8,7,1}, \mathrm{X}_{3,10,9,8}, \mathrm{X}_{10,6,11,9}, \mathrm{X}_{11,5,4,7}\right\}$;
$\mathcal{F}_{2211}=\mathcal{A} @\left\{X_{3,8,7,2}, X_{8,6,9,7}, X_{9,11,10,1}, X_{11,5,4,10}\right\} ;$
$\mathcal{A}_{1122}=\mathcal{F} @\left\{X_{2,8,7,1}, X_{8,9,4,7}, X_{3,11,10,9}, \mathrm{X}_{11,6,5,10}\right\} ;$
$\mathcal{F}_{11}=\mathcal{F} @\left\{\mathrm{X}_{2,8,7,1}, \mathrm{X}_{8,5,4,7}, \mathrm{P}_{3,6}\right\} ; \mathcal{F}_{22}=\mathcal{F} @\left\{\mathrm{X}_{3,8,7,2}, \mathrm{X}_{8,6,5,7}, \mathrm{P}_{1,4}\right\} ;$
$\mathcal{H}_{\phi}=\mathcal{A} @\left\{\mathrm{P}_{1,4}, \mathrm{P}_{2,5}, \mathrm{P}_{3,6}\right\}$;
$\mathrm{g}_{+}\left[z_{-}\right]:=z^{1 / 2}+z^{-1 / 2} ; \mathrm{g}_{-}\left[z_{-}\right]:=z^{1 / 2}-z^{-1 / 2} ;$
$\mathrm{g}_{+}\left[\tau_{1}\right] \mathrm{g}_{-}\left[\tau_{2}\right] \mathcal{F}_{2112}-\mathrm{g}_{-}\left[\tau_{2}\right] \mathrm{g}_{+}\left[\tau_{3}\right] \mathcal{F}_{1221}-\mathrm{g}_{-}\left[\tau_{3} / \tau_{1}\right]\left(\mathcal{F}_{2211}+\mathcal{A}_{1122}\right)+$ $\mathrm{g}_{-}\left[\tau_{2} \tau_{3} / \tau_{1}\right] \mathrm{g}_{+}\left[\tau_{3}\right] \mathcal{A}_{11}-\mathrm{g}_{+}\left[\tau_{1}\right] \mathrm{g}_{-}\left[\tau_{1} \tau_{2} / \tau_{3}\right] \mathcal{A}_{22} \equiv \mathrm{~g}_{-}\left[\tau_{3}^{2} / \tau_{1}^{2}\right] \mathcal{A}_{\phi}$ True

Virtual Version 1 (Archibald, [Ar])

$\mathcal{F} @\left\{\mathrm{x}_{1,8,11,3}[\mathrm{u}, \mathrm{v}], \overline{\mathrm{x}}_{11,2,12,7}[\mathrm{u}, \mathrm{v}], \mathrm{x}_{12,10,13,4}[\mathrm{u}, \mathrm{w}], \overline{\mathrm{X}}_{13,5,6,9}[\mathrm{u}, \mathrm{w}]\right\} \equiv$ $\mathcal{F} @\left\{\mathrm{X}_{1,10,11,4}[\mathrm{u}, \mathrm{w}], \bar{X}_{11,5,12,9}[u, w], \mathrm{X}_{12,8,13,3}[\mathrm{u}, \mathrm{v}], \bar{X}_{13,2,6,7}[u, v]\right\}$ True

Virtual version (Archibald, [Ar])

Virtual versions (Archibald, [Ar])

$$
C_{S} \overbrace{\left.T\right|_{1}}^{\uparrow_{2}}=\left(T^{-1 / 2}-T^{1 / 2}\right) T_{T}^{2}
$$

$\mathcal{F} @\left\{X_{3,2,3,1}[S, T]\right\} \equiv\left(T^{-1 / 2}-T^{1 / 2}\right) \mathcal{F} @\left\{P_{1,2}[T]\right\}$
True
$\mathcal{F} @\left\{\mathrm{X}_{1,3,2,3}\right\}$
$\mathcal{F}\left[\{1\},\{2\},\langle | \xi_{1} \rightarrow \tau_{1}, x_{2} \rightarrow \tau_{1}| \rangle, 0\right]$

Timing[$\mathcal{F @}\left\{\mathrm{X}_{6,10,28,24}[\mathrm{w}, \mathrm{v}], \overline{\mathrm{X}}_{28,3,29,19}[\mathrm{w}, \mathrm{v}], \mathrm{X}_{26,20,27,19}[\mathrm{w}, \mathrm{v}], \overline{\mathrm{X}}_{27,23,11,24}[\mathrm{w}, \mathrm{v}]\right.$, $X_{1,12,13,30}[u, w], \bar{X}_{13,5,14,25}[u, w], X_{17,26,18,25}[u, w], \bar{X}_{18,29,8,30}[u, w]$, $\left.x_{4,7,22,15}[v, u], \bar{x}_{22,2,23,16}[v, u], x_{20,17,21,16}[v, u], \bar{x}_{21,14,9,15}[v, u]\right\} \equiv$ $\mathcal{F} @\left\{\mathrm{X}_{5,9,25,21}[\mathrm{w}, \mathrm{v}], \overline{\mathrm{x}}_{25,4,26,22}[\mathrm{w}, \mathrm{v}], \mathrm{X}_{29,23,30,22}[\mathrm{w}, \mathrm{v}], \overline{\mathrm{X}}_{30,20,12,21}[\mathrm{w}, \mathrm{v}]\right.$, $X_{2,11,16,27}[u, w], \bar{X}_{16,6,17,28}[u, w], X_{14,29,15,28}[u, w], \bar{x}_{15,26,7,27}[u, w]$,
$\left.\left.X_{3,8,19,18}[v, u], \bar{X}_{19,1,20,13}[v, u], X_{23,14,24,13}[v, u], \bar{X}_{24,17,18,18}[v, u]\right\}\right]$ \{190.422, True

Virtual Version 2 (Archibald, [Ar])

[^1]Video and more at http://www.math.toronto.edu/~drorbn/Talks/MoscowByWeb-2104/

5．Some Problems in Heaven

Unfortunately， $\operatorname{dim} \mathcal{A}(\mathcal{X}, X)=\operatorname{dim} \Lambda(\mathcal{X}, X)=4^{|X|}$ is big．Fortunately，we have the following theorem，a version of one of the main results in Halacheva＇s thesis，［Ha1，Ha2］：
Theorem．Working in $\Lambda(\mathcal{X} \cup X)$ ，if $w=\omega e^{\lambda}$ is a balanced Gaussian（namely，a scalar ω times the exponential of a quadratic $\lambda=\sum_{\zeta \in \mathcal{X}, z \in X} \alpha_{\zeta, z} \zeta z$ ），then generically so is $c_{x, \xi} \mathbb{e}^{\lambda}$ ．
（This is great news！The space of balanced quadratics is only $|\mathcal{X}||X|$－dimensional！）

「－calculus．

Thus we have an almost－always－defined＂Γ－calculus＂：a contraction algebra morphism $\mathcal{T}(\mathcal{X}, X) \rightarrow R \times\left(\mathcal{X} \otimes_{R / R} X\right)$ whose behaviour under contractions is given by

$$
c_{x, \xi}(\omega, \lambda=\mu+\eta x+\xi y+\alpha \xi x)=((1-\alpha) \omega, \mu+\eta y /(1-\alpha)) .
$$

（ Γ is fully defined on pure tangles－tangles without closed components－and hence on long knots）．

Proof．Recall that $c_{x, \xi}:(1, \xi, x, x \xi) w^{\prime} \mapsto(1,0,0,1) w^{\prime}$ ，write $\lambda=\mu+\eta x+\xi y+\alpha \xi x$ ，and ponder $\mathbb{e}^{\lambda}=$
$\ldots+\frac{1}{k!} \underbrace{(\mu+\eta x+\xi y+\alpha \xi x)(\mu+\eta x+\xi y+\alpha \xi x) \cdots(\mu+\eta x+\xi y+\alpha \xi x)}_{k \text { factors }}+\ldots$
Then $c_{x, \xi \mathrm{e}^{\lambda}}$ has three contributions：
－ \mathbb{e}^{μ} ，from the term proportional to 1 （namely，independent of ξ and x ）in \mathbb{e}^{λ}
$-\alpha \mathbb{e}^{\mu}$ ，from the term proportional to $x \xi$ ，where the x and the ξ come from the same factor above．
－$\eta y \mathbb{e}^{\mu}$ ，from the term proportional to $x \xi$ ，where the x and the ξ come from different factors above
So $c_{x, \xi} \mathbb{e}^{\lambda}=\mathbb{e}^{\mu}(1-\alpha+\eta y)=(1-\alpha) \mathbb{e}^{\mu}(1+\eta y /(1-\alpha))=(1-\alpha) \mathbb{e}^{\mu} \mathbb{e}^{\eta y /(1-\alpha)}=$ $(1-\alpha) \mathbb{e}^{\mu+\eta y /(1-\alpha)}$ ．

6．An Implementation of Γ ．

If I didn＇t implement I wouldn＇t believe myself．
Written in Mathematica［Wo］，available as the notebook Gamma．nb at http：／／drorbn．net／mo21／ap．Code lines are highlighted in grey，demo lines are plain．We start with canonical forms for quadratics with rational function coefficients：
CCF［ $\left.\mathcal{E}_{-}\right]$：＝Factor［ δ ］；
$\operatorname{CF}\left[\varepsilon_{-}\right]:=\operatorname{Module}\left[\left\{\mathrm{vs}=\operatorname{Union@Cases}\left[\varepsilon,(\xi \mid x)_{-}, \infty\right]\right\}\right.$ ， Total［（CCF［\＃［2』］（Times＠＠vs $\left.{ }^{\text {\＃［1］}}\right)$ ）\＆／＠CoefficientRules［ \mathcal{E}, vs］］］；

```
Contractions:
ch,t_@\Gamma[i\mp@subsup{s}{-}{\prime},o\mp@subsup{s}{-}{\prime},c\mp@subsup{s}{-}{\prime},\mp@subsup{\omega}{-}{\prime},\mp@subsup{\lambda}{-}{\prime}]:= Module [{\alpha,\eta,y,\mu},
    \alpha=\partial\mp@subsup{\varepsilon}{t}{},\mp@subsup{\textrm{x}}{h}{}}\lambda\mp@code{; \mu=\lambda/. \xi
```



```
    r[
        DeleteCases[is, t], DeleteCases[os, h], KeyDrop[cs, {\mp@subsup{x}{h}{},\mp@subsup{\xi}{t}{\prime}}],
        CCF[(1-\alpha)\omega], CF [ }\mu+\etay/(1-\alpha)
        ] /. If[MatchQ[cs[\mp@subsup{\xi}{t}{\prime}],\mp@subsup{\tau}{-}{\prime}],\operatorname{cs}[\mp@subsup{\xi}{t}{}]->\operatorname{cs}[\mp@subsup{x}{h}{}],\operatorname{cs}[\mp@subsup{x}{h}{}]->\operatorname{cs}[\mp@subsup{\xi}{t}{\prime}]]];
c@\Gamma[is_, os_, cs_, \mp@subsup{\omega}{-}{\prime},\mp@subsup{\lambda}{_}{\prime}]:= Fold[\mp@subsup{c}{#2,#2}{[#1] &, \Gamma[is,os,cs, w, \lambda], is\bigcapos]}]
```

```
Automatic intelligent contractions:
\(\Gamma\left[\left\{\gamma_{-} \Gamma\right\}\right]:=\mathbf{c}[\gamma]\)
\(\Gamma\left[\left\{\gamma 1 \_\Gamma, \gamma s \_=\Gamma\right\}\right]:=\) Module \([\{\gamma 2\}\),
        \(\gamma 2=\) First@MaximalBy[\{ \(\gamma \leqslant\}\), Length \([\gamma 1 \llbracket 1 \rrbracket \cap \# \llbracket 2 \rrbracket]\) + Length \([\gamma 1 \llbracket 2 \rrbracket \cap\) \#【1』] \& ] ;
    \(\Gamma[\) Join [\{c \([\gamma 1 \gamma 2]\}, ~ D e l e t e C a s e s[\{\gamma s\}, \gamma 2]]]]\)
\(\Gamma[\) Os_List] := Г[г/@Os]
```

Conversions $\mathcal{A} \leftrightarrow \Gamma$ ：

```
@\mathcal{A}[is_, os_, CS_, w_] := Module[{i, j, \omega = Coefficient[w, Wedge[^]]},
    \Gamma[is, os, cs, \omega, Sum[Cancel[-Coefficient[\omega, \mp@subsup{x}{j}{}\wedge\mp@subsup{\xi}{i}{}] \mp@subsup{\xi}{i}{}\mp@subsup{\mathbf{x}}{j}{\prime/\omega}|
        {i, is}, {j, os}]]
    ];
А@г[is_, os_, cs_, \mp@subsup{\omega}{-}{\prime},\mp@subsup{\lambda}{-}{\prime}]:=
```


The conversions are inverses of each other:
$\gamma=\Gamma\left[\{1,2,3\},\{1,2,3\},\left\{x_{1} \rightarrow \tau_{1}, x_{2} \rightarrow \tau_{2}, x_{3} \rightarrow \tau_{3}, \xi_{1} \rightarrow \tau_{1}, \xi_{2} \rightarrow \tau_{2}, \xi_{3} \rightarrow \tau_{3}\right\}\right.$,
$\omega, a_{11} x_{1} \xi_{1}+a_{12} x_{2} \xi_{1}+a_{13} x_{3} \xi_{1}+a_{21} x_{1} \xi_{2}+a_{22} x_{2} \xi_{2}+a_{23} x_{3} \xi_{2}+a_{31} x_{1} \xi_{3}+$
$\left.a_{32} x_{2} \xi_{3}+a_{33} x_{3} \xi_{3}\right]$;
@ $\mathcal{H} @ \gamma=\gamma$
True
The conversions commute with contractions:
「@ $\mathbf{c}_{3,3} @ \mathcal{F} @ \gamma \equiv \mathbf{c}_{3,3} @ \gamma$
True

Conway＇s Third Identity

Sorry，「 has nothing to say about that．．．＇

The Naik－Stanford Double Delta Move（again）

Timing $\left[\Gamma @\left\{X_{6,10,28,24}[w, v], \bar{X}_{28,3,29,19}[w, v], X_{26,20,27,19[w, ~ v],} \bar{X}_{27,23,11,24}[\mathrm{w}, \mathrm{v}]\right.\right.$ ， $X_{1,12,13,30}[u, w], \bar{X}_{13,5,14,25}[u, w], X_{17,26,18,25}[u, w], \bar{X}_{18,29,8,30}[u, w]$ ， $\left.X_{4,7,22,15}[v, u], \bar{X}_{22,2,23,16}[v, u], X_{20,17,21,16}[v, u], \bar{X}_{21,14,9,15}[v, u]\right\} \equiv$ $\Gamma @\left\{X_{5,9,25,21}[\mathrm{w}, \mathrm{v}], \bar{X}_{25,4,26,22}[\mathrm{w}, \mathrm{v}], X_{29,23,30,22}[\mathrm{w}, \mathrm{v}], \bar{X}_{30,20,12,21}[\mathrm{w}, \mathrm{v}]\right.$ ， $X_{2,11,16,27}[u, w], \bar{x}_{16,6,17,28}[u, w], x_{14,29,15,28}[u, w], \bar{x}_{15,26,7,27}[u, w]$ ，
$\left.\left.X_{3,8,19,18}[v, u], \bar{X}_{19,1,20,13}[v, u], X_{23,14,24,13}[v, u], \bar{X}_{24,17,10,18}[v, u]\right\}\right]$ \｛0．703125，True $\}$

What I still don＇t understand．
－What becomes of $c_{x, \xi ؟^{\lambda}}$ if we have to divide by 0 in order to write it again as an exponentiated quadratic？Does it still live within a very small subset of $\Lambda(\mathcal{X} \sqcup X)$ ？
－How do cablings and strand reversals fit within \mathcal{A} ？
－Are there＂classicality conditions＂satisfied by the invariants of classical tangles（as opposed to virtual ones）？

References

R J．Archibald，The Multivariable Alexander Polynomial on Tangles，University of Toronto Ph．D．thesis，2010，http：／／drorbn．net／mo21／AT．
图 J．H．Conway，An Enumeration of Knots and Links，and some of their Algebraic Properties，Computational Problems in Abstract Algebra（Proc． Conf．，Oxford，1967），Pergamon，Oxford，1970，329－－358．

R Z．Dancso，I．Halacheva，and M．Robertson，Circuit Algebras are Wheeled Props，J．Pure and Appl．Alg．，to appear，arXiv：2009．09738．
R I．Halacheva，Alexander Type Invariants of Tangles，Skew Howe Duality for Crystals and The Cactus Group，University of Toronto Ph．D．thesis，2016， http：／／drorbn．net／mo21／HT．
I．Halacheva，Alexander Type Invariants of Tangles，arXiv：1611．09280．
：M．Markl，S．Merkulov，and S．Shadrin，Wheeled PROPs，Graph Complexes and the Master Equation，J．Pure and Appl．Alg．213－4（2009）496－535， arXiv：math／0610683．
圊 J．Murakami，A State Model for the Multivariable Alexander Polynomial， Pacific J．Math．157－1（1993）109－－135．
© S．Naik and T．Stanford，A Move on Diagrams that Generates S－Equivalence of Knots，J．Knot Theory Ramifications 12－5（2003）717－－724，arXiv： math／9911005．
－Wolfram Language \＆System Documentation Center， https：／／reference．wolfram．com／language／．
$>$ On a chat window here I saw a The Yang-Baxter Technique. Given an algebra U (typically some comment "Alexander is the quantum $\hat{\mathcal{U}}(\mathrm{g})$ or $\hat{\mathcal{U}}_{q}(\mathfrak{g})$) and suitable elements R, C, $g l(1 \mid 1)$ invariant". I have an opinion about this, and I'd like to share it. First,
some stories.
I left the wonderful subject of Categorification nearly 15 years ago. It got crowded, lots of very smart people had things to say, and I feared I will have nothing to add. Also, clearly the next step was to categorify all other "quantum invariants". Except it was not clear what "categorify" means. Worse, I felt that I (perhaps "we all") didn't understand "quantum invariants" well enough to try to categorify them, whatever that might mean.
I still feel that way! I learned a lot since 2006, yet I'm still not comfortable with quantum algebra, quantum groups, and quantum invariants. I still don't feel that I know what God had in mind when She created this topic.
Yet I'm not here to rant about my philosophical quandaries, but only about things that I learned about the Alexander polynomial after 2006.
Yes, the Alexander polynomial fits within the Dogma, "one invariant for every Lie algebra and representation" (it's $g l(1 \mid 1)$, I hear). But it's better to think of it as a quantum invariant arising by other means, outside the Dogma.
Alexander comes from (or in) practically any non-Abelian Lie algebra. Foremost from the not-even-semisimple 2D " $a x+b$ " algebra. You get a polynomially-sized extension to tangles using some lovely formulas (can you categorify them?). It generalizes to higher dimensions and it has an organized family of siblings. (There are some questions too, beyond categorification).
I note the spectacular existing categorification of Alexander by Ozsváth and Szabó. The theorems are proven and a lot they say, the programs run and fast they run. Yet if that's where the story ends, She has abandoned us. Or at least abandoned me: a simpleton will never be able to catch up.

If you care only about categorification, the take-home from my talk will be a challenge: Categorify what I believe is the best Alexander invariant for tangles.
$R=\sum a_{i} \otimes b_{i} \in U \otimes U \quad$ with $\quad R^{-1}=\sum \bar{a}_{i} \otimes \bar{b}_{i} \quad$ and $\quad C, C^{-1} \in U$,
form

$$
Z(K)=\sum_{i, j, k} a_{i} C^{-1} \bar{b}_{k} \bar{a}_{j} b_{i} \otimes \bar{b}_{j} \bar{a}_{k} .
$$

Problem. Extract information from Z.
The Dogma. Use representation theory. In principle finite, but slow.

Example 1. Let $\mathfrak{a}:=L\langle a, x\rangle /([a, x]=x), \mathfrak{b}:=\mathfrak{a}^{\star}=\langle b, y\rangle$, and \quad Gentle's Agreement. $\mathfrak{g}:=\mathfrak{b} \rtimes \mathfrak{a}=\mathfrak{b} \oplus \mathfrak{a}$ with $[a, x]=x,[a, y]=-y,[b, \cdot]=0$, and Everything converges! $[x, y]=b$ and with $\operatorname{deg}(y, b, a, x)=(1,1,0,0)$. Let $U=\hat{\mathcal{U}}(\mathfrak{g})$ and

$$
R:=\mathbb{e}^{b \otimes a+y \otimes x} \in U \otimes U \quad \text { or better } \quad R_{i j}:=\mathbb{e}^{b_{i} a_{j}+y_{i} x_{j}} \in U_{i} \otimes U_{j}, \quad \text { and } \quad C_{i}=\mathbb{e}^{-b_{i} / 2}
$$

Theorem 1. With "scalars":=power series in $\left\{b_{i}\right\}$ which are rational functions in $\left\{b_{i}\right\}$ and

Example 2. Let $\mathfrak{h}:=A\langle p, x\rangle /([p, x]=1)$ be Theorem 3. Full evaluation via
the Heisenberg algebra, with $C_{i}=\mathbb{e}^{t / 2}$ and
$R_{i j}=\mathbb{e}^{t / 2} \mathbb{e}^{t\left(p_{i}-p_{j}\right) x_{j}}$ (just told you the whole Alexander $\begin{gathered}\text { story Everyhing else is details. }\end{gathered}$
Claim. $R_{i j}=\mathbb{O}_{p x}\left(\mathbb{e}^{\left(\mathbb{C}^{t}-1\right)\left(p_{i}-p_{j}\right) x_{j}}\right)$.

$$
\begin{align*}
& K_{1} \sqcup K_{2} \rightarrow \begin{array}{c|cc}
\omega_{1} \omega_{2} & X_{1} & X_{2} \\
\hline P_{1} & A_{1} & 0 \\
P_{2} & 0 & A_{2}
\end{array} \tag{2}\\
& \begin{array}{c|ccc}
\omega & x_{i} & x_{j} & \cdots \\
\hline p_{i} & \alpha & \beta & \theta \\
p_{j} & \gamma & \delta & \epsilon \\
\vdots & \phi & \psi & \Xi
\end{array} \\
& \begin{array}{c|cc}
(1+\gamma) \omega & x_{k} & \cdots \\
\hline p_{k} & 1+\beta-\frac{(1-\alpha)(1-\delta)}{1+\gamma} & \theta+\frac{(1-\alpha) \epsilon}{1+\gamma} \\
\vdots & \psi+\frac{(1-\delta) \phi}{1+\gamma} & \Xi-\frac{\phi \epsilon}{1+\gamma}
\end{array}
\end{align*}
$$

The "First Tangle". $\quad Z(K)=$

$$
\begin{aligned}
& \mathbb{E}_{12}\left[\frac{2 T-1}{T}, \frac{(T-1)\left(p_{1}-p_{2}\right)\left(T x_{1}-x_{2}\right)}{2 T-1}\right] \\
& =\begin{array}{c|cc}
2-T^{-1} & x_{1} & x_{2} \\
\hline p_{1} & \frac{T(T-1)}{2 T-1} & \frac{1-T}{2 T-1} \\
p_{2} & \frac{T(1-T)}{2 T-1} & \frac{T-1}{2 T-1}
\end{array} \\
& \hline \mathbf{V -) T a n g l e s . ~} \quad \text { Generated by }\{\approx, \nwarrow\}!
\end{aligned}
$$

" Γ-calculus" relates via $A \leftrightarrow I-A^{T}$ and has slightly simpler formulas: $\omega \rightarrow(1-\beta) \omega$,

$$
\left(\begin{array}{lll}
\alpha & \beta & \theta \\
\gamma & \delta & \epsilon \\
\phi & \psi & \Xi
\end{array}\right) \rightarrow\left(\begin{array}{ll}
\gamma+\frac{\alpha \delta}{1-\beta} & \epsilon+\frac{\delta \theta}{1-\beta} \\
\phi+\frac{\alpha \psi}{1-\beta} & \Xi+\frac{\psi \theta}{1-\beta}
\end{array}\right)
$$

Why Should You Categorify This? The simplest and fastest Alexander for tangles, easily generalizes to the multi-variable case, generalizes to v-tangles and wtangles, generalizes to other Lie algebras. In fact, it's in almost any Lie algebra, and you don't even need to know what is $g l(1 \mid 1)$! But you'll have to deal with denominators and/or divisions!
Note. Example $1 \leftrightarrow$ Example 2 via $\mathfrak{g} \hookrightarrow \mathfrak{h}(t)$ via $(y, b, a, x) \mapsto(-t p, t, p x, x)$.

The PBW Principle Lots of algebras are isomorphic as vector spaces to polynomial algebras. So we want to understand arbitrary linear maps between polynomial algebras.
Convention. For a finite set A, let $z_{A}:=\left\{z_{i}\right\}_{i \in A}$ and let $\zeta_{A}:=\left\{z_{i}^{*}=\zeta_{i}\right\}_{i \in A}$.
$(p, x)^{*}=(\pi, \xi)$
The Generating Series $\mathcal{G}: \operatorname{Hom}\left(\mathbb{Q}\left[z_{A}\right] \rightarrow \mathbb{Q}\left[z_{B}\right]\right) \rightarrow \mathbb{Q} \llbracket \zeta_{A}, z_{B} \rrbracket$.
Claim. $L \in \operatorname{Hom}\left(\mathbb{Q}\left[z_{A}\right] \rightarrow \mathbb{Q}\left[z_{B}\right]\right) \underset{\mathcal{G}}{\underset{\sim}{Q}} \mathbb{Q}\left[z_{B}\right] \llbracket \zeta_{A} \rrbracket \ni \mathcal{L}$ via

$$
\begin{gathered}
\mathcal{G}(L):=\sum_{n \in \mathbb{N}^{A}} \frac{\zeta_{A}^{n}}{n!} L\left(z_{A}^{n}\right)=L\left(\mathbb{e}^{\sum_{a \in A} \zeta_{a} z_{a}}\right)=\mathcal{L}=\text { greek } \mathcal{L}_{\text {latin }}, \\
\mathcal{G}^{-1}(\mathcal{L})(p)=\left(\left.p\right|_{z_{a} \rightarrow \partial_{\zeta a}} \mathcal{L}\right)_{\zeta_{a}=0} \quad \text { for } p \in \mathbb{Q}\left[z_{A}\right] .
\end{gathered}
$$

Claim. If $L \in \operatorname{Hom}\left(\mathbb{Q}\left[z_{A}\right] \rightarrow \mathbb{Q}\left[z_{B}\right]\right), M \in \operatorname{Hom}\left(\mathbb{Q}\left[z_{B}\right] \rightarrow\right.$ $\left.\mathbb{Q}\left[z_{C}\right]\right)$, then $\mathcal{G}(L / / M)=\left(\left.\mathcal{G}(L)\right|_{z_{b} \rightarrow \partial_{\zeta_{b}}} \mathcal{G}(M)\right)_{\zeta_{b}=0}$.
Examples. • $\mathcal{G}(i d: \mathbb{Q}[p, x] \rightarrow \mathbb{Q}[p, x])=\mathbb{e}^{\pi p+\xi x}$.

- Consider $R_{i j} \in\left(\mathfrak{h}_{i} \otimes \mathfrak{h}_{j}\right) \llbracket t \rrbracket \cong \operatorname{Hom}\left(\mathbb{Q}[] \rightarrow \mathbb{Q}\left[p_{i}, x_{i}, p_{j}, x_{j}\right]\right) \llbracket t \rrbracket$. Then $\mathcal{G}\left(R_{i j}\right)=\mathbb{e}^{\left(\mathbb{e}^{t}-1\right)\left(p_{i}-p_{j}\right) x_{j}}=\mathbb{e}^{(T-1)\left(p_{i}-p_{j}\right) x_{j}}$.

Heisenberg Algebras. Let $\mathfrak{h}=A\langle p, x\rangle /([p, x]=1)$, let $\mathbb{O}_{i}: \mathbb{Q}\left[p_{i}, x_{i j}\right] \rightarrow \mathfrak{h}_{i}$ is the " p before x " PBW normal ordering map and let $h m_{k}^{i j}$ be the composition

$$
\mathbb{Q}\left[p_{i}, x_{i}, p_{j}, x_{j}\right] \xrightarrow{\mathbb{O}_{i} \otimes \mathcal{O}_{j}} \mathfrak{h}_{i} \otimes \mathfrak{h}_{j} \xrightarrow{m_{k}^{i j}} \mathfrak{h}_{k} \xrightarrow{\mathbb{O}_{k}^{-1}} \mathbb{Q}\left[p_{k}, x_{k}\right] .
$$

Then $\mathcal{G}\left(h m_{k}^{i j}\right)=\mathbb{e}^{-\xi_{i} \pi_{j}+\left(\pi_{i}+\pi_{j}\right) p_{k}+\left(\xi_{i}+\xi_{j}\right) x_{k}}$.
Proof. Recall the "Weyl CCR" $\mathbb{e}^{\xi x} \mathbb{C}^{\pi p}=\mathbb{e}^{-\xi \pi} \mathbb{C}^{\pi p} \mathbb{C}^{\xi x}$, and find

$$
\begin{aligned}
& \mathcal{G}\left(h m_{k}^{i j}\right)=\mathbb{e}^{\pi_{i} p_{i}+\xi_{i} x_{i}+\pi_{j} p_{j}+\xi_{j} x_{j}} / / \mathbb{O}_{i} \otimes \mathbb{O}_{j} / / m_{k}^{i j} / / / \mathbb{O}_{k}^{-1} \\
& \quad=\mathbb{e}^{\pi_{i} p_{i}} \mathbb{e}^{\xi_{i} x_{i}} \mathbb{C}^{\pi_{j} p_{j}} \mathbb{C}^{\xi_{j} x_{j}} / / m_{k}^{i j} / / \mathbb{O}_{k}^{-1}=\mathbb{e}^{\pi_{i} p_{k}} \mathbb{C}^{\xi_{i} x_{k}} \mathbb{C}^{\pi_{j} p_{k} \mathbb{e}^{\xi_{j} x_{k}}} / / \mathbb{O}_{k}^{-1} \\
& \quad=\mathbb{e}^{-\xi_{i} \pi_{j}} \mathbb{e}^{\left(\pi_{i}+\pi_{j}\right) p_{k}} \mathbb{e}^{\left(\xi_{i}+\xi_{j}\right) x_{k}} / / \mathbb{O}_{k}^{-1}=\mathbb{e}^{-\xi_{i} \pi_{j}+\left(\pi_{i}+\pi_{j}\right) p_{k}+\left(\xi_{i}+\xi_{j}\right) x_{k}} .
\end{aligned}
$$

GDO := The category with objects finite sets and

$$
\operatorname{mor}(A \rightarrow B)=\left\{\mathcal{L}=\omega \mathbb{E}^{Q}\right\} \subset \mathbb{Q} \llbracket \zeta_{A}, z_{B} \rrbracket
$$

where: • ω is a scalar. $\bullet Q$ is a "small" quadratic in $\zeta_{A} \cup z_{B}$. - Compositions: $\mathcal{L} / / \mathcal{M}:=\left(\left.\mathcal{L}\right|_{z_{i} \rightarrow \partial_{\zeta_{i}}} \mathcal{M}\right)_{\zeta_{i}=0}$.

Compositions. In $\operatorname{mor}(A \rightarrow B)$,

$$
Q=\sum_{i \in A, j \in B} E_{i j} \zeta_{i} z_{j}+\frac{1}{2} \sum_{i, j \in A} F_{i j} \zeta_{i} \zeta_{j}+\frac{1}{2} \sum_{i, j \in B} G_{i j} z_{i} z_{j}
$$

and so
(remember, $e^{x}=1+x+x x / 2+x x x / 6+\ldots$)

where $\bullet E=E_{1}\left(I-F_{2} G_{1}\right)^{-1} E_{2} \bullet F=F_{1}+E_{1} F_{2}\left(I-G_{1} F_{2}\right)^{-1} E_{1}^{T}$ $\bullet G=G_{2}+E_{2}^{T} G_{1}\left(I-F_{2} G_{1}\right)^{-1} E_{2} \bullet \omega=\omega_{1} \omega_{2} \operatorname{det}\left(I-F_{2} G_{1}\right)^{-1 / 2}$ Proof of Claim in Example 2. Let $\Phi_{1}:=\mathbb{C}^{t\left(p_{i}-p_{j}\right) x_{j}}$ and $\Phi_{2}:=\mathbb{O}_{p_{j} x_{j}}\left(\mathbb{C}^{\left(\mathbb{e}^{t}-1\right)\left(p_{i}-p_{j}\right) x_{j}}\right)=: \mathbb{O}(\Psi)$. We show that $\Phi_{1}=\Phi_{2}$ in $\left(\mathfrak{h}_{i} \otimes \mathfrak{h} j\right) \llbracket t \rrbracket$ by showing that both solve the $\operatorname{ODE} \partial_{t} \Phi=\left(p_{i}-p_{j}\right) x_{j} \Phi$ with $\left.\Phi\right|_{t=0}=1$. For Φ_{1} this is trivial. $\left.\Phi_{2}\right|_{t=0}=1$ is trivial, and

$$
\begin{gathered}
\partial_{t} \Phi_{2}=\mathbb{O}\left(\partial_{t} \Psi\right)=\mathbb{O}\left(\mathbb{C}^{t}\left(p_{i}-p_{j}\right) x_{j} \Psi\right) \\
\left(p_{i}-p_{j}\right) x_{j} \Phi_{2}=\left(p_{i}-p_{j}\right) x_{j} \mathbb{O}(\Psi)=\left(p_{i}-p_{j}\right) \mathbb{O}\left(x_{j} \Psi-\partial_{p_{j}} \Psi\right) \\
=\mathbb{O}\left(\left(p_{i}-p_{j}\right)\left(x_{j} \Psi+\left(\mathbb{e}^{t}-1\right) x_{j} \Psi\right)\right)=\mathbb{O}\left(\mathbb{C}^{t}\left(p_{i}-p_{j}\right) x_{j} \Psi\right)
\end{gathered}
$$

Implementation. Without, don't trust! CF = ExpandNumerator@*ExpandDenominator@*PowerExpand@*Factor;
$\mathbb{E}_{A 1-\rightarrow B 1-}\left[\omega 1_{-}, Q 1_{-}\right] \mathbb{E}_{A 2_{-} \rightarrow B 2_{-}}\left[\omega 2_{-}, Q 2_{-}\right] \wedge:=\mathbb{E}_{A 1 U A 2 \rightarrow B 1 U B 2}[\omega 1 \omega 2, Q 1+Q 2]$
$\left(\mathbb{E}_{A 1_{-} \rightarrow B 1_{-}}\left[\omega 1_{-}, Q 1_{-}\right] / / \mathbb{E}_{A 2_{-} \rightarrow B 2_{-}}\left[\omega 2_{-}, Q 2_{-}\right]\right) / ;\left(B 1^{*}===A 2\right):=$
Module $[\{i, j, E 1, F 1, G 1, E 2, F 2, G 2, I, M=$ Table $\}$,

I = IdentityMatrix@Length@B1;

$E 1=M\left[\partial_{i, j} Q 1,\{i, A 1\},\{j, B 1\}\right] ; E 2=M\left[\partial_{i, j} Q 2,\{i, A 2\},\{j, B 2\}\right] ;$
$F 1=M\left[\partial_{i, j} Q 1,\{i, A 1\},\{j, A 1\}\right] ; F 2=M\left[\partial_{i}, j Q 2,\{i, A 2\},\{j, A 2\}\right] ;$ $G 1=M\left[\partial_{i, j} Q 1,\{i, B 1\},\{j, B 1\}\right] ; G 2=M\left[\partial_{i, j} Q 2,\{i, B 2\},\{j, B 2\}\right] ;$
$\mathbb{E}_{A 1 \rightarrow B 2}\left[C F\left[\omega 1 \omega 2 \operatorname{Det}[I-F 2 . G 1]^{1 / 2}\right], C F @ P l u s[\right.$
If $[A 1===\{ \} \vee B 2===\{ \}, 0, A 1$.E1.Inverse[I-F2.G1].E2.B2],
$\operatorname{If}\left[A 1===\{ \}, 0, \frac{1}{2} A 1 \cdot\left(F 1+E 1 . F 2\right.\right.$.Inverse[I-G1.F2].E1 $\left.\left.{ }^{\top}\right) \cdot A 1\right]$,
$\operatorname{If}\left[B 2==\{ \}, 0, \frac{1}{2} B 2 \cdot\left(G 2+E 2^{\top} \cdot G 1\right.\right.$. Inverse[I-F2.G1].E2) $\left.\left.\left.\left.\cdot B 2\right]\right]\right]\right]$
$A_{-} \backslash B_{-}:=$Complement $[A, B]$;
$\left(\mathbb{E}_{A 1_{-} \rightarrow B 1_{-}}\left[\omega 1_{-}, Q 1_{-}\right] / / \mathbb{E}_{A 2_{-} \rightarrow B 2_{-}}\left[\omega 2_{-}, Q 2_{-}\right]\right) / ;\left(B 1^{*}=!=A 2\right):=$
$\mathbb{E}_{A 1 U}\left(A 2 \backslash B 1^{*}\right) \rightarrow B 1 \cup A 2^{*}\left[\omega 1, Q 1+\operatorname{Sum}\left[\zeta^{*} \zeta,\left\{\zeta, A 2 \backslash B 1^{*}\right\}\right]\right] / /$
$\mathbb{E}_{B 1^{*} \cup A 2 \rightarrow B 2 U\left(B 1 \backslash A 2^{*}\right)}\left[\omega 2, Q 2+\operatorname{Sum}\left[z^{*} z,\left\{z, B 1 \backslash A 2^{*}\right\}\right]\right]$
$\left\{p^{*}, x^{*}, \pi^{*}, \xi^{*}\right\}=\{\pi, \xi, p, x\} ;\left(u_{-}\right)^{*}:=\left(u^{*}\right)_{i} ;$
L_List* $:=$ \#* $^{*} / @ L$;
$\mathbf{R}_{i_{-}, j_{-}}:=\mathbb{E}_{\{ \} \rightarrow\left\{p_{i}, x_{i}, p_{j}, x_{j}\right\}}\left[\mathrm{T}^{-1 / 2},(1-\mathrm{T}) \mathrm{p}_{j} \mathbf{x}_{j}+(\mathrm{T}-1) \mathrm{p}_{i} \mathbf{x}_{j}\right] ;$
$\overline{\mathbf{R}}_{i_{-}, j_{-}}:=\mathbb{E}_{\{ \} \rightarrow\left\{\mathrm{p}_{i}, \mathrm{x}_{i}, \mathrm{p}_{j}, \mathrm{x}_{j}\right\}}\left[\mathrm{T}^{1 / 2},\left(1-\mathrm{T}^{-1}\right) \mathrm{p}_{j} \mathrm{x}_{j}+\left(\mathrm{T}^{-1}-1\right) \mathrm{p}_{i} \mathrm{x}_{j}\right] ;$
$C_{i_{-}}:=\mathbb{E}_{\{ \} \rightarrow\left\{p_{i}, x_{i}\right\}}\left[\mathrm{T}^{-1 / 2}, 0\right] ;$
$\overline{\mathbf{C}}_{i_{-}}:=\mathbb{E}_{\{ \} \rightarrow\left\{p_{i}, x_{i}\right\}}\left[\mathrm{T}^{1 / 2}, 0\right] ;$
$\mathrm{hm}_{i_{-}, j_{-} \rightarrow k_{-}}:=\mathbb{E}_{\left\{\pi_{i}, \xi_{i}, \pi_{j}, \xi_{j}\right\} \rightarrow\left\{\mathrm{p}_{k}, \mathrm{x}_{k}\right\}}\left[1,-\xi_{i} \pi_{j}+\left(\pi_{i}+\pi_{j}\right) \mathrm{p}_{k}+\left(\xi_{i}+\xi_{j}\right) \mathrm{x}_{k}\right]$
$\mathbb{E}_{\{ \} \rightarrow v s_{-}}\left[\omega i_{-}, Q_{-}\right]_{h}:=\operatorname{Module}[\{p s, x s, M\}$,
$\mathrm{ps}=$ Cases [vs, $\left.\mathrm{p}_{\mathrm{C}}\right]$; xs = Cases[vs, $\left.\mathrm{x}_{-}\right]$;
$M=$ Table [$\omega i, 1$ + Length@ps, 1 + Length@xs];
M【2; ; , 2; ; $\mathbb{I}=$ Table[CF[$\left.\left.\partial_{i, j} Q\right],\{i, p s\},\{j, x s\}\right] ;$
$M \llbracket 2 ; 3,1 \rrbracket=p s ; M \llbracket 1,2 ; ; \rrbracket=x s ;$
MatrixForm [M] ${ }_{h}$]

Proof of Reidemeister 3.

$\left(R_{1,2} R_{4,3} R_{5,6} / / h_{1,4 \rightarrow 1}{h m_{2,5 \rightarrow 2}}^{h_{3}}{ }_{3,6 \rightarrow 3}\right)==$
$\left(R_{2,3} R_{1,6} R_{4,5} / / h_{1,4 \rightarrow 1} h_{2,5 \rightarrow 2} h_{3,6 \rightarrow 3}\right)$
True

The "First Tangle".

Factor / @

$\left(z=R_{1,6} \overline{\mathrm{C}}_{3} \overline{\mathrm{R}}_{7,4} \overline{\mathrm{R}}_{5,2} / / \mathrm{hm}_{1,3 \rightarrow 1} / / \mathrm{hm}_{1,4 \rightarrow 1} / / \mathrm{hm}_{1,5 \rightarrow 1} / / \mathrm{hm}_{1,6 \rightarrow 1} / / \mathrm{hm}_{2,7 \rightarrow 2}\right)$
$\mathbb{E}_{\{ \} \rightarrow\left\{p_{1}, p_{2}, x_{1}, x_{2}\right\}}\left[\frac{-1+2 T}{T}, \frac{(-1+T)\left(p_{1}-p_{2}\right)\left(T x_{1}-x_{2}\right)}{-1+2 T}\right]$ z_{h}
$\left(\begin{array}{ccc}\frac{-1+2 T}{T} & x_{1} & x_{2} \\ p_{1} & \frac{-T+T^{2}}{-1+2 T} & \frac{1-T}{-1+2 T} \\ p_{2} & \frac{T-T^{2}}{-1+2 T} & \frac{-1+T}{-1+2 T}\end{array}\right)_{h}$

,

The knot 8_{17}.
$z=\bar{R}_{12,1} \bar{R}_{27} \overline{\mathrm{R}}_{83} \overline{\mathrm{R}}_{4,11} \mathrm{R}_{16,5} \mathrm{R}_{6,13} \mathrm{R}_{14,9} \mathrm{R}_{18,15} ;$
Table[z=z//hm $\left.\mathrm{m}_{1 \mathrm{k} \rightarrow 1},\{\mathrm{k}, 2,16\}\right] / /$ Last
$\mathbb{E}_{\{ \} \rightarrow\left\{p_{1}, x_{1}\right\}}\left[\frac{1-4 \mathrm{~T}+8 \mathrm{~T}^{2}-11 \mathrm{~T}^{3}+8 \mathrm{~T}^{4}-4 \mathrm{~T}^{5}+\mathrm{T}^{6}}{\mathrm{~T}^{3}}, \theta\right]$

Proof of Theorem 3, (3).
$\left\{\left(\gamma 1=\mathbb{E}_{\{ \} \rightarrow\left\{p_{1}, x_{1}, p_{2}, x_{2}, p_{3}, x_{3}\right\}}\left[\omega,\left\{p_{1}, p_{2}, p_{3}\right\} \cdot\left(\begin{array}{ccc}\alpha & \beta & \theta \\ \gamma & \delta & \epsilon \\ \phi & \psi & \Xi\end{array}\right) \cdot\left\{x_{1}, x_{2}, x_{3}\right\}\right]\right)_{h}\right.$,
$\left.\left(\gamma 1 / / \mathrm{hm}_{1,2 \rightarrow 0}\right)_{\mathrm{h}}\right\}$

References.
On $\omega \varepsilon \beta=$ http://drorbn.net/cat20

Video and more at http://www.math.toronto.edu/~drorbn/Talks/LearningSeminarOnCategorification-2006/

Video and more at http://www.math.toronto.edu/~drorbn/Talks/TrendsInLDT-2005//

Audio and more at http://www.math.toronto.edu/~drorbn/Talks/MoscowByWeb-2004//

Thanks for inviting me to the Chord Diagrams Everywhere session / Winter 2019 CMS meeting! $\omega \varepsilon \beta:=h t t p: / / d r o r b n . n e t / t o 19$

Abstract. This will be a service talk on ancient material - I will briefly describe how the exact same type of chord diagrams (and relations between them) occur in a natural way in both knot theory and in the theory of Lie algebras.

While preparing for this talk I realized that I've done it before, much better, within a book review. So here's that review! It has been modified from its original version: it had been formatted to fit this page, parts were highlighted, and commentary had been added in green italics.
[Book] Introduction to Vassiliev Knot Invariants, by S. Chmutov, S. Duzhin, and J. Mostovoy, Cambridge University Press, Cambridge UK, 2012, xvi+504 pp., hardback, \$70.00, ISBN 978-1-10702-083-2.

Merely 3036 years ago, if you had asked even the best informed mathematician about the relationship between knots and Lie algebras, she would have laughed, for there isn't and there can't be. Knots are flexible; Lie algebras are rigid. Knots are irregular; Lie algebras are symmetric. The list of knots is a lengthy mess; the collection of Lie algebras is well-organized. Knots are useful for sailors, scouts, and hangmen; Lie

A knot and a Lie algebra, a list of knots and a list of Lie algebras, and an unusual conference of the symmetric and the knotted. algebras for navigators, engineers, and high energy physicists. Knots are blue collar; Lie algebras are white. They are as similar as worms and crystals: both well-studied, but hardly ever together.

Then in the 1980s came Jones, and Witten, and Reshetikhin and Turaev [Jo, Wi, RT] and showed that if you really are the best informed, and you know your quantum field theory and conformal field theory and quantum groups, then you know that the two disjoint fields are in fact intricately related. This "quantum" approach remains the most powerful way to get computable knot invariants out of (certain) Lie algebras (and representations thereof). Yet shortly later, in the late 80 s and early 90 s , an alternative perspective arose, that of "finite-type" or "Vassiliev-Goussarov" invariants [Va1, Va2, Go1, Go2, BL, Ko1, Ko2, BN1], which made the surprising relationship between knots and Lie algebras appear simple and almost inevitable.

The reviewed [Book] is about that alternative perspective, the one reasonable sounding but not entirely trivial theorem that is crucially needed within it (the "Fundamental Theorem" or the "Kontsevich integral"), and the
many threads that begin with that perspective. Let me start with a brief summary of the mathematics, and even before, an even briefer summary.

In briefest, a certain space \mathcal{A} of chord diagrams is the dual to the dual of the space of knots, and at the same time, it is dual to Lie algebras.

The briefer summary is that in some combinatorial sense it is possible to "differentiate" knot invariants, and hence it makes sense to talk about "polynomials" on the space of knots - these are functions on the set of knots (namely, these are knot invariants) whose sufficiently high derivatives vanish. Such polynomials can be fairly conjectured to separate knots - elsewhere in math in lucky cases polynomials separate points, and in our case, specific computations are encouraging. Also, such polynomials are determined by their "coefficients", and each of these, by the one-side-easy "Fundamental Theorem", is a linear functional on some finite space of

[^2]graphs modulo relations. These same graphs turn out to parameterize formulas that make sense in a wide class of Lie algebras, and the said relations match exactly with the relations in the definition of a Lie algebra - antisymmetry and the Jacobi identity. Hence what is more or less dual to knots (invariants), is also, after passing to the coefficients, dual to certain graphs which are more or less dual to Lie algebras. QED, and on to the less brief summary ${ }^{1}$.

Let V be an arbitrary invariant of oriented knots in oriented space with values in (say) \mathbb{Q}. Extend V to be an invariant of 1 -singular knots, knots that have a single singularity that locally looks like a double point \times, using the formula

$$
\begin{equation*}
V\left(\Omega^{\pi}\right)=V\left({ }^{\pi} /\right)-V\left(\nwarrow^{\pi}\right) \tag{1}
\end{equation*}
$$

Further extend V to the set \mathcal{K}^{m} of m-singular knots (knots with m such double points) by repeatedly using (1).
Definition 1. We say that V is of type m (or "Vassiliev of type $m^{\prime \prime}$) if its extension $\left.V\right|_{\mathcal{K}^{m+1}}$ to $(m+1)$-singular knots vanishes identically. We say that V is of finite type (or "Vassiliev") if it is of type m for some m.

Repeated differences are similar to repeated derivatives and hence it is fair to think of the definition of $\left.V\right|_{\mathcal{K}^{m}}$ as repeated differentiation. With this in mind, the above definition imitates the definition of polynomials of degree m. Hence finite type invariants can be thought of as "polynomials" on the space of knots". It is known (see e.g. [Book]) that the class of finite type invariants is large and powerful. Yet the first question on finite type invariants remains unanswered:
Problem 2. Honest polynomials are dense in the space of functions. Are finite type invariants dense within the space of all knot invariants? Do they separate knots?

The top derivatives of a multi-variable polynomial form a system of constants that determine that polynomial up to polynomials of lower degree. Likewise the m th derivative ${ }^{3} V^{(m)}=\left.V\right|_{\mathcal{K}^{m}}=V\left(\nearrow^{\nearrow} \cdot m \cdot{ }^{\top}\right)$ of a type m invariant V is a constant in the sense that it does not see the difference between overcrossings and undercrossings and so it is blind to 3D topology. Indeed

Also, clearly $V^{(m)}$ determines V up to invariants of lower type. Hence a primary tool in the study of finite
type invariants is the study of the "top derivative" $V^{(m)}$, also known as "the weight system of V ".

Blind to 3D topology, $V^{(m)}$ only sees the combinatorics of the circle that parameterizes an m-singular knot.
 On this circle there are m pairs of points that are pairwise identified in the image; standardly one indicates those by drawing a circle with m chords marked (an " m-chord diagram") as above. Let \mathcal{D}_{m} denote the space of all formal linear combinations with rational coefficients of m-chord diagrams. Thus $V^{(m)}$ is a linear functional on \mathcal{D}_{m}.

I leave it for the reader to figure out or read in [Book, pp. 88] how the following figure easily implies the " $4 T$ " relations of the "easy side" of the theorem that follows:

Theorem 3. (The Fundamental Theorem, details in [Book]).

- (Easy side) If V is a rational val-
 ued type m invariant then $V^{(m)}$ satisfies the " $4 T$ " relations shown above, and hence it descends to a linear functional on $\mathcal{A}_{m}:=\mathcal{D}_{m} / 4 T$. If in addition $V^{(m)} \equiv 0$, then V is of type $m-1$.
- (Hard side, slightly misstated by avoiding "framings") For any linear functional W on \mathcal{A}_{m} there is a rational valued type m invariant V so that $V^{(m)}=W$.
Thus to a large extent the study of finite type invariants is reduced to the finite (though super-exponential in m) algebraic study of \mathcal{A}_{m}.

Much of the richness of finite type invariants stems from their relationship with Lie algebras. Theorem 4 below suggests this relationship on an abstract level and Theorem 5 makes that relationship concrete.

[^3]

Theorem 4. [BN1] The space \mathcal{A}_{m} is isomorphic to the space \mathcal{A}_{m}^{t} generated by "Jacobi diagrams in a circle" (chord diagrams that are also allowed to have oriented internal trivalent vertices) that have exactly $2 m$ vertices, modulo the AS, STU and IHX relations. See the figure above.

The key to the proof of Theorem 4 is
 the figure above, which shows that the $4 T$ relation is a consequence of two $S T U$ relations. The rest is more or less an exercise in induction.

Thinking of internal trivalent vertices as graphical analogs of the Lie bracket, the $A S$ relation becomes the anti-commutativity of the bracket, STU becomes the equation $[x, y]=x y-y x$ and $I H X$ becomes the Jacobi identity. This analogy is made concrete within the following construction, originally due to Penrose $[\mathrm{Pe}]$ and to Cvitanović [Cv]. Given a finite dimensional metrized Lie algebra \mathfrak{g} (e.g., any semi-simple Lie algebra) and a finite-dimensional representation $\rho: \mathfrak{g} \rightarrow \operatorname{End}(V)$ of \mathfrak{g}, choose an orthonormal basis ${ }^{4}\left\{X_{a}\right\}_{a=1}^{\text {dim }}$ of \mathfrak{g} and some basis $\left\{v_{\alpha}\right\}_{\alpha=1}^{\operatorname{dim}^{2} V}$ of V, let $f_{a b c}$ and $r_{a \beta}^{\gamma}$ be the "structure constants" defined by

$$
f_{a b c}:=\left\langle\left[X_{a}, X_{b}\right], X_{c}\right\rangle \quad \text { and } \quad \rho\left(X_{a}\right)\left(v_{\beta}\right)=\sum_{\gamma} r_{a \beta}^{\gamma} v_{\gamma} .
$$

Now given a Jacobi diagram D label its circle-arcs with Greek letters α, β, \ldots, and its chords with Latin letters a, b, \ldots, and map it to a sum as suggested by the following example:

$\longrightarrow \sum_{a, b, c, \alpha, \beta, \gamma} f_{a b c} r_{a \gamma}^{\beta} r_{b \alpha}^{\gamma} r_{c \beta}^{\alpha}$
$\binom{$ internal vertices go to f 's, }{ circle-vertices to r 's }
Theorem 5. This construction is well defined, and the basic properties of Lie algebras imply that it respects the AS, STU, and IHX relations. Therefore it defines a linear functional $W_{\mathrm{g}, \rho}: \mathcal{A}_{m} \rightarrow \mathbb{Q}$, for any m.

The last assertion along with Theorem 3 show that associated with any \mathfrak{g}, ρ and m there is a weight system and
hence a knot invariant. Thus knots are indeed linked with Lie algebras.

The above is of course merely a sketch of the beginning of a long story. You can read the details, and some of the rest, in [Book].

What I like about [Book]. Detailed, well thought out, and carefully written. Lots of pictures! Many excellent exercises! A complete discussion of "the algebra of chord diagrams". A nice discussion of the pairing of diagrams with Lie algebras, including examples aplenty. The discussion of the Kontsevich integral (meaning, the proof of the hard side of Theorem 3) is terrific - detailed and complete and full of pictures and examples, adding a great deal to the original sources. The subject of "associators" is huge and worthy of its own book(s); yet in as much as they are related to Vassiliev invariants, the discussion in [Book] is excellent. A great many further topics are touched - multiple ζ-values, the relationship of the Hopf link with the Duflo isomorphism, intersection graphs and other combinatorial aspects of chord diagrams, Rozansky's rationality conjecture, the MelvinMorton conjecture, braids, n-equivalence, etc.

For all these, I'd certainly recommend [Book] to any newcomer to the subject of knot theory, starting with my own students.

However, some proofs other than that of Theorem 3 are repeated as they appear in original articles with only a superficial touch-up, or are omitted altogether, thus missing an opportunity to clarify some mysterious points. This includes Vogel's construction of a non-Lie-algebra weight system and the Goussarov-Polyak-Viro proof of the existence of "Gauss diagram formulas".
What I wish there was in the book, but there isn't. The relationship with Chern-Simons theory, Feynman diagrams, and configuration space integrals, culminating in an alternative (and more "3D") proof of the Fundamental Theorem. This is a major omission.
Why I hope there will be a continuation book, one day. There's much more to the story! There are finite type invariants of 3-manifolds, and of certain classes of 2dimensional knots in \mathbb{R}^{4}, and of "virtual knots", and they each have their lovely yet non-obvious theories, and these theories link with each other and with other branches of Lie theory, algebra, topology, and quantum field theory. Volume 2 is sorely needed.

References

[BN1] D. Bar-Natan, On the Vassiliev knot invariants, Topology 34 (1995) 423-472.

[^4][BN2] D. Bar-Natan, Finite Type Invariants, in Encyclopedia of Mathematical Physics, (J.-P. Francoise, G. L. Naber and Tsou S. T., eds.) Elsevier, Oxford, 2006 (vol. 2 p. 340).
[Book] The reviewed book.
[BL] J. S. Birman and X-S. Lin, Knot polynomials and Vassiliev's invariants, Invent. Math. 111 (1993) 225-270.
[Cv] P. Cvitanović, Group Theory, Birdtracks, Lie's, and Exceptional Groups, Princeton University Press, Princeton 2008 and http://www.birdtracks.eu.
[Go1] M. Goussarov, A new form of the Conway-Jones polynomial of oriented links, Zapiski nauch. sem. POMI 193 (1991) 49 (English translation in Topology of manifolds and varieties (O. Viro, editor), Amer. Math. Soc., Providence 1994, 167172).
[Go2] M. Goussarov, On n-equivalence of knots and invariants of finite degree, Zapiski nauch. sem. POMI 208 (1993) 152-173 (English translation in Topology of manifolds and varieties (O. Viro, editor), Amer. Math. Soc., Providence 1994, 173192).
[Jo] V. F. R. Jones, A polynomial invariant for knots via von Neumann algebras, Bull. Amer. Math. Soc. 12 (1985) 103-111.
[Ko1] M. Kontsevich, Vassiliev's knot invariants, Adv. in Sov. Math., 16(2) (1993) 137-150.
[Ko2] M. Kontsevich, Feynman diagrams and low-dimensional topology, First European Congress of Mathematics II 97121, Birkhäuser Basel 1994.
[Pe] R. Penrose, Applications of negative dimensional tensors, Combinatorial mathematics and its applications (D. J. A. Welsh, ed.), Academic Press, San-Diego 1971, 221244.
[RT] N. Yu. Reshetikhin and V. G. Turaev, Ribbon graphs and their invariants derived from quantum groups, Commun. Math. Phys. 127 (1990) 1-26.
[Va1] V. A. Vassiliev, Cohomology of knot spaces, in Theory of Singularities and its Applications (Providence) (V. I. Arnold, ed.), Amer. Math. Soc., Providence, 1990.
[Va2] V. A. Vassiliev, Complements of discriminants of smooth maps: topology and applications, Trans. of Math. Mono. 98, Amer. Math. Soc., Providence, 1992.
[Wi] E. Witten, Quantum field theory and the Jones polynomial, Commun. Math. Phys. 121 (1989) 351-399.

Dror Bar-Natan
University of Toronto, Canada
December 6, 2019 (first edition February 7, 2013)

My talk yesterday:

More Dror: $\omega \varepsilon \beta /$ talks

Picture credits: Rope from "The Project Gutenberg eBook, Knots, Splices and Rope Work, by A. Hyatt Verrill", http://www. gutenberg.org/files/13510/13510-h/13510-h.htm. Plane from NASA, http://www.grc.nasa.gov/wWW/k-12/airplane/ rotations.html.

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Toronto-1912/

Dror Bar-Natan: Talks: Toronto-1912: ω e $1:$ http://drorbn.net/to19/

Geography vs. Identity

Thanks for inviting me to the Topology session!

Abstract. Which is better, an emphasis on where things happen or on who are the participants? I can't tell; there are advantages and disadvantages either way. Yet much of quantum topology seems to be heavily and unfairly biased in favour of geography.
Geographers care for placement; for them, braids and tangles have ends at some distinguished points, hence they form categories whose objects are the placements of these
 points. For them, the basic operation is a binary "stacking of tangles". They are lead to monoidal categories, braided monoidal categories, representation theory, and much or most of we call "quantum topology".
Identiters believe that strand identity persists even if one crosses or is being crossed. The key operation is a unary stitching operation
 $m_{c}^{a b}$, and one is lead to study meta-monoids, meta-Hopf-algebras, etc. See $\omega \varepsilon \beta /$ reg, $\omega \varepsilon \beta / \mathrm{kbh}$.

Braids.

Geography:

(better topology!)

$$
G B:=\left\langle\gamma_{i}\right\rangle /\binom{\gamma_{i} \gamma_{k}=\gamma_{k} \gamma_{i} \text { when }|i-k|>1}{\gamma_{i} \gamma_{i+1} \gamma_{i}=\gamma_{i+1} \gamma_{i} \gamma_{i+1}}=B .
$$

Identity:
(captures quantum algebra!)
$I B:=\left\langle\sigma_{i j}\right\rangle /\binom{\sigma_{i j} \sigma_{k l}=\sigma_{k l} \sigma_{i j}$ when $|\{i, j, k, l\}|=4}{\sigma_{i j} \sigma_{i k} \sigma_{j k}=\sigma_{j k} \sigma_{i k} \sigma_{i j}$ when $\left.|\{i, j, k\}|=3}=P\right\rangle B$.
Theorem. Let $S=\{\tau\}$ be the symmetric group. Then $v B$ is both
$P \vee B \rtimes S \cong B * S /\left(\gamma_{i} \tau=\tau \gamma_{j}\right.$ when $\left.\tau i=j, \tau(i+1)=(j+1)\right)$ (and so $P \gamma B$ is "bigger" then B, and hence quantum algebra doesn't see topology very well).
Proof. Going left, $\gamma_{i} \mapsto \sigma_{i, i+1}(i i+1)$. Going right, if $i<j$ map $\sigma_{i j} \mapsto(j-1 j-2 \ldots i) \gamma_{j-1}(i i+1 \ldots j)$ and if $i>j$ use $\sigma_{i j} \mapsto(j j+1 \ldots i) \gamma_{j}(i i-1 \ldots j+1)$.

The Burau Representation of $P \vee B_{n}$ acts on R^{n} := $\mathbb{Z}\left[t^{ \pm 1}\right]^{n}=R\left\langle v_{1}, \ldots, v_{n}\right\rangle$ by

$$
\sigma_{i j} v_{k}=v_{k}+\delta_{k j}(t-1)\left(v_{j}-v_{i}\right)
$$

$\delta /: \delta_{i_{-}, j_{-}}:=\mathbf{I f}[i=j, \mathbf{1}, 0] ; \quad \omega \varepsilon \beta /$ code
$\mathbf{B}_{i, j}\left[\xi_{-}\right]:=\xi / \cdot \mathbf{v}_{k}: \rightarrow \mathbf{v}_{k}+\delta_{k, j}(\mathrm{t}-\mathbf{1})\left(\mathbf{v}_{j}-\mathbf{v}_{i}\right) / /$ Expand Werner

$\left\{v_{1}, v_{1}-t v_{1}+t v_{2}, v_{3}\right\}$
bas3// $\mathrm{B}_{1,2} / / \mathrm{B}_{1,3} / / \mathrm{B}_{2,3}$
$\left\{v_{1}, v_{1}-t v_{1}+t v_{2}, v_{1}-t v_{1}+t v_{2}-t^{2} v_{2}+t^{2} v_{3}\right\}$
bas3// $\mathrm{B}_{2,3} / / \mathrm{B}_{1,3} / / \mathrm{B}_{1,2}$
$\left\{v_{1}, v_{1}-t v_{1}+t v_{2}, v_{1}-t v_{1}+t v_{2}-t^{2} v_{2}+t^{2} v_{3}\right\}$
S_{n} acts on R^{n} by permuting the v_{i} so the Burau representation extends to $v B_{n}$ and restricts to B_{n}. With this, γ_{i} maps $v_{i} \mapsto v_{i+1}, v_{i+1} \mapsto t v_{i}+(1-t) v_{i+1}$, and otherwise $v_{k} \mapsto v_{k}$. Burau

\qquad

Geography view:

so x is γ_{2}.

Identity view:

At x strand 1 crosses strand 3 , so x is σ_{13}.
The Gold Standard is set by the "Г-calculus" Alexander formulas ($\omega \varepsilon \beta / \mathrm{mac}$). An S-component tangle T has

ω	a	b	S
a	α	β	θ
b	γ	δ	ϵ
S	ϕ	ψ	Ξ

\hline c \& \gamma+\frac{\alpha \delta}{1-\beta} \& \epsilon+\frac{\delta \theta}{1-\beta}

S \& \phi+\frac{\alpha \psi}{1-\beta} \& \Xi+\frac{\psi \theta}{1-\beta}\end{array}\right)\)
The Gassner Representation of $P \vee B_{n}$ acts on $V=$ $R^{n}:=\mathbb{Z}\left[t_{1}^{ \pm 1}, \ldots, t_{n}^{ \pm 1}\right]^{n}=R\left\langle v_{1}, \ldots, v_{n}\right\rangle$ by

$$
\sigma_{i j} v_{k}=v_{k}+\delta_{k j}\left(t_{i}-1\right)\left(v_{j}-v_{i}\right) .
$$

$\mathbf{G}_{i_{-}, j_{-}}\left[\xi_{-}\right]:=\varepsilon_{1} / \mathbf{v}_{k_{-}}: \Rightarrow \mathbf{v}_{k}+\delta_{k, j}\left(t_{i}-1\right)\left(\mathbf{v}_{j}-\mathbf{v}_{i}\right) / /$ Expand (bas3 // $G_{1,2} / / G_{1,3} / / G_{2,3}$) $=$ (bas3// $G_{2,3} / / G_{1,3} / / G_{1,2}$) $\begin{gathered}\text { deserves to } \\ \text { be more }\end{gathered}$ True
S_{n} acts on R^{n} by permuting the v_{i} and the t_{i}, so the Gassner representation extends to $v B_{n}$ and then restricts to B_{n} as a \mathbb{Z}-linear ∞-dimensional representation. It then descends to $P B_{n}$ as a finiterank R-linear representation, with lengthy non-local formulas. Geographers: Gassner is an obscure partial extension of Burau. Identiters: Burau is a trivial silly reduction of Gassner.
The Turbo-Gassner Representation. With the same R and $V, T G$ acts on $V \oplus\left(R^{n} \otimes V\right) \oplus\left(\mathcal{S}^{2} V \otimes V^{*}\right)=$
$R\left\langle v_{k}, v_{l k}, u_{i} u_{j} w_{k}\right\rangle$ by
$\mathrm{TG}_{i_{-}, j_{-}}\left[\xi_{-}\right]:=\varepsilon / .\{$
$\mathbf{v}_{k_{-}} \rightarrow \mathbf{v}_{k}+\delta_{k, j}\left(\left(\mathbf{t}_{i}-\mathbf{1}\right)\left(\mathbf{v}_{j}-\mathbf{v}_{i}\right)+\mathbf{v}_{i, j}-\mathbf{v}_{i, i}\right)+$

$$
\delta_{k, i}\left(u_{j}-u_{i}\right) u_{i} w_{j},
$$

$\left(\delta_{k, j}\left(v_{l, j}-v_{l, i}\right)+\left(\delta_{l, i}-\delta_{l, j} t_{i}^{-1} t_{j}\right)\right.$
$\left.\left(u_{k}+\delta_{k, j}\left(t_{i}-1\right)\left(u_{j}-u_{i}\right)\right) u_{i} w_{j}\right)$,
$u_{k_{-}}: \rightarrow u_{k}+\delta_{k, j}\left(t_{i}-1\right)\left(u_{j}-u_{i}\right)$,
$\left.\mathbf{w}_{k_{-}}: \rightarrow \mathrm{w}_{k}+\left(\delta_{k, j}-\delta_{k, i}\right)\left(\mathrm{t}_{i}^{-1}-1\right) \mathrm{w}_{j}\right\} / /$ Expand
Gassner motifs
Adjoint-Gassner

With Roland

$$
\mathbf{v}_{L_{-}, k_{-}} \rightarrow \mathbf{v}_{l, k}+\left(\mathbf{t}_{i}-\mathbf{1}\right)
$$ van der Veen

bas3 $=\left\{v_{1}, v_{2}, v_{3}, v_{1,1}, v_{1,2}, v_{1,3}, v_{2,1}, v_{2,2}, v_{2,3}, v_{3,1}\right.$,
$v_{3,2}, v_{3,3}, u_{1}^{2} w_{1}, u_{1}^{2} w_{2}, u_{1}^{2} w_{3}, u_{1} u_{2} w_{1}, u_{1} u_{2} w_{2}, u_{1} u_{2} w_{3}$,
$u_{1} u_{3} w_{1}, u_{1} u_{3} w_{2}, u_{1} u_{3} w_{3}, u_{2}^{2} w_{1}, u_{2}^{2} w_{2}, u_{2}^{2} w_{3}, u_{2} u_{3} w_{1}$,
$\left.u_{2} u_{3} w_{2}, u_{2} u_{3} w_{3}, u_{3}^{2} w_{1}, u_{3}^{2} w_{2}, u_{3}^{2} w_{3}\right\}$;
(bas3 // $\mathrm{TG}_{1,2} / / \mathrm{TG}_{1,3} / / \mathrm{TG}_{2,3}$) $==$ (bas3 // $\mathrm{TG}_{2,3} / / \mathrm{TG}_{1,3} / / \mathrm{TG}_{1,2}$) True Like Gassner, $T G$ is also a representation of $P B_{n}$.

I have no idea where it belongs!

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Toronto-1912/

Abstract. I will explain how the computation of compositions of maps of a certain natural class, from one polynomial ring into another, naturally leads to a certain composition operation of quadratics and to Feynman diagrams. I will also explain, with very little detail, how this is used in the construction of some very well-behaved poly-time computable knot polynomials.
The PBW Principle Lots of algebras are isomorphic as vector spaces to polynomial algebras. So we want to understand arbitrary linear maps between polynomial algebras.

Gentle Agreement. Everything converges!

Convention. For a finite set A, let $z_{A}:=\left\{z_{i}\right\}_{i \in A}$ and let $\zeta_{A}:=\left\{z_{i}^{*}=\zeta_{i} i_{i \in A} . \quad(y, b, a, x)^{*}=(\eta, \beta, \alpha, \xi)\right.$
The Generating Series $\mathcal{G}: \operatorname{Hom}\left(\mathbb{Q}\left[z_{A}\right] \rightarrow \mathbb{Q}\left[z_{B}\right]\right) \rightarrow \mathbb{Q} \llbracket \zeta_{A}, z_{B} \rrbracket$. Claim. $L \in \operatorname{Hom}\left(\mathbb{Q}\left[z_{A}\right] \rightarrow \mathbb{Q}\left[z_{B}\right]\right) \underset{\mathcal{G}}{\underset{\sim}{\mathbb{C}}} \mathbb{Q}\left[z_{B}\right] \llbracket \zeta_{A} \rrbracket \ni \mathcal{L}$ via

$$
\begin{gathered}
\mathcal{G}(L):=\sum_{n \in \mathbb{N}^{A}} \frac{\zeta_{A}^{n}}{n!} L\left(z_{A}^{n}\right)=L\left(\mathbb{e}^{\sum_{a \in A} \zeta_{a} z_{a}}\right)=\mathcal{L}=\text { greek } \mathcal{L}_{\text {latin }}, \\
\mathcal{G}^{-1}(\mathcal{L})(p)=\left(\left.p\right|_{z_{a} \rightarrow \partial_{\zeta a}} \mathcal{L}\right)_{\zeta_{\zeta_{a}}=0} \quad \text { for } p \in \mathbb{Q}\left[z_{A}\right] .
\end{gathered}
$$

Claim. If $L \in \operatorname{Hom}\left(\mathbb{Q}\left[z_{A}\right] \rightarrow \mathbb{Q}\left[z_{B}\right]\right), M \in \operatorname{Hom}\left(\mathbb{Q}\left[z_{B}\right] \rightarrow\right.$ $\left.\mathbb{Q}\left[z_{C}\right]\right)$, then $\mathcal{G}(L / / M)=\left(\left.\mathcal{G}(L)\right|_{z_{b} \rightarrow \partial_{\delta_{b}}} \mathcal{G}(M)\right)_{\tilde{\zeta}_{b}=0}$.

2. The standard commutative product $m_{k}^{i j}$ of polynomials is given by $z_{i}, z_{j} \rightarrow z_{k}$. Hence $\mathcal{G}\left(m_{k}^{i j}\right)=$ $m_{k}^{i j}\left(\mathbb{e}^{\zeta_{i} i_{i}+\zeta_{j} z_{j}}\right)=\mathbb{e}^{\left(\zeta_{i}+\zeta_{j}\right) z_{k}}$.

3. The standard co-commutative coproduct $\Delta_{j k}^{i}$ of polynomials is given by $z_{i} \rightarrow z_{j}+z_{k}$. Hence $\mathcal{G}\left(\Delta_{j k}^{i}\right)=$ $\Delta_{j k}^{i}\left(\mathbb{e}^{\zeta_{i} z_{i}}\right)=\mathbb{e}^{\zeta_{i}\left(Z_{j}+z_{k}\right)}$.

Heisenberg Algebras. Let $\mathbb{H}=\langle x, y\rangle /[x, y]=\hbar$ (with \hbar a scalar), let $\mathbb{O}_{i}: \mathbb{Q}\left[x_{i}, y_{i}\right] \rightarrow \mathbb{H}_{i}$ is the " x before y " PBW ordering map and let $h m_{k}^{i j}$ be the composition

$$
\mathbb{Q}\left[x_{i}, y_{i}, x_{j}, y_{j}\right] \xrightarrow{\bigcirc_{i} \otimes \mathcal{O}_{j}} \mathbb{H}_{i} \otimes \mathbb{H}_{j} \xrightarrow{m_{k}^{i j}} \mathbb{H}_{k} \xrightarrow{\bigcirc_{k}^{-1}} \mathbb{Q}\left[x_{k}, y_{k}\right] .
$$

Then $\mathcal{G}\left(h m_{k}^{i j}\right)=\mathbb{e}^{\Lambda_{\hbar}}$, where $\Lambda_{\hbar}=-\hbar \eta_{i} \xi_{j}+\left(\xi_{i}+\xi_{j}\right) x_{k}+\left(\eta_{i}+\eta_{j}\right) y_{k}$. Proof 1. Recall the "Weyl form of the CCR" $\mathbb{e}^{\eta y} \mathbb{C}^{\xi x}=$ $\mathbb{e}^{-\hbar \eta \xi} \mathbb{E}^{\xi} x_{\mathbb{C}} \mathbb{e}^{\eta y}$, and compute

$$
\begin{aligned}
& \mathcal{G}\left(h m_{k}^{i j}\right)=\mathbb{e}^{\xi_{i} x_{i}+\eta_{i} y_{i}+\xi_{j} x_{j}+\eta_{j} y_{j}} / / \mathbb{O}_{i} \otimes \mathbb{O}_{j} / / m_{k}^{i j} / / \mathbb{O}_{k}^{-1} \\
& =\mathbb{e}^{\xi_{i} x_{i}} \mathbb{C}^{\eta_{i} y_{i}} \mathbb{e}^{\xi_{j} x_{j}} \mathbb{C}^{\eta_{j} y_{j}} / / m_{k}^{i j} / / \mathbb{O}_{k}^{-1}=\mathbb{e}^{\xi_{i} x_{k}} \mathbb{C}_{i y_{i} y_{k}}^{\mathbb{E}^{\xi_{j} x_{k}} \mathbb{C}^{\eta_{j} y_{k}}} / / \mathbb{O}_{k}^{-1} \\
& \quad=\mathbb{e}^{-\hbar \eta_{i} \xi_{j}} \mathbb{C}^{\left(\xi_{i}+\xi_{j}\right) x_{k}} \mathbb{C}^{\left(\eta_{i}+\eta_{j}\right) y_{k}} / / \mathbb{O}_{k}^{-1}=\mathbb{C}^{\Lambda_{\hbar}} .
\end{aligned}
$$

Proof 2. We compute in a faithful 3D representation ρ of \mathbb{H} :

$$
\left.\begin{array}{l}
\left\{\hat{x}=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \hat{y}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & \hbar \\
0 & 0 & 0
\end{array}\right), \hat{c}=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\right\} ; \\
\{\hat{x} \cdot \hat{y}-\hat{y} \cdot \hat{x}==\hbar \hat{c}, \hat{x} \cdot \hat{c}==\hat{c} \cdot \hat{x}, \hat{y} \cdot \hat{c}==\hat{c} \cdot \hat{y}\}
\end{array}\right\} \begin{aligned}
& \{\text { True, True, True }\} \\
& \Lambda=-\hbar \eta_{i} \xi_{j} c_{k}+\left(\xi_{i}+\xi_{j}\right) x_{k}+\left(\eta_{i}+\eta_{j}\right) y_{k} ; \\
& \text { Simplify@With }[\{\mathbb{E}=\text { MatrixExp }, \\
& \quad \mathbb{E}\left[\hat{x} \xi_{i}\right] \cdot \mathbb{E}\left[\hat{y} \eta_{i}\right] \cdot \mathbb{E}\left[\hat{x} \xi_{j}\right] . \mathbb{E}\left[\hat{y} \eta_{j}\right]== \\
& \left.\quad \mathbb{E}\left[\hat{x} \partial_{x_{k}} \Lambda\right] \cdot \mathbb{E}\left[\hat{y} \partial_{y_{k}} \Lambda\right] \cdot \mathbb{E}\left[\hat{c} \partial_{c_{k}} \Lambda\right]\right] \\
& \text { True }
\end{aligned}
$$

A Real DoPeGDO Example (DoPeGDO:=Docile Perturbed Gaussian Differential Operators). Let $s l_{2+}^{\epsilon}:=L\langle y, b, a, x\rangle$ subject to $[a, x]=x,[b, y]=-\epsilon y,[a, b]=0,[a, y]=-y,[b, x]=\epsilon x$, and $[x, y]=\epsilon a+b$. So $t:=\epsilon a-b$ is central and if $\exists \epsilon^{-1}$, $s l_{2+}^{\epsilon} \cong s l_{2} \oplus\langle t\rangle$. Let $C U:=\mathcal{U}\left(s l_{2+}^{\epsilon}\right)$, and let $c m_{k}^{i j}$ be the composition below, where $\mathbb{O}_{i}: \mathbb{Q}\left[y_{i}, b_{i}, a_{i}, x_{i}\right] \rightarrow C U_{i}$ be the PBW ordering map in the order $y b a x$:

Claim. Let
(all brawn and no brains)

$$
\begin{array}{r}
\Lambda=\left(\eta_{i}+\frac{e^{-\alpha_{i}-\epsilon \beta_{i}} \eta_{j}}{1+\epsilon \eta_{j} \xi_{i}}\right) y_{k}+\left(\beta_{i}+\beta_{j}+\frac{\log \left(1+\epsilon \eta_{j} \xi_{i}\right)}{\epsilon}\right) b_{k}+ \\
\quad\left(\alpha_{i}+\alpha_{j}+\log \left(1+\epsilon \eta_{j} \xi_{i}\right)\right) a_{k}+\left(\frac{e^{-\alpha_{j}-\epsilon \beta_{j}} \xi_{i}}{1+\epsilon \eta_{j} \xi_{i}}+\xi_{j}\right) x_{k}
\end{array}
$$

Then $\mathbb{e}^{\eta_{i} y_{i}+\beta_{i} b_{i}+\alpha_{i} a_{i}+\xi_{i} x_{i}+\eta_{j} y_{j}+\beta_{j} b_{j}+\alpha_{j} a_{j}+\xi_{j} x_{j}} / / \mathbb{O}_{i, j} / / c m_{k}^{i j}=\mathbb{e}^{\Lambda} / / \mathbb{O}_{k}$, and hence $\mathcal{G}\left(c m_{k}^{i j}\right)=\mathbb{e}^{\Lambda}$.
Proof. We compute in a faithful 2D representation ρ of $C U$:
$\left\{\hat{y}=\left(\begin{array}{ll}\theta & \theta \\ \epsilon & \theta\end{array}\right), \hat{b}=\left(\begin{array}{cc}\theta & 0 \\ \theta & -\epsilon\end{array}\right), \hat{a}=\left(\begin{array}{ll}1 & \theta \\ \theta & \theta\end{array}\right), \hat{x}=\left(\begin{array}{ll}\theta & 1 \\ \theta & \theta\end{array}\right)\right\} ; \quad(\omega \varepsilon \beta / \mathrm{s} 12)$

$$
\{\hat{a} \cdot \hat{x}-\hat{x} \cdot \hat{a}==\hat{x}, \hat{a} \cdot \hat{y}-\hat{y} \cdot \hat{a}=-\hat{y}, \hat{b} \cdot \hat{y}-\hat{y} \cdot \hat{b}=-\epsilon \hat{y} \text {, }
$$

$$
\hat{b} \cdot \hat{x}-\hat{x} \cdot \hat{b}==\epsilon \hat{x}, \hat{x} \cdot \hat{y}-\hat{y} \cdot \hat{x}==\hat{b}+\epsilon \hat{a}\}
$$

\{True, True, True, True, True \}
Simplify@With $[\{\mathbb{E}=$ MatrixExp $\}$,
$\mathbb{E}\left[\eta_{i} \hat{y}\right] \cdot \mathbb{E}\left[\beta_{i} \hat{b}\right] \cdot \mathbb{E}\left[\alpha_{i} \hat{a}\right] \cdot \mathbb{E}\left[\xi_{i} \hat{\mathbf{x}}\right] \cdot \mathbb{E}\left[\eta_{j} \hat{y}\right] \cdot \mathbb{E}\left[\beta_{j} \hat{b}\right]$.
$\mathbb{E}\left[\alpha_{j} \hat{a}\right] \cdot \mathbb{E}\left[\xi_{j} \hat{x}\right]==\mathbb{E}\left[\hat{y} \partial_{y_{k}} \Lambda\right] \cdot \mathbb{E}\left[\hat{b} \partial_{b_{k}} \Lambda\right] \cdot \mathbb{E}\left[\hat{a} \partial_{a_{k}} \Lambda\right]$. $\left.\mathbb{E}\left[\hat{x} \partial_{x_{k}} \Lambda\right]\right]$
True
Series [$\Lambda,\{\in, 0,2\}]$
$\left(a_{k}\left(\alpha_{i}+\alpha_{j}\right)+y_{k}\left(\eta_{i}+\mathbb{e}^{-\alpha_{i}} \eta_{\mathbf{j}}\right)+\right.$
$\left.\mathbf{b}_{\mathrm{k}}\left(\beta_{\mathbf{i}}+\beta_{\mathbf{j}}+\eta_{\mathbf{j}} \xi_{\mathbf{i}}\right)+\mathbf{x}_{\mathrm{k}}\left(\mathbf{e}^{-\alpha_{\mathbf{j}}} \xi_{\mathbf{i}}+\xi_{\mathbf{j}}\right)\right)+$
$\left(a_{k} \eta_{j} \xi_{i}-\frac{1}{2} b_{k} \eta_{j}^{2} \xi_{i}^{2}-e^{-\alpha_{i}} y_{k} \eta_{j}\left(\beta_{i}+\eta_{j} \xi_{i}\right)-\right.$

$$
\left.e^{-\alpha_{j}} x_{k} \xi_{i}\left(\beta_{j}+\eta_{j} \xi_{i}\right)\right) \in+
$$

$\left(-\frac{1}{2} \mathbf{a}_{k} \eta_{j}^{2} \xi_{i}^{2}+\frac{1}{3} \mathbf{b}_{k} \eta_{j}^{3} \xi_{i}^{3}+\frac{1}{2} e^{-\alpha_{i}} \mathbf{y}_{k} \eta_{j}\left(\beta_{i}^{2}+2 \beta_{i} \eta_{j} \xi_{i}+2 \eta_{j}^{2} \xi_{i}^{2}\right)+\right.$ $\left.\frac{1}{2} \mathbb{e}^{-\alpha_{j}} \mathrm{x}_{\mathrm{k}} \xi_{i}\left(\beta_{\mathrm{j}}^{2}+2 \beta_{\mathrm{j}} \eta_{\mathrm{j}} \xi_{\mathrm{i}}+2 \eta_{\mathrm{j}}^{2} \xi_{\mathrm{i}}^{2}\right)\right) \epsilon^{2}+\mathrm{O}[\epsilon]^{3}$
Note 1. If the lower half of the alphabet (a, b, α, β) is regarded as constants, then $\Lambda=C+Q+\sum_{k \geq 1} \epsilon^{k} P^{(k)}$ is a docile perturbed Gaussian relative to the upper half of the alphabet $(x, y, \xi, \eta): C$ is a scalar, Q is a quadratic, and $\operatorname{deg} P^{(k)} \leq 2 k+2$.
Note 2. $\mathrm{wt}(x, y, \xi, \eta ; a, b, \alpha, \beta ; \epsilon)=(1,1,1,1 ; 2,0,0,2 ;-2)$.
Quadratic Casimirs. If $t \in \mathfrak{g} \otimes \mathfrak{g}$ is the quadratic Casimir of a semi-simple Lie algebra \mathfrak{g}, then \mathbb{C}^{t}, regarded by PBW as an element of $\mathcal{S}^{\otimes 2}=\operatorname{Hom}\left(\mathcal{S}(\mathfrak{g})^{\otimes 0} \rightarrow \mathcal{S}(\mathfrak{g})^{\otimes 2}\right)$, has a latin-latin dominant Gaussian factor. Likewise for R-matrices.
(Baby) DoPeGDO := The category with objects finite sets ${ }^{\dagger 1}$ and $\operatorname{mor}(A \rightarrow B)=\{\mathcal{L}=\omega \exp (Q+P)\} \subset \mathbb{Q} \llbracket \zeta_{A}, z_{B}, \epsilon \rrbracket$,
where: • ω is a scalar. ${ }^{\dagger 2} \bullet Q$ is a "small" ϵ-free quadratic in $\zeta_{A} \cup z_{B}{ }^{\dagger{ }^{\dagger}} \bullet P$ is a "docile perturbation": $P=\sum_{k>1} \epsilon^{k} P^{(k)}$, where $\operatorname{deg} P^{(k)} \leq 2 k+2 .{ }^{\dagger 4} \bullet$ Compositions: ${ }^{\dagger 6} \mathcal{L} / / \mathcal{M}:=\left(\left.\mathcal{L}\right|_{z_{i} \rightarrow \partial_{\xi_{i}}} \mathcal{M}\right)_{\zeta_{i}=0}$.

So What? If V is a representation, then $V^{\otimes n}$ explodes as a function of n, while in DoPeGDO up to a fixed power of ϵ, the ranks of $\operatorname{mor}(A \rightarrow B)$ grow polynomially as a function of $|A|$ and $|B|$.
Compositions. In $\operatorname{mor}(A \rightarrow B)$,

$$
Q=\sum_{i \in A, j \in B} E_{i j} \zeta_{i} z_{j}+\frac{1}{2} \sum_{i, j \in A} F_{i j} \zeta_{i} \zeta_{j}+\frac{1}{2} \sum_{i, j \in B} G_{i j} z_{i} z_{j}
$$

and so $\quad\left(\right.$ remember, $e^{x}=1+x+x x / 2+x x x / 6+\ldots$)

where $\bullet E=E_{1}\left(I-F_{2} G_{1}\right)^{-1} E_{2}$.

- $F=F_{1}+E_{1} F_{2}\left(I-G_{1} F_{2}\right)^{-1} E_{1}^{T}$.
- $G=G_{2}+E_{2}^{T} G_{1}\left(I-F_{2} G_{1}\right)^{-1} E_{2}$.
- $\omega=\omega_{1} \omega_{2} \operatorname{det}\left(I-F_{2} G_{1}\right)^{-1}$.
- P is computed as the solution of a messy PDE or using "connected Feynman diagrams" (yet we're still in pure algebra!). Docility is preserved.

DoPeGDO Footnotes. Each variable has a "weight" $\in\{0,1,2\}$, and always wt $z_{i}+\mathrm{wt} \zeta_{i}=2$.
\dagger. Really, "weight-graded finite sets" $A=A_{0} \sqcup A_{1} \sqcup A_{2}$.
\dagger 2. Really, a power series in the weight- 0 variables ${ }^{\dagger 5}$.
\dagger 3. The weight of Q must be 2 , so it decomposes as $Q=$ $Q_{20}+Q_{11}$. The coefficients of Q_{20} are rational numbers while the coefficients of Q_{11} may be weight-0 power series ${ }^{\dagger 5}$.
$\dagger 4$. Setting wt $\epsilon=-2$, the weight of P is ≤ 2 (so the powers of the weight- 0 variables are not constrained $)^{\dagger 5}$.
\dagger 5. In the knot-theoretic case, all weight- 0 power series are rational functions of bounded degree in the exponentials of the weight-0 variables.
\dagger 6. There's also an obvious product $\operatorname{mor}\left(A_{1} \rightarrow B_{1}\right) \times \operatorname{mor}\left(A_{2} \rightarrow B_{2}\right) \rightarrow \operatorname{mor}\left(A_{1} \sqcup A_{2} \rightarrow B_{1} \sqcup B_{2}\right)$.

Full DoPeGDO. Compute compositions in two phases:

- A 1-1 phase over the ring of power series in the weight-0 variables, in which the weight- 2 variables are spectators.
- A (slightly modified) 2-0 phase over \mathbb{Q}, in which the weight-1 variables are spectators.

Analog. Solve
Analog. Solve
$A x=a, B(x) y=$

Questions. - Are there QFT precedents for "two-step Gaussian integration'"?

- In QFT, one saves even more by considering "one-particleirreducible" diagrams and "effective actions". Does this mean anything here?
- Understanding $\operatorname{Hom}\left(\mathbb{Q}\left[z_{A}\right] \rightarrow \mathbb{Q}\left[z_{B}\right]\right)$ seems like a good cause. Can you find other applications for the technology here?
$\left(\begin{array}{l}Q U=\mathcal{U}_{\hbar}\left(s l_{2+}^{\epsilon}\right)=A\langle y, b, a, x\rangle[\hbar \rrbracket] \text { with }[a, x]=x,[b, y]=-\epsilon y,[a, b]=0, \\ {[a, y]=-y,[b, x]=\epsilon x, \text { and } x y-q y x=(1-A B) / \hbar \text {, where } q=\mathbb{e}^{\xi \epsilon}, A=\mathbb{e}^{-\hbar \epsilon \epsilon a},} \\ \text { and } B=\mathbb{e}^{-\hbar b} . \text { Also } \Delta(y, b, a, x)=\left(y_{1}+B_{1} y_{2}, b_{1}+b_{2}, a_{1}+a_{2}, x_{1}+A_{1} x_{2}\right), \\ S(y, b, a, x)=\left(-B^{-1} y,-b,-a,-A^{-1} x\right) \text {, and } R=\sum \hbar^{j+k} y^{k} b^{j} \otimes a^{j} x^{k} / j![k] q!.\end{array}\right)$
Theorem. Everything of value regrading $U=C U$ and/or its quantization $U=Q U$ is DoPeGDO:

also Cartan's θ, the Dequantizator, and more, and all of their compositions.

Solvable Approximation. In $s l_{n}$, half is enough! Indeed $s l_{n} \oplus \mathfrak{a}_{n-1}=\mathcal{D}(\nabla, b, \delta)$. Now define $s l_{n+}^{\epsilon}:=\mathcal{D}(\nabla, b, \epsilon \delta)$. Schematically, this is $[\nabla, \nabla]=\nabla$, $[\triangle, \Delta]=\epsilon \triangle$, and $[\nabla, \triangle]=$ $\Delta+\epsilon \nabla$. The same process works for all semi-simple Lie algebras, and at $\epsilon^{k+1}=0$ always yields a solvable Lie algebra.

Conclusion. There are lots of poly-time-computable wellbehaved near-Alexander knot invariants: - They extend to tangles with appropriate multiplicative behaviour. - They have cabling and strand reversal formulas.
$\omega \varepsilon \beta / \mathrm{akt}$ The invariant for $s l_{2+}^{\epsilon} /\left(\epsilon^{2}=0\right)$ (prior art: $\omega \varepsilon \beta / \mathrm{Ov}$) attains 2,883 distinct values on the 2,978 prime knots with ≤ 12 crossings. HOMFLY-PT and Khovanov homology together attain only 2,786 distinct values.

knot diag n_{k}^{t} $\left(\rho_{1}^{\prime}\right)^{+}$ Alexander's ω^{+}genus / ribbo $\left(\rho_{2}^{\prime}\right)^{+}$$\quad$ unknotting \# / amphi	knot diag n_{k}^{t} $\left(\rho_{1}^{\prime}\right)^{+}$ Alexander's ω^{+} genus / ribbon $\left(\rho_{2}^{\prime}\right)^{+}$ unknotting \# / amphi?	knot diag n_{k}^{t} $\left(\rho_{1}^{\prime}\right)^{+}$ Alexander's ω^{+} genus / ribbon $\left(\rho_{2}^{\prime}\right)^{+}$ unknotting \# / amphi?
$\bigcirc{ }^{\text {O }}$ O ${ }_{1}^{a} \quad 1 \quad 0 / 0$	3_{1}^{a} $T-1$ T $1 / \mathbf{X}$	(8)4_{1}^{a} $3-T$ $1 / \boldsymbol{X}$ 0 $1 / \checkmark$
$\begin{array}{ll} 5_{1}^{a} T^{2}-T+1 & 2 / \mathbf{x} \\ 2 T^{3}+3 T & 2 / \mathbf{x} \\ 5 T^{7}-20 T^{6}+55 T^{5}-120 T^{4}+217 T^{3}-338 T^{2}+450 T-510 \\ \hline \end{array}$	$\begin{array}{ll}5 a & 5 T-3 \\ 5 T-4 & 1 / \mathbf{X} \\ -10 T^{4}+120 T^{3}-487 T^{2}+1054 T-1362 & 1 / \boldsymbol{X}\end{array}$	$\begin{array}{ll} \text { (2) } 5-2 T & 1 / V \\ T-4 & 1 / \mathbf{x} \\ & 14 T^{4}-16 T^{3}-293 T^{2}+1098 T-1598 \end{array}$
$\text { (8) } \begin{array}{ll} 6_{2}^{a}-T^{2}+3 T-3 & 2 / \mathbf{x} \\ T^{3}-4 T^{2}+4 T-4 & 1 / \mathbf{x} \\ 3 T^{8}-21 T^{7}+49 T^{6}+15 T^{5}-433 T^{4}+1543 T^{3}-3431 T^{2}+5482 T-6410 \end{array}$	$6_{3}^{a} \quad T^{2}-3 T+5$ $2 / \mathbf{X}$ 0 $1 / V$ $4 T^{8}-33 T^{7}+121 T^{6}-203 T^{5}-111 T^{4}+1499 T^{3}-4210 T^{2}+7186 T-8510$	$\begin{array}{ll} 7_{1}^{a} T^{3}-T^{2}+T-1 & 3 / \mathbf{X} \\ 3 T^{5}+5 T^{3}+6 T & 3 / \mathbf{X} \\ 7 T^{11}-28 T^{10}+77 T^{9}-168 T^{8}+322 T^{7}-560 T^{6}+891 T^{5}-1310 T^{4}+ \\ 1777 T^{3}-2238 T^{2}+2604 T-2772 \end{array}$

Strand Doubling and Reversal.						
		b$c$$c$	$\underset{\substack{\left(\sigma_{a}-\alpha T_{a}-v T_{c}\right) / / \\\left(T_{c}-1\right) v / \mu}}{ }$	$\begin{gathered} \left(T_{b}-1\right) T_{c} v / \mu \\ \left(\alpha-\sigma_{a} T_{a}-v T_{c}\right) / \mu \end{gathered}$	$\begin{gathered} \left(T_{b}-1\right) T_{c} \theta / \mu / \mu \\ \left(T_{c}-1\right) \theta / \mu \end{gathered}$	
					$\left(T_{c}-1\right) \theta / \mu$	
${ }^{\text {s }}{ }^{s} \mid T_{a_{a} \rightarrow T_{a}{ }^{1}}$						
${ }_{\omega / \sigma_{a}} a^{\text {a }}$		s		Where σ assigns to every $a \in S$ a Laurent mono-		
${ }^{\text {a }}$	${ }_{-\phi / \alpha}^{1 / \alpha}$		 $\left.1, b \rightarrow t^{+1}\right), \sigma\left(T_{1} \cup T_{2}\right)=\sigma\left(T_{1}\right) \cup \sigma\left(T_{2}\right)$, and $\sigma / m_{c}^{m b}=\left(\sigma \backslash\{a, b) \cup\left(c \rightarrow \sigma_{a} \sigma_{b}\right) l_{t}, t\right.$			

Vo's Thesis [Vo]. A proof of the Fox-Milnor theorem for ribbon knots using this technology (and more).

Implementation key idea: $\begin{aligned} & \left(\omega, A=\left(\alpha_{a b}\right)\right) \leftrightarrow \\ & \left(\omega, \lambda=\sum \alpha_{a b} t_{a} h_{b}\right) \end{aligned}$	$\omega \varepsilon \beta /$ AlexDemo
c-1	\|ue
-m.	
man	,
ta-Associativit	
$r\left[\alpha, t_{1}, t_{2}, t_{1}, t_{n}: \cdot\right.$	

a ribbon singularity a clasp singularity example
A Bit about Ribbon Knots. A "ribbon knot" is a knot that can be presented as the boundary of a disk that has "ribbon singularities", but no "clasp singularities". A "slice knot" is a knot in $S^{3}=\partial B^{4}$ which is the boundary of a non-singular disk in B^{4}. Every ribbon knots is clearly slice, yet,
Conjecture. Some slice knots are not ribbon.
Fox-Milnor. The Alexander polynomial of a ribbon knot is always of the form $A(t)=f(t) f(1 / t)$.
(also for slice)
Theorem. K is ribbon iff it is κT for a tangle T for which τT is the untangle U.

Fact. Γ is better viewed as an invariant of a certain class of 2 D knotted objects in \mathbb{R}^{4} [BND, BN].
Fact. Γ is the "0-loop" part of an invariant that generalizes to " n-loops" (1D tangles only, see further talks and future publications with van der Veen).
Speculation. Stepping stones to categorifica- $\begin{gathered}\text { M. Polyak \& T. Ohtsuki } \\ \text { @ Heian Shrine, Kyoto }\end{gathered}$ tion?

Ask me about geography vs. identity!
[BN] D. Bar-Natan, Balloons and Hoops and their Universal References. Finite Type Invariant, BF Theory, and an Ultimate Alexander Invariant, ω $\varepsilon \beta / \mathrm{KBH}$, arXiv:1308.1721.
[BND] D. Bar-Natan and Z. Dancso, Finite Type Invariants of W-Knotted Objects I: w-Knots and the Alexander Polynomial, Alg. and Geom. Top. 16-2 (2016) 1063-1133, arXiv: 1405.1956 , $\omega \varepsilon \beta / \mathrm{WKO} 1$.
[BNS] D. Bar-Natan and S. Selmani, Meta-Monoids, Meta-Bicrossed Products, and the Alexander Polynomial, J. of Knot Theory and its Ramifications 22-10 (2013), arXiv:1302.5689.
[GST] R. E. Gompf, M. Scharlemann, and A. Thompson, Fibered Knots and Potential Counterexamples to the Property $2 R$ and Slice-Ribbon Conjectures, Geom. and Top. 14 (2010) 2305-2347, arXiv:1103.1601.
[Vo] H. Vo, Alexander Invariants of Tangles via Expansions, University of To-

For long knots, ω is Alexander, and that's the fastest Alexander algorithm I know! Dunfield: 1000-crossing fast.
ronto Ph.D. thesis, $\omega \varepsilon \beta / \mathrm{Vo}$.

"God created the knots, all else in topology is the work of mortals."
Leopold Kronecker (modified)

Proof of the Tangle Characterization of Ribbon Knots

Theorem. A knot K is ribbon jiff there exists a tangle T whose τ closure is the untangle and whose κ closure is K.

Proof. The backward \Longleftarrow implication is easy:

For the forward implication, follow the following 5 steps:

Step I: In-situ cosmetics.
At end: D is a tree of chord-and-arc polygons.

Step 2: Near-situ cosmetics.
At end: D is tree-band-sum of n unknotted disks.

Step 3: Slides.
At end: D is a linear-band-sum of n unknotted disks.

Step 4: Exposure!
The green domain is contractible - so it can be shrank, moved at will (with the blue membrane following along), and expanded back again.
At end: D has ($\mathrm{n}-1$) exposed bridges which when turned, make D a union of n unknotted disks.

Step 5: Pulling bottom handles avoiding the obstacles.
At end: Theorem is proven.

Abstract. I'll explain what "everything around" means: classical and quantum $m, \Delta, S, t r, R, C$, and θ, as well as P, Φ, J, \mathbb{D}, and more, and all of their compositions. What DoPeGDO means: the category of Docile Perturbed Gaussian Differential Operators.
And what $s l_{2+}^{\epsilon}$ means: a solvable approximation of the semisimple Lie algebra $s l_{2}$.

$\operatorname{tr}: U \rightarrow U / w x=x w$

$\Delta: U \rightarrow U \otimes U$

$R \in Q U \otimes Q U$

$J \in C U \otimes C U$

$C^{ \pm 1} \in Q U$
Cartan's θ, the Dequantizator,
and more...

Less Abstract

4D Metrized Lie Algebras

DoPeGDO := The category with objects finite sets ${ }^{\dagger 2}$ and $\operatorname{mor}(A \rightarrow B)$:

$$
\{\mathcal{F}=\omega \exp (Q+P)\} \subset \mathbb{Q} \llbracket \zeta_{A}, z_{B}, \epsilon \rrbracket
$$

Where: • ω is a scalar. ${ }^{\dagger 3} \bullet Q$ is a "small" ϵ-free quadratic in $\zeta_{A} \cup z_{B} \cdot{ }^{\dagger \dagger} \bullet P$ is a "docile perturbation": $P=\sum_{k \geq 1} \epsilon^{k} P^{(k)}$, where $\operatorname{deg} P^{(k)} \leq 2 k+2 .{ }^{\dagger}{ }^{5}$ - Compositions: ${ }^{\dagger 6}$
$\mathcal{F} / / \mathcal{G}=\mathcal{G} \circ \mathcal{F}:=\left(\mathcal{G}| |_{\xi_{i} \rightarrow \partial_{z_{i}}} \mathcal{F}\right)_{z_{i}=0}=\left(\left.\mathcal{F}\right|_{z_{i} \rightarrow \partial_{\xi_{i}}} \mathcal{G}\right)_{\zeta_{i}=0}$. Cool! $\left(V^{*}\right)^{\otimes \Sigma} \otimes V^{\otimes S}$ explodes; the ranks of quadratics and bounded-degree polynomials grow
 Cool! How often do you see a computational toolbox so successful?
Our Algebras. Let $s l_{2+}^{\epsilon}:=L\langle y, b, a, x\rangle$ subject to $[a, x]=x$, Compositions (1). In mor $(A \rightarrow B), Q=\sum_{i \in A, j, j} E_{i j} \zeta_{i} z_{j}+\frac{1}{i_{i, j \in A}} F_{i j} \zeta_{i} \zeta_{j}+\frac{1}{i_{i, j \in B}} \sum_{i j} G_{i j} z_{i j}$ $[b, y]=-\epsilon y,[a, b]=0,[a, y]=-y,[b, x]=\epsilon x$, and $[x, y]=$ $\epsilon a+b$. So $t:=\epsilon a-b$ is central and if $\exists \epsilon^{-1}, s l_{2+}^{\epsilon} /\langle t\rangle \cong s l_{2}$. \quad oef/oa U is either $C U=\mathcal{U}\left(s s_{2+}^{\epsilon}\right) \llbracket \hbar \rrbracket$ or $Q U{ }^{2+}=\mathcal{U}_{\hbar}\left(s l_{2+}^{\epsilon}\right)=$ $A\langle y, b, a, x\rangle \llbracket \hbar \rrbracket$ with $[a, x]=x,[b, y]=-\epsilon y,[a, b]=0,[a, y]=$ $-y,[b, x]=\epsilon x$, and $x y-q y x=(1-A B) / \hbar$, where $q=\mathbb{e}^{\hbar \epsilon}$, $A=\mathbb{e}^{-\hbar \epsilon a}$, and $B=\mathbb{e}^{-\hbar b}$. Set also $T=A^{-1} B=\mathbb{e}^{\hbar t}$.
The Quantum Leap. Also decree that in $Q U$,

gree

Knot theorists should rejoice because all this leads to very powerful and well-behaved poly-time-computable knot invariants. Quantum algebraists should rejoice because it's a realistic playground for testing complicated equations and theories.
Conventions. 1. For a set A, let $z_{A}:=\left\{z_{i}\right\}_{i \in A}$ and let $\zeta_{A}:=\left\{z_{i}^{*}=\zeta_{i}\right\}_{\in A} .{ }^{\dagger 1} 2$. Everything converges!

$$
\begin{aligned}
& \quad \Delta(y, b, a, x)=\left(y_{1}+B_{1} y_{2}, b_{1}+b_{2}, a_{1}+a_{2}, x_{1}+A_{1} x_{2}\right), \\
& S(y, b, a, x)=\left(-B^{-1} y,-b,-a,-A^{-1} x\right), \\
& \text { and } R=\sum \hbar^{j+k} y^{k} b^{j} \otimes a^{j} x^{k} / j![k]_{q}!.
\end{aligned}
$$

Mid-Talk Debts. • What is this good for in quantum algebra? - In knot theory?

- How does the "inclusion" $\mathcal{D}: \operatorname{Hom}\left(U^{\otimes \Sigma} \rightarrow U^{\otimes S}\right) \leadsto$

DoPeGDO work?

- Proofs that everything around $s l_{2+}^{\epsilon}$ really is DoPeGDO.
- Relations with prior art.
- The rest of the "compositions" story.

Theorem ([BG], conjectured [MM], \rightarrow M elucidated [Ro1]). Let $J_{d}(K)$ be مer ${ }^{\text {Morton, }}$ the coloured Jones polynomial of K, in the d-dimensional representation of $s l_{2}$. Writing

$$
\left.\frac{\left(q^{1 / 2}-q^{-1 / 2}\right) J_{d}(K)}{q^{d / 2}-q^{-d / 2}}\right|_{q=e^{\hbar}}=\sum_{j, m \geq 0} a_{j m}(K) d^{j} \hbar^{m}
$$

"below diagonal" coefficients vanish, $a_{j m}(K)=\uparrow$ 0 if $j>m$, and "on diagonal" coefficients give the inverse of the Alexander polynomial: $\left(\sum_{m=0}^{\infty} a_{m m}(K) \hbar^{m}\right) \cdot \omega(K)\left(e^{\hbar}\right)=1$.

"Above diagonal" we have Rozansky's Theorem [Ro3, (1.2)]:

$$
J_{d}(K)(q)=\frac{q^{d}-q^{-d}}{\left(q-q^{-1}\right) \omega(K)\left(q^{d}\right)}\left(1+\sum_{k=1}^{\infty} \frac{(q-1)^{k} \rho_{k}(K)\left(q^{d}\right)}{\omega^{2 k}(K)\left(q^{d}\right)}\right)
$$

Where $\bullet E=E_{1}\left(I-F_{2} G_{1}\right)^{-1} E_{2}$.

- $F=F_{1}+E_{1} F_{2}\left(I-G_{1} F_{2}\right)^{-1} E_{1}^{T}$. ${ }^{2} G=G_{2}+E_{2}^{T} G_{1}\left(I-F_{2} G_{1}\right)^{-1} E_{2}$. $\omega=\omega_{1} \omega_{2} \operatorname{det}\left(I-F_{2} G_{1}\right)^{-1}$.

One abstraction level up from tangles!
$\{$ tangles $\} \rightarrow\{\boxed{\square}\}$

- P is computed using "connected Feynman diagrams" or as the solution of a messy PDE (yet we're still in algebra!).
DoPeGDO Footnotes. $\dagger 1$. Each variable has a "weight" $\in\{0,1,2\}$, and always wt $z_{i}+\mathrm{wt} \zeta_{i}=2$.
\dagger 2. Really, "weight-graded finite sets" $A=A_{0} \sqcup A_{1} \sqcup A_{2}$.
\dagger 3. Really, a power series in the weight -0 variables ${ }^{\dagger 9}$.
$\dagger 4$. The weight of Q must be 2 , so it decomposes as $Q=Q_{20}+Q_{11}$. The coefficients of Q_{20} are rational numbers while the coefficients of Q_{11} may be weight- 0 power series ${ }^{\dagger 9}$.
\dagger 5. Setting wt $\epsilon=-2$, the weight of P is ≤ 2 (so the powers of the weight- 0 variables are not constrained ${ }^{\dagger 9}$).
$\dagger 6$. There's also an obvious product $\operatorname{mor}\left(A_{1} \rightarrow B_{1}\right) \times \operatorname{mor}\left(A_{2} \rightarrow B_{2}\right) \rightarrow \operatorname{mor}\left(A_{1} \sqcup A_{2} \rightarrow B_{1} \sqcup B_{2}\right)$.
$\dagger 7$. That is, if the weight-0 variables are ignored. Otherwise more care is needed yet the conclusion remains.
$\dagger 8 . \operatorname{Hom}\left(U^{\otimes \Sigma} \rightarrow U^{\otimes S}\right) \leadsto \operatorname{mor}\left(\left\{\eta_{i}, \beta_{i}, \tau_{i}, \alpha_{i}, \xi_{i}\right\}_{i \in \Sigma} \rightarrow\left\{y_{i}, b_{i}, t_{i}, a_{i}, x_{i}\right\}_{i \in S}\right)$, where $\operatorname{wt}\left(\eta_{i}, \xi_{i}, y_{i}, x_{i}\right)=1$ and $\mathrm{wt}\left(\beta_{i}, \tau_{i}, \alpha_{i} ; b_{i}, t_{i}, a_{i}\right)=(2,2,0 ; 0,0,2)$.
$\dagger 9$. For tangle invariants the wt- 0 power series are always rational functions in the exponentials of the wt-0 variables (for knots: just one variable), with degrees bounded linearly by the crossing number.
 one has to use tensor powers of these representations, and the Solvable Approximation. In $g l_{n}$, half is enough! Indeed $g l_{n} \oplus$ dimensions of powers grow exponentially fast.
In my talk, I will describe a direct method for carrying out such computations without having to choose a representation and explain why in many ways the results are better and faster. The two key points we use are a technique for composing infinite-order "perturbed Gaussian" differential operators, and the little-known fact that every semi-simple Lie algebra can be approximated by solvable Lie algebras, where computations are easier.
KiW 43 Abstract ($\omega \varepsilon \beta /$ kiw). Whether or not you like the formulas on this page, they describe the strongest truly computable knot invariant we know.
(experimental analysis @ $\omega \varepsilon \beta / \mathrm{kiw}$) Knotted Candies $\omega \varepsilon \beta / \mathrm{kc}$
$\mathfrak{a}_{n}=\mathcal{D}(\nabla, b, \delta):$

Now define $g l_{n}^{\epsilon}:=\mathcal{D}(\nabla, b, \epsilon \delta)$. Schematically, this is $[\nabla, \nabla]=\nabla$, $[\triangle, \Delta]=\epsilon \Delta$, and $[\nabla, \triangle]=\Delta+\epsilon \nabla$. The same process works for all semi-simple Lie algebras, and at $\epsilon^{k+1}=0$ always yields a solvable Lie algebra.
$C U$ and $Q U$. Starting from $s l_{2}$, get $C U_{\epsilon}=\langle y, a, x, t\rangle /([t,-]=$ $0,[a, y]=-y,[a, x]=x,[x, y]=2 \epsilon a-t)$. Quantize using standard tools (I'm sorry) and get $Q U_{\epsilon}=\langle y, a, x, t\rangle /([t,-]=$ $\left.0,[a, y]=-y,[a, x]=x, x y-\mathbb{e}^{\hbar \epsilon} y x=\left(1-T \mathbb{e}^{-2 \hbar \epsilon a}\right) / \hbar\right)$.
PBW Bases. The U 's we care about always have "Poincaré-Birkhoff-Witt" bases; there is some finite set $B=\{y, x, \ldots\}$ of "generators" and isomorphisms $\mathbb{O}_{y, x, \ldots}: \hat{\mathcal{S}}(B) \rightarrow U$ defined by "ordering monomials" to some fixed y, x, \ldots order. The quantum group portfolio now becomes a "symmetric algebra" portfolio, or a "power series" portfolio.
Operations are Objects.

$$
B^{*}:=\left\{z_{i}^{*}=\zeta_{i}: z_{i} \in B\right\}, \quad f \in \operatorname{Hom}_{\mathbb{Q}}\left(S(B) \rightarrow S\left(B^{\prime}\right)\right)
$$

Problem. Extract information from Z. principle finite, but slow.
The Yang-Baxter Technique. Given an al-

$$
\left\langle\prod z_{i}^{m_{i}}, \prod \zeta_{i}^{n_{i}}\right\rangle=\prod \delta_{m_{i} n_{i}} n_{i}!
$$

The Dogma. Use representation theory. In

A Knot Theory Portfolio.

- Has operations $\sqcup, m_{k}^{i j}, \Delta_{j k}^{i}, S_{i}$.
- All tangloids are generated by $R^{ \pm 1}$ and $C^{ \pm 1}$ (so "easy" to produce invariants).
- Makes some knot properties ("genus", "ribbon") become "definable".

A "Quantum Group" Portfolio consists of a vector space U
 gebra U (typically $\hat{\mathcal{U}}(\mathfrak{g})$ or $\hat{\mathcal{U}}_{q}(\mathfrak{g})$) and elements
\uparrow form

$$
Z=\sum_{i, j, k} C a_{i} b_{j} a_{k} C^{2} b_{i} a_{j} b_{k} C
$$

$$
R=\sum a_{i} \otimes b_{i} \in U \otimes U \quad \text { and } \quad C \in U
$$

$$
\left\{\begin{array}{c}
S(B)^{*} \otimes S\left(B^{\prime}\right) \\
\| \star \\
S\left(B^{*}\right) \otimes S\left(B^{\prime}\right) \\
\| \\
S\left(B^{*} \sqcup B^{\prime}\right) \\
\|
\end{array}\right.
$$

$$
\mathcal{S}(B) \underset{\tilde{f} \in \mathbb{Q}\left\|\zeta_{i}, z_{j}^{\prime}\right\|}{f} \mathcal{S}\left(B^{\prime}\right) \xrightarrow[\tilde{g} \in \mathbb{Q} \llbracket \zeta_{j}^{\prime}, z_{k}^{\prime \prime} \|]{g} \mathcal{S}\left(B^{\prime \prime}\right) \quad \tilde{f} \in \mathbb{Q}\left[\zeta_{i}, z_{i}^{\prime}\right]
$$

 n the

$$
\text { en } \widetilde{(f / / g})=(\widetilde{g \circ f})=\left(\left.\tilde{g}\right|_{\zeta_{j}^{\prime} \rightarrow \partial_{z_{j}^{\prime}}} \tilde{f}\right)_{z_{j}^{\prime}=0}=\left(\left.\tilde{f}\right|_{z_{j}^{\prime} \rightarrow \partial_{\zeta_{j}^{\prime}}} \tilde{g}\right)_{\zeta_{j}^{\prime}=0}:
$$

1. The 1 -variable identity map $I: \mathcal{S}(z) \rightarrow \mathcal{S}(z)$ is Examples given by $\tilde{I}_{1}=\mathbb{e}^{2 \zeta}$ and the n-variable one by $\tilde{I}_{n}=\mathbb{e}^{2 \zeta_{1} 1+\cdots+z n \zeta_{n}}$:

$$
\tilde{I}_{1}=\left(\begin{array}{l}
\square \\
\end{array}+\frac{1}{2} \square+\frac{1}{6} \square+\cdots\right.
$$

2. The "archetypal multiplication map $m_{k}^{i j}: \mathcal{S}\left(z_{i}, z_{j}\right) \rightarrow \mathcal{S}\left(z_{k}\right)$ " has $\tilde{m}=\mathbb{e}^{z_{k}\left(\zeta_{i}+\zeta_{j}\right)}$.
3. The "archetypal coproduct $\Delta_{j k}^{i}: \mathcal{S}\left(z_{i}\right) \rightarrow \mathcal{S}\left(z_{j}, z_{k}\right)$ ", given by $z_{i} \rightarrow z_{j}+z_{k}$ or $\Delta z=z \otimes 1+1 \otimes z$, has $\tilde{\Delta}=\mathbb{e}^{\left(z_{j}+z_{k}\right) \zeta_{i}}$.
4. R-matrices tend to have terms of the form $\mathbb{E}_{q}^{\hbar y_{1} x_{2}} \in \mathcal{U}_{q} \otimes \mathcal{U}_{q}$. The "baby R-matrix" is $\tilde{R}=\mathbb{e}^{\hbar y x} \in \mathcal{S}(y, x)$.
5. The "Weyl form of the canonical commutation relations" states that if $[y, x]=t I$ then $\mathbb{C}^{\xi x} \mathbb{C}^{\eta y}=\mathbb{e}^{\eta y} \mathbb{C}^{\xi x} \mathbb{e}^{-\eta \xi t}$. So with $S W_{x y} \int \mathcal{S}(y, x) \xrightarrow[\mathbb{O}_{y x}]{\stackrel{0_{x y}}{\longrightarrow}} \mathcal{U}(y, x)$ we have $\widetilde{S W}_{x y}=\mathbb{e}^{\eta y+\xi x-\eta \xi t}$.

$$
\left\langle z_{i}^{m}, \zeta_{i}^{n}\right\rangle=\delta_{m n} n!,
$$

Do Not Turn Over Until Instructed

and exciting and it should not be *about* rigour, yet it should *demand* rigour. You can't guess. You probably think it the dreariest. You are wrong.

Video and more at http://www.math.toronto.edu/~drorbn/Talks/MAASeaway-1810/

Dror Bar-Natan: Talks: Matemale-1804:

Solvable Approximations of the Quantum $s l_{2}$ Portfolio

Our Main Theorem (loosely stated). Everything that matters in the quantum $s l_{2}$ portfolio can be continuously expressed in terms of docile perturbed Gaussians using solvable approximations. \bigcirc Our Main Points.

- What's the "quantum $s l_{2}$ portfolio"?
- What in it "matters" and why? (the most important question)
- What's "solvable approximation"? What's "continuously"?
- What are "docile perturbed Gaussians"?
- Why do they matter?
($2^{\text {nd }}$ most important)
- How proven?
(docile)
- How implemented?
(sacred; the work of unsung heroes)
- Some context and background.
- What's next?

The quantum $s l_{2}$ Portfolio includes a classical universal enveloping algebra $C U$, its quantization $Q U$, their tensor
$R, s \in\left\{Q U^{\otimes S}\right\} \xrightarrow{A \mathbb{D}, S \mathbb{D}}\{\overbrace{\left.C U^{\otimes S}\right\}}^{\otimes, m_{k}^{i j}, \Delta_{j k}^{i}, S_{i}, \theta}$ powers $C U^{\otimes S}$ and $Q U^{\otimes S}$ with the "tensor operations" \otimes, their products $m_{k}^{i j}$, coproducts $\Delta_{j k}^{i}$ and antipodes S_{i}, their Cartan automophisms $C \theta: C U \rightarrow C U$ and $Q \theta: Q U \rightarrow Q U$, the "dequantizators" $A \mathbb{D}: Q U \rightarrow C U$ and $S \mathbb{D}: Q U \rightarrow C U$, and most importantly, the R-matrix R and the Drinfel'd element s. All this in any PBW basis, and change of basis maps are included.

$\stackrel{1-1}{\longrightarrow}$

Gompf, Scharlemann, Tho
 ribbon $K \in \mathcal{T}_{1} \quad z(K) \in \mathcal{R} \subseteq \mathcal{A}_{1}$
Faster is better, leaner is meaner!

*Th The Gold Standard is set by the " Γ-calculus" Alexander formulas [BNS, BN1]. An S-component tangle T has $\Gamma(T) \in R_{S} \times M_{S \times S}\left(R_{S}\right)=\left\{\begin{array}{c|c}\omega & S \\ \hline S & A\end{array}\right\}$ with $R_{S}:=\mathbb{Z}\left(\left\{t_{a}: a \in S\right\}\right)$: $\left({ }_{a} \nabla_{b},{ }_{b} 久^{\star}\right) \rightarrow$\begin{tabular}{c|cc}
1 \& a \& b

a \& 1 \& $1-t_{a}^{ \pm 1}$

$\quad T_{1} \sqcup T_{2} \rightarrow$

$\omega_{1} \omega_{2}$ \& S_{1} \& S_{2}

\hlineb \& 0 \& $t_{a}^{ \pm 1}$
\end{tabular}

$$
\begin{array}{c|ccc}
\omega & a & b & S \\
\hline a & \alpha & \beta & \theta \\
b & \gamma & \delta & \epsilon \\
S & \phi & \psi & \Xi
\end{array} \xrightarrow[t_{a}, t_{b} \rightarrow t_{c}]{m_{c}^{a b}}\left(\begin{array}{c|cc}
(1-\beta) \omega & c & S \\
\hline c & \gamma+\frac{\alpha \delta}{1-\beta} & \epsilon+\frac{\delta \theta}{1-\beta} \\
S & \phi+\frac{\alpha \psi}{1-\beta} & \Xi+\frac{\psi \theta}{1-\beta}
\end{array}\right)
$$

Roland: "add to A the product of column b and row a, divide by $\left(1-A_{a b}\right)$, delete column b and row $a^{\prime \prime}$.)
For long knots, ω is Alexander, and that's the fastest Alexander algorithm I know! Dunfield: 1000-crossing fast.

Where σ assigns to every $a \in S$ a Laurent monomial σ_{a} in $\left\{t_{b}\right\}_{b \in S}$ subject to $\sigma\left({ }_{a}{ }^{*}{ }_{b},{ }_{b} \nwarrow_{a}^{*}\right)=(a \rightarrow$ $\left.1, b \rightarrow t_{a}^{ \pm 1}\right), \sigma\left(T_{1} \sqcup T_{2}\right)=\sigma\left(T_{1}\right) \sqcup \sigma\left(T_{2}\right)$, and $\sigma / / m_{c}^{a b}=\left.(\sigma \backslash\{a, b\}) \cup\left(c \rightarrow \sigma_{a} \sigma_{b}\right)\right|_{t_{a}, t_{b} \rightarrow t_{c}}$.
Vo's Thesis [Vo]. A proof of the Fox-Milnor theorem for ribbon knots using this technology (and more).

Abstract. It has long been known that there are knot invariants Theorem ([BNG], conjectured [MM], e- .. \rightarrow Melvin, associated to semi-simple Lie algebras, and there has long been lucidated [Ro1]). Let $J_{d}(K)$ be the cosentation theory". We present an alternative and better procedu- tion of $s l_{2}$. Writing
re: "centrally extend, approximate by solvable, and learn how to re-order exponentials in a universal enveloping algebra". While equivalent to the old invariants via a complicated process, our invariants are in practice stronger, faster to compute (poly-time vs. exp-time), and clearly carry topological information.
KiW 43 Abstract ($\omega \varepsilon \beta /$ kiw). Whether or not you like the formulas on this page, they describe the strongest truly computable knot invariant we know.

Experimental Analysis ($\omega \varepsilon \beta / \operatorname{Exp}$). Log-log plots of computation time (sec) vs. crossing number, for all knots with up to 12 crossings (mean times) and for all torus knots with up to 48 crossings:

Power. On the 250 knots with at most 10 crossings, the pair (ω, ρ_{1}) attains 250 distinct values, while (Khovanov, HOMFLYPT) attains only 249 distinct values. To 11 crossings the numbers are $(802,788,772)$ and to 12 they are $(2978,2883,2786)$.
Genus. Up to 12 xings, always ρ_{1} is symmetric under $t \leftrightarrow t^{-1}$. With ρ_{1}^{+}denoting the positive-degree part of ρ_{1}, always $\operatorname{deg} \rho_{1}^{+} \leq$ $2 g-1$, where g is the 3 -genus of K (equality for 2530 knots). This gives a lower bound on g in terms of ρ_{1} (conjectural, but undoubtedly true). This bound is often weaker than the Alexander bound, yet for 10 of the 12-xing Alexander failures it does give the right answer. for Alexander

Ribbon Knots.

[Vo]: Works

$$
\text { with } \mathcal{R}:=\kappa\left(\tau^{-1}(1)\right)
$$

$A^{+}=-t^{8}+2 t^{7}-t^{6}-2 t^{4}+5 t^{3}-2 t^{2}-7 t+13$ $o_{1}^{+}=5 t^{15}-18 t^{14}+33 t^{13}-32 t^{12}+2 t^{11}+42 t^{10}-62 t^{9}-8 t^{8}+166 t^{7}-242 t^{6}+$ Faster is better, leaner is meaner! $108 t^{5}+132 t^{4}-226 t^{3}+148 t^{2}-11 t-36$ Ordering Symbols. \mathbb{O} (poly \mid specs $)$ plants the variables of poly in $\mathcal{S}\left(\oplus_{i} \mathfrak{g}\right)$ on several tensor copies of $\mathcal{U}(\mathfrak{g})$ according to specs. E.g., $\bigcirc\left(a_{1}^{3} y_{1} a_{2} e^{y_{3}} x_{3}^{9} \mid x_{3} a_{1} \otimes y_{1} y_{3} a_{2}\right)=x^{9} a^{3} \otimes y e^{y} a \in \mathcal{U}(\mathrm{~g}) \otimes \mathcal{U}(\mathrm{g})$ This enables the description of elements of $\hat{\mathcal{U}}(\mathfrak{g})^{\otimes S}$ using commutative polynomials / power series.

$$
\left.\frac{\left(q^{1 / 2}-q^{-1 / 2}\right) J_{d}(K)}{q^{d / 2}-q^{-d / 2}}\right|_{q=e^{\hbar}}=\sum_{j, m \geq 0} a_{j m}(K) d^{j} \hbar^{m},
$$

"below diagonal" coefficients vanish, $a_{j m}(K)=$ 0 if $j>m$, and "on diagonal" coefficients give the inverse of the Alexander polynomial: $\left(\sum_{m=0}^{\infty} a_{m m}(K) \hbar^{m}\right) \cdot \omega(K)\left(e^{\hbar}\right)=1$.

"Above diagonal" we have Rozansky's Theorem [Ro3, (1.2)]:

$$
J_{d}(K)(q)=\frac{q^{d}-q^{-d}}{\left(q-q^{-1}\right) \omega(K)\left(q^{d}\right)}\left(1+\sum_{k=1}^{\infty} \frac{(q-1)^{k} \rho_{k}(K)\left(q^{d}\right)}{\omega^{2 k}(K)\left(q^{d}\right)}\right) .
$$

The Yang-Baxter Technique. Given an algebra U (typically $\hat{\mathcal{U}}(\mathrm{g})$ or $\hat{\mathcal{U}}_{q}(\mathrm{~g})$) and elements

$$
R=\sum a_{i} \otimes b_{i} \in U \otimes U \quad \text { and } \quad C \in U
$$

form

$$
Z=\sum_{i, j, k} C a_{i} b_{j} a_{k} C^{2} b_{i} a_{j} b_{k} C
$$

Problem. Extract information from Z.
The Dogma. Use representation theory. In principle finite, but slow.
The Loyal Opposition. For certain algebras, work in a homomorphic poly-dimensional "space of formulas".
$m_{k}^{i j} \longrightarrow\left\{\mathcal{F}_{S}\right\} \xrightarrow{\mathbb{E}} \longrightarrow\left\{U^{\otimes S}\right\} \leftrightharpoons m_{k}^{i j}$

The (fake) moduli of Lie algebras on V, a quadratic variety in $\left(V^{*}\right)^{\otimes 2} \otimes V$ is on the right. We care about $s l_{17}^{k}:=s l_{17}^{\epsilon} /\left(\epsilon^{k+1}=0\right)$.
 Recomposing $g l_{n}$. Half is enough! $g l_{n} \oplus \mathfrak{a}_{n}=\mathcal{D}(\nabla, b, \delta)$:

Now define $g l_{n}^{\epsilon}:=\mathcal{D}(\nabla, b, \epsilon \delta)$. Schematically, this is $[\nabla, \nabla]=\nabla$, $[\triangle, \triangle]=\epsilon \Delta$, and $[\nabla, \Delta]=\Delta+\epsilon \nabla$. In detail, it is

The Main $s l_{2}$ Theorem. Let $\mathfrak{g}^{\epsilon}=\langle t, y, a, x\rangle /([t, \cdot]=0,[a, x]=$ $x,[a, y]=-y,[x, y]=t-2 \epsilon a)$ and let $\mathfrak{g}_{k}=\mathfrak{g}^{\epsilon} /\left(\epsilon^{k+1}=0\right)$. The $\mathfrak{g}_{k^{-}}$ invariant of any S-component tangle K can be written in the form $Z(K)=\mathbb{O}\left(\omega \mathbb{e}^{L+Q+P}: \bigotimes_{i \in S} y_{i} a_{i} x_{i}\right)$, where ω is a scalar (a rational function in the variables t_{i} and their exponentials $T_{i}:=\mathbb{e}^{t_{i}}$,, where $L=\sum l_{i j} t_{i} a_{j}$ is a quadratic in t_{i} and a_{j} with integer coefficients $l_{i j}$, where $Q=\sum q_{i j} y_{i} x_{j}$ is a quadratic in the variables y_{i} and x_{j} with scalar coefficients $q_{i j}$, and where P is a polynomial in $\left\{\epsilon, y_{i}, a_{i}, x_{i}\right\}$ (with scalar coefficients) whose ϵ^{d}-term is of degree at most $2 d+2$ in $\left\{y_{i}, \sqrt{a_{i}}, x_{i}\right\}$. Furthermore, after setting $t_{i}=t$ and $T_{i}=T$ for all i, the invariant $Z(K)$ is poly-time computable.

Abstract. Recently, Roland van der Veen and myself found that Chern-Simons-Witten. Given a knot $\gamma(t)$ in there are sequences of solvable Lie algebras "converging" to any \mathbb{R}^{3} and metrized Lie algebra \mathfrak{g}, set $Z(\gamma):=$ given semi-simple Lie algebra (such as $s l_{2}$ or $s l_{3}$ or $E 8$). Certain computations are much easier in solvable Lie algebras; in particular, using solvable approximations we can compute in polynomial time certain projections (originally discussed by Rozansky) of the knot invariants arising from the Chern-Simons-Witten topological quantum field theory. This provides us with the first strong knot invariants that are computable for truly large knots.
But $s l_{2}$ and $s l_{3}$ and similar algebras occur in physics (and in mathematics) in many other places, beyond the Chern-SimonsWitten theory. Do solvable approximations have further applications?
Recomposing $g l_{n}$. Half is enough! $g l_{n} \oplus \mathfrak{a}_{n}=\mathcal{D}(\nabla, b, \delta)$:

Now define $g l_{n}^{\epsilon}:=\mathcal{D}(\nabla, b, \epsilon \delta)$. Schematically, this is $[\nabla, \nabla]=\nabla$, $[\triangle, \triangle]=\epsilon \triangle$, and $[\nabla, \triangle]=\Delta+\epsilon \nabla$. In detail, it is

$\left[e_{i j}, e_{k l}\right]=\delta_{j k} e_{i l}-\delta_{l i} e_{k j} \quad\left[f_{i j}, f_{k l}\right]=\epsilon \delta_{j k} f_{i l}-\epsilon \delta_{l i} f_{k j}$ $\left[e_{i j}, f_{k l}\right]=\delta_{j k}\left(\epsilon \delta_{j<k} e_{i l}+\delta_{i l}\left(h_{i}+\epsilon g_{i}\right) / 2+\delta_{i>l} f_{i l}\right)$ $-\delta_{l i}\left(\epsilon \delta_{k<j} e_{k j}+\delta_{k j}\left(h_{j}+\epsilon g_{j}\right) / 2+\delta_{k>j} f_{k j}\right)$ $\left[g_{i}, e_{j k}\right]=\left(\delta_{i j}-\delta_{i k}\right) e_{j k} \quad\left[h_{i}, e_{j k}\right]=\epsilon\left(\delta_{i j}-\delta_{i k}\right) e_{j h}$ $\left[g_{i}, f_{j k}\right]=\left(\delta_{i j}-\delta_{i k}\right) f_{j k} \quad\left[h_{i}, f_{j k}\right]=\epsilon\left(\delta_{i j}-\delta_{i k}\right) f_{j k}$
Solvable Approximation. At $\epsilon=1$ and modulo $h=g$, the above is just $g l_{n}$. By rescaling at $\epsilon \neq 0, g l_{n}^{\epsilon}$ is independent of ϵ. We let $g l_{n}^{k}$ be $g l_{n}^{\epsilon}$ regarded as an algebra over $\mathbb{Q}[\epsilon] / \epsilon^{k+1}=0$. It is the " k-smidgen solvable approximation" of $g l_{n}$!
Recall that \mathfrak{g} is "solvable" if iterated commutators in it ultimately vanish: $\mathfrak{g}_{2}:=[\mathfrak{g}, \mathfrak{g}], \mathfrak{g}_{3}:=\left[\mathfrak{g}_{2}, \mathfrak{g}_{2}\right], \ldots, \mathfrak{g}_{d}=0$. Equivalently, if it is a subalgebra of some large-size ∇ algebra.
Note. This whole process makes sense for arbitrary semi-simple Lie algebras.
Why are "solvable algebras" any good? Contrary to common beliefs, computations in semi-simple Lie algebras are just awful:

$$
\text { NatrixExp }\left[\left.\begin{array}{ll}
a & b \\
\mathrm{~s} & \mathrm{~d}
\end{array} \right\rvert\,\right] \text { // FullSimplify // MatrixForm Enter }
$$

Yet in solvable algebras, exponentiation is fine and even BCH ,
$z=\log \left(\mathbb{C}^{x} \mathbb{C}^{y}\right)$, is bearable:

Question. What else can you do with solvable approximation? Chern-Simons-Witten theory is often "solved" using ideas from conformal field theory and using quantization of various moduli spaces. Does it make sense to use solvable approximation there too? Elsewhere in physics? Elsewhere in mathematics?
See Also. Talks at George Washington University [$\omega \varepsilon \beta / \mathrm{gwu}$], Indiana $[\omega \varepsilon \beta / \mathrm{ind}]$, and Les Diablerets $[\omega \varepsilon \beta / \mathrm{ld}]$, and a University of Toronto "Algebraic Knot Theory" class [$\omega \varepsilon \beta /$ akt].

$$
\int_{A \in \Omega^{1}\left(\mathbb{R}^{3}, \mathfrak{g}\right)} \mathcal{D} A \mathbb{e}^{i k c s(A)} P \operatorname{Exp}_{\gamma}(A)
$$

where $c s(A):=\frac{1}{4 \pi} \int_{\mathbb{R}^{3}} \operatorname{tr}\left(A d A+\frac{2}{3} A^{3}\right)$ and

$$
\operatorname{PExp}_{\gamma}(A):=\prod_{0}^{1} \exp \left(\gamma^{*} A\right) \in \mathcal{U}=\hat{\mathcal{U}}(\mathfrak{g})
$$

and $\mathcal{U}(\mathfrak{g}):=\langle$ words in $\mathfrak{g}\rangle /(x y-y x=[x, y])$. In a favourable gauge, one may hope that this computation will localize near the crossings and the bends, and all will depend on just two quantities,

$$
R=\sum a_{i} \otimes b_{i} \in \mathcal{U} \otimes \mathcal{U} \quad \text { and } \quad C \in \mathcal{U}
$$

This was never done formally, yet R and C can be "guessed" and all "quantum knot invariants" arise in this way. So for the trefoil,

$$
Z=\sum_{i, j, k} C a_{i} b_{j} a_{k} C^{2} b_{i} a_{j} b_{k} C
$$

But Z lives in \mathcal{U}, a complicated space. How do you extract information out of it?
Solution 1, Representation Theory. Choose a finite dimensional
representation ρ of \mathfrak{g} in some vector space V. By luck and the wisdom of Drinfel'd and Jimbo, $\rho(R) \in V^{*} \otimes V^{*} \otimes V \otimes V$ and $\rho(C) \in V^{*} \otimes V$ are computable, so Z is computable too. But in exponential time!

Solution 2, Solvable Approximation. Work directly in $\hat{\mathcal{U}}\left(\mathfrak{g}_{k}\right)$, where $\mathfrak{g}_{k}=s l_{2}^{k}$ (or a similar algebra); everything is expressible using low-degree polynomials in a small number of variables, hence everything is poly-time computable!
Example 0. Take $\mathfrak{g}_{0}=s l_{2}^{0}=\mathbb{Q}\langle h, e, l, f\rangle$, with h central and $[f, l]=f,[e, l]=-e,[e, f]=h$. In it, using normal orderings,

$$
\begin{gathered}
R=\mathbb{O}\left(\left.\exp \left(h l+\frac{\mathbb{e}^{h}-1}{h} e f\right) \right\rvert\, e \otimes l f\right), \quad \text { and }, \\
\mathbb{O}\left(\mathbb{e}^{\delta e f} \mid f e\right)=\mathbb{O}\left(v \mathbb{e}^{v \delta e f} \mid e f\right) \quad \text { with } v=(1+h \delta)^{-1} .
\end{gathered}
$$

Example 1. Take $R=\mathbb{Q}[\epsilon] /\left(\epsilon^{2}=0\right)$ and $\mathfrak{g}_{1}=s l_{2}^{1}=R\langle h, e, l, f\rangle$, with h central and $[f, l]=f,[e, l]=-e,[e, f]=h-2 \epsilon l$. In it,

$$
\mathbb{O}\left(\mathbb{C}^{\delta e f} \mid f e\right)=\mathbb{O}\left(v(1+\epsilon v \delta \Lambda / 2) \mathbb{C}^{v \delta e f} \mid e l f\right), \quad \text { where } \Lambda \text { is }
$$

$4 v^{3} \delta^{2} e^{2} f^{2}+3 v^{3} \delta^{3} h e^{2} f^{2}+8 v^{2} \delta e f+4 v^{2} \delta^{2} h e f+4 v \delta e l f-2 v \delta h+4 l$. Fact. Setting $h_{i}=h$ (for all i) and $t=\mathbb{e}^{h}$, the \mathfrak{g}_{1} invariant of any tangle T can be written in the form

$$
Z_{\mathrm{g}_{1}}(T)=\mathbb{O}\left(\omega^{-1} \mathbb{e}^{h L+\omega^{-1} Q}\left(1+\epsilon \omega^{-4} P\right) \mid \bigotimes_{i} e_{i} l_{i} f_{i}\right)
$$

where L is linear, Q quadratic, and P quartic in the $\left\{e_{i}, l_{i}, f_{i}\right\}$ with ω and all coefficients polynomials in t. Furthermore, everything is poly-time computable.

[^0]: ${ }^{1}$ Truly, we need the same for any number of input SPQ's that are divided into two groups, "multiply in the first step" and "multiply in the second step". But there's no added difficulty here, only an added notational complexity.
 ${ }^{2}$ Aren't we sassy? We picked " 6 " for the name of the product of " 2 " and " 3 ".

[^1]: 尹@ $\left\{\overline{\mathrm{X}}_{20,1,10,13}[\mathrm{v}, \mathrm{u}], \mathrm{X}_{3,14,19,13}[\mathrm{v}, \mathrm{u}], \mathrm{X}_{14,11,15,21}[\mathrm{u}, \mathrm{w}], \overline{\mathrm{X}}_{15,6,7,22}[\mathrm{u}, \mathrm{w}]\right.$,
 $\left.X_{2,12,16,22}[u, w], \bar{X}_{16,5,17,21}[u, w], \bar{x}_{19,17,9,18}[v, u], X_{4,8,28,18}[v, u]\right\} \equiv$ $\mathcal{F} @\left\{\mathrm{X}_{1,11,13,21}[\mathrm{u}, \mathrm{w}], \overline{\mathrm{X}}_{13,6,14,22}[\mathrm{u}, \mathrm{w}], \overline{\mathrm{X}}_{20,14,10,15}[\mathrm{v}, \mathrm{u}], \mathrm{X}_{3,7,19,15}[\mathrm{v}, \mathrm{u}]\right.$,
 $\left.\bar{X}_{19,2,9,16}[v, u], X_{4,17,28,16}[v, u], x_{17,12,18,22}[u, w], \bar{X}_{18,5,8,21}[u, w]\right\}$
 True

[^2]: 2010 Mathematics Subject Classification. Primary 57M25.
 Published Bull. Amer. Math. Soc. 50 (2013) 685-690. TEX at http://drorbn.net/AcademicPensieve/2013-01/CDMReview/, copyleft at http://www.math.toronto.edu/~drorbn/Copyleft/. This review was written while I was a guest at the Newton Institute, in Cambridge, UK. I wish to thank N. Bar-Natan, I. Halacheva, and P. Lee for comments and suggestions.

[^3]: ${ }^{1}$ Partially self-plagiarized from [BN2].
 ${ }^{2}$ Keep this apart from invariants of knots whose values are polynomials, such as the Alexander or the Jones polynomial. A posteriori related, these are a priori entirely different.
 points and a further (right-handed) crossing". Furthermore, when two such pictures appear within the same formula, it is to be understood that the parts of the knots (or diagrams) involved outside of the displayed pictures are to be taken as the same.

[^4]: ${ }^{4}$ This requirement can easily be relaxed.

