Dror Bar-Natan - Handout Portfolio

As of April 16, 2024 - see also http://drorbn.net/hp - paper copies are available from the author, at a muffin plus cappuccino each or the monetary equivalent (to offset printing costs). This document has 171 pages.

Abstract. Following a general discussion of the computation of zombians of unfinished columbaria (with examples), I will tell you about my recent joint work w/ Jessica Liu on what we feel is the "textbook" extension of knot signatures to tangles, which for unknown reasons, is not in any of the textbooks that we know.

Prior Art on signatures for tangles / braids Gambaud and Ghys [GG], Cimasoni and Conway [CC], Conway [Co], Merz [Me]. All define signatures of tangles / braids by first closing them to links and then work hard to derive composition properties.

Why Tangles? • Faster!

- Conceptually clearer proofs of invariance (and of skein relations).
- Often fun and consequential:

- The Jones Polynomial \leadsto The Temperley-Lieb Algebra.
- Khovanov Homology \sim "Unfinished complexes", complexes in a category.
- The Kontsevich Integral \sim Associators.
- HFK \leadsto OMG, type D, type A, \mathcal{A}_{∞},

Computing Zombians of Unfinished Columbaria.

- Must be no slower than for finished ones.
- Future zombies must be able to complete the computation.
- Future zombies must not even know the size of the task that today's zombies were facing.
- We must be able to extend to ZPUCs, Zombie

Processed Unfinished Columbaria!
Example / Exercise. Compute the determinant of a $1,000 \times 1,000$ matrix in which 50 entries are not yet given.
Homework / Research Projects. • What with ZPUCs? • Use this to get an Alexander tangle invariant. Reminders. \{links\} \rightrightarrows \{matrices / quadratic forms $\} \xrightarrow[\sigma]{\text { signature }} \mathbb{Z}$:

Kashaev's-Conjecture [Ka] Liu's Theorem [Li]. For links, $\sigma_{\text {Kas }}=2 \sigma_{T L}$.

A Partial Quadratic ($P Q$) on V is a quadratic Q defined only on a subspace $\mathcal{D}_{Q} \subset V$. We add PQs with $\mathcal{D}_{Q_{1}+Q_{2}}:=\mathcal{D}_{Q_{1}} \cap \mathcal{D}_{Q_{2}}$. Given a linear $\psi: V \rightarrow W$ and a PQ Q on W, there is an obvious Jessica Liu pullback $\psi^{*} Q$, a PQ on V.

Theorem 1. Given a linear $\phi: V \rightarrow W$ and a PQ Q on V, there is a unique pushforward $\mathrm{PQ} \phi_{*} Q$ on W such that for every $P Q U$ on $W, \sigma_{V}\left(Q+\phi^{*} U\right)=\sigma_{\text {ker } \phi}\left(\left.Q\right|_{\text {ker } \phi}\right)+\sigma_{W}\left(U+\phi_{*} Q\right)$.
(If you must, $\mathcal{D}\left(\phi_{*} Q\right)=\phi\left(\operatorname{ann}_{Q}(\mathcal{D}(Q) \cap \operatorname{ker} \phi)\right)$ and $\left(\phi_{*} Q\right)(w)=Q(v)$, where v is s.t. $\phi(v)=w$ and $\left.Q\left(v,\left.\operatorname{rad} Q\right|_{\text {ker } \phi}\right)=0\right)$.

Gist of the Proof.

$\sigma\left(Q_{\text {ker } \phi}\right)$

.. and the quadratic $F=: \phi_{*} Q$ is well-defined only on $D:=$ ker C. Exactly what we want, if the Zombian is the signature!
V : The full space of faces.
W: The boundary, made of gaps.
Q : The known parts.
U : The part yet unknown.
$\sigma_{V}\left(Q+\phi^{*}(U)\right)$: The overall Zombian.

$\sigma\left(\left.Q\right|_{\text {ker } \phi}\right)$: An internal bit. $U+\phi_{*} Q$: A boundary bit.
And so our ZPUC is the pair $S=\left(\sigma\left(\left.Q\right|_{\text {ker } \phi}\right), \phi_{*} Q\right)$.
A Shifted Partial Quadratic (SPQ) on V is a pair $S=(s \in$ \mathbb{Z}, Q a PQ on V). addition also adds the shifts, pullbacks keep the shifts, yet $\phi_{*} S:=\left(s+\sigma_{\text {ker } \phi}\left(\left.Q\right|_{\text {ker } \phi}\right), \phi_{*} Q\right)$ and $\sigma(S):=s+\sigma(Q)$. Theorem 1' (Reciprocity). Given $\phi: V \rightarrow W$, for SPQs S on V and U on W we have $\sigma_{V}\left(S+\phi^{*} U\right)=\sigma_{W}\left(U+\phi_{*} S\right)$ (and this characterizes $\left.\phi_{*} S\right)$. Note. ψ^{*} is additive but ϕ_{*} is not. Theorem 2. ψ^{*} and ϕ_{*} are functorial. $\quad Y \xrightarrow{v} W$ Theorem 3. "The pullback of a pushforward scene is $\mu \downarrow, ~ च \gamma$ a pushforward scene": If, on the right, β and δ are ar- $V \underset{\beta}{\rightarrow} Z$ bitrary, $Y=\mathrm{EQ}(\beta, \gamma)=V \oplus_{Z} W=\{(v, w): \beta v=\gamma w\}$ and μ and v are the obvious projections, then $\gamma^{*} \beta_{*}=v_{*} \mu^{*}$.
Definition. $\mathcal{S}\left(\begin{array}{c}\left.\begin{array}{c}g_{2} \\ g_{3} \\ g_{1} \\ \ldots\end{array}\right)\end{array}\right):=\left\{\begin{array}{l}\mathrm{SPQ} S \\ \text { on }\left\langle g_{i}\right\rangle\end{array}\right\}$. Theorem 4. $\{\mathcal{S}$ (cyclic sets) $\}$ is a planar algebra, with compositions $\mathcal{S}(D)\left(\left(S_{i}\right)\right):=\phi_{*}^{D}\left(\psi_{D}^{*}\left(\bigoplus_{i} S_{i}\right)\right)$, where $\psi_{D}:\left\langle f_{i}\right\rangle \rightarrow\left\langle g_{\alpha i}\right\rangle$ maps every face of D to the sum of the input gaps adjacent to
 it and $\phi^{D}:\left\langle f_{i}\right\rangle \rightarrow\left\langle g_{i}\right\rangle$ maps every face to the sum of the output gaps adjacent to it. So for our $D, \psi_{D}: f_{1} \mapsto g_{34}, f_{2} \mapsto g_{31}+g_{14}+g_{24}+g_{33}$,
 Restricted to links, $T L=\sigma_{T L}$ and $K a s=\sigma_{K a s}$

Implementation (sources: http://drorbn.net/icerm23/ ap). I like it most when the implementation matches the math perfectly. We failed here.

Once[<< KnotTheory`];

Loading KnotTheory` version
of February 2, 2020, 10:53:45.2097.
Read more at http://katlas.org/wiki/KnotTheory.
Utilities. The step function, algebraic numbers, canonical forms.
$\theta\left[x_{-}\right] / ;$NumericQ[x]:=UnitStep [x]
$\omega \mathbf{2}\left[v_{-}\right]\left[p_{-}\right]:=\operatorname{Module}[\{q=\operatorname{Expand}[p], n, c\}$, $\operatorname{If}[q==0,0$, $\mathrm{c}=\operatorname{Coefficient}[q, \omega, \mathrm{n}=\operatorname{Exponent}[q, \omega]]$;
$\left.\left.c v^{n}+\omega \mathbf{2}[v]\left[q-c\left(\omega+\omega^{-1}\right)^{n}\right]\right]\right]$;
$\operatorname{sign}\left[\mathcal{E}_{-}\right]:=\operatorname{Module}[\{n, d, v, p, r s, e, k\}$,
$\{\mathrm{n}, \mathrm{d}\}=$ NumeratorDenominator $[\varepsilon]$;
$\{\mathrm{n}, \mathrm{d}\} /=\omega^{\text {Exponent }[\mathrm{n}, \omega] / 2+\text { Exponent }[\mathrm{n}, \omega, \text { Min }] / 2}$; $\mathrm{p}=$ Factor $\left[\omega 2[\mathrm{v}]\right.$ @ $\left.\mathrm{*} * \omega 2[\mathrm{v}] @ \mathrm{~d} / . \mathrm{v} \rightarrow 4 \mathrm{u}^{2}-2\right]$; $r s=$ Solve $[p=0, u$, Reals]; If [rs === \{\}, Sign [p/.u $\rightarrow 0$], rs = Union@ (u /. rs) ; $\operatorname{Sign}\left[(-1)^{\mathrm{e}=\text { Exponent }[p, u]} \operatorname{Coefficient[p,u,e]]+\operatorname {Sum}[~}\right.$ $\mathrm{k}=0$;
While $\left[\left(d=\operatorname{RootReduce}\left[\partial_{\{u,++k\}} p / . u \rightarrow r\right]\right)=0\right]$; If[EvenQ[k], 0, 2 Sign[d]] * $\theta[u-r]$, \{r, rs\}]
]
]
SetAttributes [B, Orderless];
CF[b_B]:=RotateLeft[\#, First@Ordering[\#] - 1] \& /@ DeleteCases [$b,\{ \}]$
CF $\left[\mathcal{E}_{-}\right]:=\operatorname{Module}\left[\left\{\gamma s=\right.\right.$ Union@Cases $\left.\left[\varepsilon, \gamma_{-} \mid \bar{\gamma}_{-}, \infty\right]\right\}$,
Total[CoefficientRules $[\mathcal{E}, \gamma s] /$. $\left(p s_{-} \rightarrow c_{-}\right): \rightarrow$ Factor [c] \times Times @@ $\left.\gamma s^{p s}\right]$]
CF[\{\}] = \{\};
CF[C_List]: $=$
Module [$\{\gamma \mathrm{s}=$ Union@Cases $[c, \gamma, \infty], \gamma\}$, CF /@ DeleteCases [0] [

RowReduce[Table[$\left.\left.\left.\partial_{\gamma} r,\{r, C\},\{\gamma, \gamma s\}\right]\right] \cdot \gamma s\right]$]
$\left(\delta_{-}\right)^{*}:=\varepsilon / \cdot\left\{\bar{\gamma} \rightarrow \gamma, \gamma \rightarrow \bar{\gamma}, \omega \rightarrow \omega^{-1}, c_{-}\right.$Complex $\left.: \rightarrow c^{*}\right\}$;
$r_{-} R u L e^{+}:=\left\{r, r^{*}\right\}$
RulesOf $\left[\gamma_{i_{-}}+r e s t_{-} \cdot\right]:=\left(\gamma_{i} \rightarrow-r e s t\right)^{+}$;
$\mathrm{CF}\left[\mathrm{PQ}\left[C_{-}, q_{-}\right]\right]:=\operatorname{Module}[\{n C=\operatorname{CF}[C]\}$,
$\mathrm{PQ}[\mathrm{nc}, \mathrm{CF}[q /$. Union @@RulesOf /@ nc$]$]]
$\mathrm{CF}\left[\Sigma_{b_{-}}\left[\sigma_{-}, p q_{-}\right]\right]:=\Sigma_{\mathrm{CF}[b]}[\sigma, \mathrm{CF}[p q]]$

Pretty-Printing.

```
Format[\mp@subsup{\Sigma}{\mp@subsup{b}{-}{\prime}}{}[\mp@subsup{\sigma}{-}{},\operatorname{PQ[C_, q_]]]:= Module[{\gammas},}
    \gammas = \gamma# & /@ Join @@ b;
    Column[{TraditionalForm@ }\sigma\mathrm{ ,
    TableForm[Join[
        Prepend[""] /@ Table[TraditionalForm[0cr],
            {r, C}, {c, rs}],
            {Prepend[""][
                Join@@
                    (b /. {L_, m___, r_} : 
                    {DisplayForm@RowBox[{"(", L}],
                    m, DisplayForm@RowBox[{r, ")"}]}) /.
                i_Integer: }->\mp@subsup{\gamma}{i}{\prime}]}
        MapThread[Prepend,
        {Table[TraditionalForm[就cq],{r,\gammas*},
            {c, rs}], rs*}]
        ], TableAlignments }->\mathrm{ Center]
    }, Center] ];
```

The Face-Centric Core.

```
\(\Sigma_{b 1_{-}}\left[\sigma 1_{-}, \operatorname{PQ}\left[C 1_{-}, q 1_{-}\right]\right] \oplus \Sigma_{b 2_{-}}\left[\sigma 2_{-}, \operatorname{PQ}\left[C 2_{-}, q 2_{-}\right]\right]^{\wedge}:=\)
    CF@ \(\Sigma_{\text {Join }}{ }_{b 1, b 2]}[\sigma 1+\sigma 2, \operatorname{PQ}[C 1 \cup C 2, q 1+q 2]] ;\)
```

GT for Gap Touch:

Strand Operations. c for contract, mc for magnetic contract:

The Crossings (and empty strands).
$\operatorname{Kas@} \mathrm{P}_{i_{-}, j_{-}}:=\operatorname{CF@} \Sigma_{\mathrm{B}}{ }_{[\{, j, j\}]}[0, \operatorname{PQ}[\{ \}, 0]] ;$
$T L @ P_{i_{-}, j_{-}}:=\operatorname{CF} @ \Sigma_{B[\{i, j\}]}[0, \operatorname{PQ}[\{ \}, 0]]$

```
Kas[x:X[i_, \(\left.\left.j_{-}, k_{-}, l_{-}\right]\right]:=\)
    Kas@If[PositiveQ[x], \(\left.\mathbf{X}_{-i, j, k,-l}, \overline{\mathbf{X}}_{-j, k, l,-i}\right]\);
\(\operatorname{Kas}\left[(x: X \mid \bar{X})_{f s_{-}}\right]:=\operatorname{Module}\left[\left\{v=2 u^{2}-1, p, \gamma s, m\right\}\right.\),
    \(\gamma s=\gamma_{\#} \& / @\{f s\} ; p=(x===X) ;\)
    \(m=\operatorname{If}\left[p,\left(\begin{array}{cccc}v & u & 1 & u \\ u & 1 & u & 1 \\ 1 & u & v & u \\ u & 1 & u & 1\end{array}\right),-\left(\begin{array}{cccc}v & u & 1 & u \\ u & 1 & u & 1 \\ 1 & u & v & u \\ u & 1 & u & 1\end{array}\right)\right] ;\)
    CF@ \(\left.\Sigma_{\text {B[\{fs\}] }}\left[\operatorname{If}[p,-1,1], \operatorname{PQ}\left[\{ \}, \gamma s^{*} \cdot m \cdot \gamma s\right]\right]\right]\)
```

$\operatorname{TL}\left[x: X\left[i_{-}, j_{-}, k_{-}, L_{-}\right]\right]:=$
TL@If[PositiveQ[x], $\left.\mathbf{X}_{-i, j, k,-l}, \overline{\mathbf{X}}_{-j, k, l,-i}\right]$;
$\operatorname{TL}\left[(x: X \mid \overline{\mathbf{X}})_{f s_{--}}\right]:=\operatorname{Module}[\{t=1-\omega, r, \gamma s, m\}$,
$r=t+t^{*} ; \gamma s=\gamma_{\#} \& / @\{f s\} ;$
$\mathrm{m}=\mathbf{I f}[x==\mathbf{x}$,
$\left.\left(\begin{array}{cccc}-r & -t & 2 t & t^{*} \\ -t^{*} & 0 & t^{*} & 0 \\ 2 t^{*} & t & -r & -t^{*} \\ t & 0 & -t & 0\end{array}\right),\left(\begin{array}{cccc}r & -t & -2 t^{*} & t^{*} \\ -t^{*} & 0 & t^{*} & 0 \\ -2 t & t & r & -t^{*} \\ t & 0 & -t & 0\end{array}\right)\right] ;$
$\left.\mathbf{C F @} \Sigma_{\mathrm{B}[\{f s\}]}\left[0, \mathrm{PQ}\left[\{ \}, \gamma \mathrm{s}^{*} \cdot \mathrm{~m} \cdot \gamma \mathrm{~s}\right]\right]\right]$

Evaluation on Tangles and Knots.

```
Kas[K_] := Fold[mc[#1\oplus#2] &, \mp@subsup{\Sigma}{\textrm{B}[]}{[0, PQ[{}, 0]],}
    List@@ (Kas /@PD@K)];
KasSig[K_] := Expand[Kas[K][1]/2]
```

TL[K_] :=
Fold [mc $[\# 1 \oplus \# 2] \&, \Sigma_{\mathrm{B}[]}[0, \mathrm{PQ}[\{ \}, 0]]$,
List @@ (TL /@PD@K)] /.
$\theta\left[c_{-}+u\right] /$; Abs $[c] \geq 1: \rightarrow \theta[c]$;
TLSig[K_]:=TL[K]【1】

Reidemeister 3.
R3L $=P D\left[X_{-2,5,4,-1}, X_{-3,7,6,-5}\right.$,

$$
X_{-6,9,8,-4]} ;
$$

R3R $=$ PD $\left[X_{-3,5,4,-2,} X_{-4,6,8,-1,}\right.$
$X_{-5,7,9,-6]}$;

\{TL@R3L == TL@R3R, Kas@R3L== Kas@R3R\}
\{True, True \}

Kas@R3L

$\bar{\gamma}-3$	$\begin{gathered} (\gamma-3 \\ 2 u^{2}\left(4 u^{2}-3\right) \end{gathered}$
	$\frac{(2 u-1)(2 u+1)}{(2)}$
87	$u\left(4 u^{2}-3\right)$
	$\frac{(2 u-1)(2 u+1)}{}$
89	1
	(2u-1) $(2 u+1)$
$\overline{7}_{8}$	$2 u$
	(2u-1) (2u+1)
$\bar{\gamma}-1$	1
	(2u-1) (2u+1)
8-2	$u\left(4 u^{2}-3\right)$
	(2u-1) ${ }^{(2 u-1)}$

γ_{7} $\frac{u\left(4 u^{2}-3\right)}{(2 u-1)(2 u+1)}$ $\frac{2\left(2 u^{2}-1\right)}{(2 u-1)(2 u+1)}$ $\frac{u\left(4 u^{2}-3\right)}{(2 u-1)(2 u+1)}$ $-\frac{1}{(2 u-1)\langle 2 u+1)}$ $-\frac{2 u}{(2 u-1)(2 u+1)}$ $-\frac{1}{(2 u-1)(2 u+1)}$

$2 \theta\left(u-\frac{1}{2}\right)-2 \theta\left(u+\frac{1}{2}\right)$

γ_{9}	
$-\frac{1}{(2 u-1)(2 u+1)}$	$-\frac{\gamma_{8}}{(2 u-1)(2 u+1)}$
$\frac{u\left(4 u^{2}-3\right)}{(2 u-1)(2 u+1)}$	$-\frac{1}{(2 u-1)(2 u+1)}$
$\frac{2 u^{2}\left(4 u^{2}-3\right)}{(2 u-1)(2 u+1)}$	$\frac{u\left(4 u^{2}-3\right)}{(2 u-1)(2 u+1)}$
$\frac{u\left(4 u^{2}-3\right)}{(2 u-1)(2 u+1)}$	$\frac{2 u^{2}\left(4 u^{2}-3\right)}{(2 u-1)(2 u+1)}$
$-\frac{1}{(2 u-1)(2 u+1)}$	$\frac{u\left(4 u^{2}-3\right)}{(2 u-1)(2 u+1)}$
$-\frac{2 u}{(2 u-1)(2 u+1)}$	$-\frac{1}{(2 u-1)(2 u+1)}$

$\gamma-1$	
$-\frac{1}{(2 u-1)(2 u+1)}$	$\gamma-2)$ $-\frac{u\left(4 u^{2}-3\right)}{(2 u-1)(2 u+1)}$
$-\frac{2 u}{(2 u-1)(2 u+1)}$	$-\frac{1}{(2 u-1)(2 u+1)}$
$-\frac{1}{(2 u-1)(2 u+1)}$	$-\frac{2 u}{(2 u-1)(2 u+1)}$
$\frac{u\left(4 u^{2}-3\right)}{(2 u-1)(2 u+1)}$	$-\frac{1}{(2 u-1)(2 u+1)}$
$\frac{2\left(2 u^{2}-1\right)}{(2 u-1)(2 u+1)}$	$\frac{u\left(4 u^{2}-3\right)}{(2 u-1)(2 u+1)}$
$\frac{u\left(4 u^{2}-3\right)}{(2 u-1)(2 u+1)}$	$\frac{2 u^{2}\left(4 u^{2}-3\right)}{(2 u-1)(2 u+1)}$

Reidemeister 2.

TL@PD[$\left.\mathbf{X}_{-2,4,3,-1,}, \overline{\mathbf{X}}_{-4,6,5,-3}\right]$				
	0	0	-1	0
	$\left(\gamma_{-2}\right.$	γ_{6}	γ_{5}	$\left.\gamma_{-1}\right)$
$\bar{\gamma}_{-2}$	0	0	0	0
$\bar{\gamma}_{6}$	0	0	0	0
$\bar{\gamma}_{5}$	0	0	0	0
$\bar{\gamma}_{-1}$	0	0	0	0

$\left\{\mathrm{TL@PD}\left[\mathrm{X}_{-2,4,3,-1}, \overline{\mathrm{X}}_{-4,6,5,-3}\right]=\mathrm{GT}_{5,-2} @ \mathrm{TL} @ \operatorname{PD}\left[\mathrm{P}_{-1,5}, \mathrm{P}_{-2,6}\right]\right.$, Kas@PD $\left[X_{-2,4,3,-1}, \bar{X}_{-4,6,5,-3}\right]=$ GT $\left._{5,-2} @ \operatorname{Kas@PD}\left[P_{-1,5}, P_{-2,6}\right]\right\}$
\{True, True \}
Reidemeister 1.

$$
\begin{aligned}
& \left\{\operatorname { T L @ P D } \left[X_{-3,3,2,-1]}=\text { TL@ }_{-1,2},\right.\right. \\
& \text { Kas@PD } \left.\left[X_{-3,3,2,-1}\right]==\operatorname{Kas@}_{-1,2}\right\}
\end{aligned}
$$

\{True, True \}
A Knot.
$\mathrm{f}=\mathrm{TLSig}[\operatorname{Knot}[8,5]$]
$2 \theta\left[-\frac{\sqrt{3}}{2}+u\right]-2 \theta\left[\frac{\sqrt{3}}{2}+u\right]-$

$$
2 \ominus[u-\sqrt{(}-0.630 \ldots]+2 \ominus[u-\sqrt{-}]+630 \ldots
$$

Plot[f, \{u, -1, 1\}]

The Conway-KinoshitaTerasaka Tangles.

Column@ \{TL[T1], Kas [T1] \}

Column@ \{TL[T2], Kas [T2] \}

Examples with non-trivial codimension.
$\mathrm{B} 1=\mathrm{PD}\left[\mathrm{X}_{-5,2,6,-1}, \bar{X}_{-8,3,9,-2}\right.$,
$X_{-11,4,12,-3}, X_{-12,10,13,-9}$,
$\bar{X}_{-13,7,14,-6]}$;
$B 2=P D\left[X_{-5,2,6,-1}, \bar{X}_{-9,3,10,-2}\right.$,

$\left.X_{-10,7,11,-6}, \bar{X}_{-12,4,13,-3}, X_{-13,8,14,-7}\right]$;

Column@ \{TL[B1], Kas [B1] \}

Column@ \{TL[B2], Kas[B2] \}

Questions. 1. Does this have a topological meaning? 2. Is there a version of the Kashaev Conjecture for tangles? 3. Find all solutions of R123 in our "algebra". 4. Braids and the Burau representation. 5. Recover the work in "Prior Art". 6. Are there any concordance properties? 7. What is the "SPQ group"? 8. The jumping points of signatures are the roots of the Alexander polynomial. Does this generalize to tangles? 9. Which of the three Cordon cases is the most common? 10. Are there interesting examples of tangles for which rels is non-trivial? 11. Is the $p q$ part determined by Γ-calculus? 12. Is the $p q$ part determined by finite type invariants? 13. Does it work with closed components / links? 14. Strand-doubling formulas? 15. A multivariable version? 16. Mutation invariance? 17. Ribbon knots? 18. Are there "face-virtual knots"? 19. Does the pushforward story extend to ranks? To formal Gaussian measures? To super Gaussian measures?

References.

[CC] D. Cimasoni, A. Conway, Colored Tangles and Signatures, Math. Proc. Camb. Phil. Soc. 164 (2018) 493-530, arxiv: 1507.07818.
[Co] A. Conway, The Levine-Tristram Signature: A Survey, arXiv: 1903.04477.
[GG] J-M. Gambaudo, É. Ghys, Braids and Signatures, Bull. Soc. Math. France 133-4 (2005) 541-579.
[Ka] R. Kashaev, On Symmetric Matrices Associated with Oriented Link Diagrams, in Topology and Geometry, A Collection of Essays Dedicated to Vladimir G. Turaev, EMS Press 2021, arXiv:1801.04632.
[Li] J. Liu, A Proof of the Kashaev Signature Conjecture, arxiv: 2311.01923.
[Me] A. Merz, An Extension of a Theorem by Cimasoni and Conway, arXiv:2104.02993.

Acknowledgement. This work was partially supported by NSERC grant RGPIN-2018-04350 and by the Chu Family Foundation (NYC).

Some Rigor.

(Exercises hints and partial solutions at end) Exercise 1. Show that if two SPQ's S_{1} and S_{2} on V satisfy $\sigma\left(S_{1}+U\right)=$ $\sigma\left(S_{2}+U\right)$ for every quadratic U on V, then they have the same shifts and the same domains.
Exercise 2. Show that if two full quadratics Q_{1} and Q_{2} satisfy $\sigma\left(Q_{1}+\right.$ $U)=\sigma\left(Q_{2}+U\right)$ for every U, then $Q_{1}=Q_{2}$.
Proof of Theorem 1'. Fix W and consider triples ($V, S, \phi: V \rightarrow W$) where $S=(s, D, Q)$ is an SPQ on V. Say that two triples are "pushequivalent", $\left(V_{1}, S_{1}, \phi_{1}\right) \sim\left(V_{2}, S_{2}, \phi_{2}\right)$ if for every quadratic U on W,

$$
\sigma_{V_{1}}\left(S_{1}+\phi_{1}^{*} U\right)=\sigma_{V_{2}}\left(S_{2}+\phi_{2}^{*} U\right)
$$

Given our (V, S, ϕ), we need to show:

1. There is an SPQ S^{\prime} on W such that $(V, S, \phi) \sim\left(W, S^{\prime}, I\right)$.
2. If $\left(W, S^{\prime}, I\right) \sim\left(W, S^{\prime \prime}, I\right)$ then $S^{\prime}=S^{\prime \prime}$.

Property 2 is easy (Exercises 1, 2). Property 1 follows from the following three claims, each of which is easy.
Claim 1. If $v \in \operatorname{ker} \phi \cap D(S)$, and $\lambda:=Q(v, v) \neq 0$, then $(V, S, \phi) \sim$

$$
\left(V /\langle v\rangle,\left(s+\operatorname{sign}(\lambda), D(S) /\langle v\rangle, Q-\lambda^{-1} Q(-, v) \otimes Q(v,-)\right), \phi /\langle v\rangle\right) .
$$

So wlog $\left.Q\right|_{\text {ker } \phi}=0\left(\right.$ meaning, $\left.\left.Q\right|_{\text {ker } \phi \otimes \operatorname{ker} \phi}=0\right)$.
Claim 2. If $\left.Q\right|_{\operatorname{ker} \phi}=0$ and $v \in \operatorname{ker} \phi \cap D(S)$, let $V^{\prime}=\operatorname{ker} Q(v,-)$ and then $(V, S, \phi) \sim\left(V^{\prime},\left.S\right|_{V^{\prime}},\left.\phi\right|_{V^{\prime}}\right)$ so wlog $\left.Q\right|_{V \otimes \text { ker } \phi+\text { ker } \phi \otimes V}=0$.
Claim 3. If $\left.Q\right|_{V \otimes \text { ker } \phi+\text { ker } \phi \otimes V}=0$ then $S=\phi^{*} S^{\prime}$ for some SPQ S^{\prime} on im ϕ and then $(V, S, \phi) \sim\left(W, S^{\prime}, I\right)$.
Proof of Theorem 2. The functoriality of pullbacks needs no proof.
Now assume $V_{0} \xrightarrow{\alpha} V_{1} \xrightarrow{\beta} V_{2}$ and that S is an SPQ on V_{0}. Then for every SPQ U on V_{2} we have, using reciprocity three times, that $\sigma\left(\beta_{*} \alpha_{*} S+U\right)=\sigma\left(\alpha_{*} S+\beta^{*} U\right)=\sigma\left(S+\alpha^{*} \beta^{*} U\right)=\sigma\left(S+(\beta \alpha)^{*} U\right)=$ $\sigma\left((\beta \alpha)_{*} S+U\right)$. Hence $\beta_{*} \alpha_{*} S=(\beta \alpha)_{*} S$.
Definition. A commutative square as on the right is called admissible if $\gamma^{*} \beta_{*}=v_{*} \mu^{*}$.
Lemma 1. If $V=W=Y=Z$ and $\beta=\gamma=\mu=v=I$, the
square is admissible.
Lemma 2. The following are equivalent:

1. A square as above is admissible.
2. The Pairing Condition holds. Namely, if S_{1} is an SPQ on V (write $S_{1} \vdash V$) and $S_{2} \vdash W$, then $\sigma\left(\mu^{*} S_{1}+v^{*} S_{2}\right)=\sigma\left(\beta_{*} S_{1}+\gamma_{*} S_{2}\right)$.
3. The square is mirror admissible: $\beta^{*} \gamma_{*}=\mu_{*} v^{*}$.

Proof. Using Exercises 1 and 2 below, and then using re- $\quad \mu \downarrow \downarrow \downarrow$ ciprocity on both sides, we have $\forall S_{1} \gamma^{*} \beta_{*} S_{1}=v_{*} \mu^{*} S_{1} \Leftrightarrow \quad V \rightarrow \underset{\beta}{\rightarrow} Z$ $\forall S_{1} \forall S_{2} \sigma\left(\gamma^{*} \beta_{*} S_{1}+S_{2}\right)=\sigma\left(v_{*} \mu^{*} S_{1}+S_{2}\right) \Leftrightarrow \forall S_{1} \forall S_{2} \sigma\left(\beta_{*} S_{1}+\gamma_{*} \mathcal{S}_{2}\right)=$ $\sigma\left(\mu^{*} S_{1}+v^{*} S_{2}\right)$, and thus $1 \Leftrightarrow 2$. But the condition in 2 is symmetric under $\beta \leftrightarrow \gamma, \mu \leftrightarrow \nu$, so also $2 \Leftrightarrow 3$.
Lemma 3. If the first diagram below is admissible, then so is the second.

$$
\begin{gathered}
Y \xrightarrow{v} W \\
\mu \downarrow \vec{~} W \gamma \\
V \xrightarrow[\beta]{\rightarrow} Z
\end{gathered}
$$

Lemma 4. A pushforward by an inclusion is the do nothing operation (though note that the pushforward via an inclusion of a fully defined quadratic retains its domain of definition, which now may become partial).
Lemma 5. For any linear $\phi: V \rightarrow W$, the diagram on the right is admissible, where ι denotes the inclusion maps.
Proof. Follows easily from Lemma 4.
Definition. If S is an SPQ with domain D and quadratic Q, the radical of S is the radical of Q considered as a fully-defined quadratic on D. Namely, $\operatorname{rad} S:=\{u \in D: \forall v \in D, Q(u, v)=0\}$.

Lemma 6. Always, $\phi(\operatorname{rad} S) \subset \operatorname{rad} \phi_{*} S$.
Proof. Pick $w \in \phi(\operatorname{rad} S)$ and repeat the proof of Theorem 1' but now considering quadruples (V, S, ϕ, v), where (V, S, ϕ) are as before and $v \in \operatorname{rad} S$ satisfies $\phi(v)=w$. Clearly our initial triple (V, S, ϕ) can be extended to such a quadruple, and it is easy to repeat the steps of the proof of Theorem 1' extending everything to such quadruples.
We have to acknowledge that our proof of Lemma 6 is ugly. We wish we had a cleaner one.
Exercise 3. Show that if two SPQ's S_{1} and S_{2} on $V \oplus A$ satisfy $A \subset \operatorname{rad} S_{i}$ and $\sigma\left(S_{1}+\pi^{*} U\right)=\sigma\left(S_{2}+\pi^{*} U\right)$ for every quadratic U on V, where $\pi: V \oplus A \rightarrow V$ is the projection, then $S_{1}=S_{2}$.
Exercise 4. Show that if $\phi: V \rightarrow W$ is surjective and Q is a quadratic on W, then $\sigma(Q)=\sigma\left(\phi^{*} Q\right)$.
Exercise 5. Show that always, $\phi_{*} \phi^{*} S=\left.S\right|_{\mathrm{im} \phi}$.
Lemma 7. For any linear $\phi: V \rightarrow W$, the diagram on the right is admissible, where $\phi^{+}:=\phi \oplus I$ and α and β denote the projection maps.
Proof. Let S be an SPQ on V. Clearly $C \subset$

$\beta^{*} \phi_{*} S$. Also, $C \subset \operatorname{rad} \alpha^{*} S$ so by Lemma $6, C=\phi^{+}(C) \subset \phi^{+}\left(\operatorname{rad} \alpha^{*} S\right) \subset$ $\operatorname{rad} \phi_{*}^{+} \alpha^{*} S$. Hence using Exercise 3, it is enough to show that $\sigma\left(\phi_{*}^{+} \alpha^{*} S+\right.$ $\left.\beta^{*} U\right)=\sigma\left(\beta^{*} \phi_{*} S+\beta^{*} U\right)$ for every U on W. Indeed, $\sigma\left(\phi_{*}^{+} \alpha^{*} S+\beta^{*} U\right) \stackrel{(1)}{=}$ $\sigma\left(\beta_{*} \phi_{*}^{+} \alpha^{*} S+U\right) \stackrel{(2)}{=} \sigma\left(\phi_{*} \alpha_{*} \alpha^{*} S+U\right) \stackrel{(3)}{=} \sigma\left(\phi_{*} S+U\right) \stackrel{(4)}{=} \sigma\left(\beta^{*}\left(\phi_{*} S+U\right)\right) \stackrel{(5)}{=}$ $\sigma\left(\beta^{*} \phi_{*} S+\beta^{*} U\right)$, using (1) reciprocity, (2) the commutativity of the diagram and the functoriality of pushing, (3) Exercise 5, (4) Exercise 4, and (5) the additivity of pullbacks.
Lemma 8. If the first diagram below is admissible, then so are the other
two. $\begin{aligned} & Y \stackrel{v}{\rightarrow} W \\ & \mu \downarrow \\ & \underset{\beta}{\vec{\beta}} Z\end{aligned}$

$$
\begin{aligned}
& \underset{\mu \oplus I \downarrow}{ } \underset{\sim}{\bullet} \underset{\downarrow}{\nu \oplus 0} W \\
& V \oplus E \xrightarrow[\beta \oplus 0]{ } Z
\end{aligned}
$$

Proof. In the diagram
with π marking projections and ι inclusions, the left square is admissible by Lemma 7, the middle square by assumption, and the right square by Lemma 5. Along with the functoriality of pushforwards this shows the admissibility of both the left and the right 1×2 subrectangles, and these are the diagrams we wanted.
Proof of Theorem 3. Decompose $Z=$ $A \oplus B \oplus C \oplus D$, where $A=\operatorname{im} \beta \cap \operatorname{im} \gamma$, $\operatorname{im} \beta=A \oplus B$, and $\operatorname{im} \gamma=A \oplus C$. Write $\quad A \oplus B \oplus E \rightarrow A \oplus B \oplus C \oplus D$ $V \simeq A \oplus B \oplus E$ with $\beta=I$ on $A \oplus B$ yet $\beta=0$ on E, and write $W \simeq A \oplus C \oplus F$ with $\gamma=I$ on $A \oplus C$ yet $\gamma=0$ on F. Then $Y=V \oplus_{Z} W \simeq A \oplus E \oplus F$ and our square is as shown on the right, with all maps equal to I on like-named summands and equal to 0 on non-like-named summands. But this diagram is admissible: build it up using Lemma 1 for the A 's, and then Lemma 8 for E and C, and then again Lemma 8 along with the mirror property of Lemma 2 for B and F, and then Lemma 3 for D.

To prove Theorem 4, given three ${ }^{1}$ SPQ's S_{1}, S_{2}, and S_{3}, we need to show that planar-multiplying them in two steps, first using a planar connection diagram $D_{I}\left(I\right.$ for Inner) to yield $S_{6}=\mathcal{S}\left(D_{I}\right)\left(S_{2}, S_{3}\right)$ and then using a second planar connection diagram $D_{O}(O$ for Outer) to yield $\mathcal{S}\left(D_{O}\right)\left(S_{1}, S_{6}\right)$, gives the same answer as multiplying them all at once using the composition planar connection diagram $D_{B}=D_{O} \circ_{6} D_{I}(B$ for Big) to yield $\mathcal{S}\left(D_{B}\right)\left(S_{1}, S_{2}, S_{3}\right) .^{2}$ An example should help:

[^0]

In this example, if you ignore the dotted green line (marked " 6 "), you see the planar connection diagram D_{B}, which has three inputs $(1,2,3)$ and a single output, the cycle 0 . If you only look inside the green line, you see D_{I}, with inputs 2 and 3 and an output cycle 6 . If you ignore the inside of 6 you see D_{O}, with inputs 1 and 6 and output cycle 0 .
Let F_{B} (Big Faces) denote the vector space whose basis are the faces of D_{B}, let F_{I} (Inner Faces) be the space of faces of D_{I}, and let F_{O} (Outer Faces) be the space
 of faces of D_{O}. Let $G_{1}, G_{2}, G_{3}, G_{6}$, and G_{0} be the spaces of gaps (edges) along the cycles $1,2,3,6$, and 0 , respectively. Let $\psi:=\psi_{D_{B}}$ and $\phi:=\phi^{D_{B}}$ be the maps defining $\mathcal{S}\left(D_{B}\right)$ and let $\gamma:=\psi_{D_{o}}$ and $\delta:=\phi^{D_{o}}$ be the maps defining $\mathcal{S}\left(D_{O}\right)$. Further, let $\alpha:=\psi_{D_{I}}: F_{I} \rightarrow G_{2} \oplus G_{3}$ and $\beta:=\phi^{D_{I}}: F_{I} \rightarrow G_{6}$ be the maps defining $\mathcal{S}\left(D_{I}\right)$, and let $\alpha_{+}:=I \oplus \alpha$ and $\beta^{+}:=I \oplus \beta$ be the extensions of α and β by an identity on an extra factor of G_{1}, so that $\beta_{*}^{+} \alpha_{+}^{*}=I_{G_{1}} \oplus \mathcal{S}\left(D_{I}\right)$. Let μ map any big face to the sum of G_{1} gaps around it, plus the sum of the inner faces it contains. Let v map any big face to the sum of the outer faces it contains. It is easy to see that the master diagram $(M D)$ shown on the right, made of all of these spaces and maps, is commutative.
Claim. The bottom right square of $(M D)$ is an equalizer square, namely $F_{B} \simeq E Q\left(\beta^{+}, \gamma\right)$. Hence $v_{*} \mu^{*}=\gamma^{*} \beta_{*}^{+}$. $\vec{*} \mu_{*}$. $\quad G_{1} \oplus F_{I} \overrightarrow{\beta^{+}} G_{1} \oplus G_{6}$ Proof. A big face (an element of F_{B}) is a sum of outer faces f_{o} and a sum of inner faces f_{i}, and it has a boundary g_{1} on input cycle 1 , such that the boundary of the outer pieces f_{o} is equal to the boundary of the inner pieces f_{i} plus g_{1}. That matches perfectly with the definition of the equalizer: $E Q\left(\beta^{+}, \gamma\right)=\left\{\left(g_{1}, f_{i}, f_{o}\right): \beta^{+}\left(g_{1}, f_{i}\right)=\gamma\left(f_{o}\right)\right\}=$ $\left\{\left(g_{1}, f_{i}, f_{o}\right): \gamma\left(f_{o}\right)=\left(g_{1}, \beta\left(f_{i}\right)\right)\right\}$.
Proof of Theorem 4. With notation as above, with the example above (which is general enough), and with the claim above, and also using functoriality, we have $\mathcal{S}\left(D_{B}\right)=\phi_{*} \psi^{*}=\delta_{*} v_{*} \mu^{*} \alpha_{+}^{*}=\delta_{*} \gamma^{*} \beta_{*}^{+} \alpha_{+}^{*}=$ $\mathcal{S}\left(D_{O}\right) \circ\left(I_{G_{1}} \oplus \mathcal{S}\left(D_{I}\right)\right)$, as required.
Proof of Theorem 5. We need to verify the Reidemeister moves and that was done in the computational section, and the statement about the restriction to links, which is easy: simply assemble an n-crossing knot using an n-input planar connection diagram, and the formulas clearly match.
Further Homework.
Exercise 6. By taking $U=0$ in the reciprocity statement, prove that always $\sigma\left(\phi_{*} S\right)=\sigma(S)$. But that seems wrong, if $\phi=0$. What saves the day?
Exercise 7. By taking $S=0$ in the reciprocity statement, frove that always $\sigma\left(\phi^{*} U\right)=\sigma(U)$. But wait, this is nonsense! What went wrong? Exercise 8. Given $\phi: V \rightarrow W$ and a subspace $D \subset V$, show that there is a unique subspace $\phi_{*} D \subset W$ such that for every quadratic Q on W, $\sigma\left(\left.\phi^{*} Q\right|_{D}\right)=\sigma\left(\left.Q\right|_{\phi_{*} D}\right)$.
Exercise 9. When are diagrams as on the right equalizer diagrams? What then do we learn from Theorem 3?

Exercise 10. There are 11 types or irreducible commutative squares:
 $0 \rightarrow 0 \quad 0 \rightarrow 0 \quad 1 \rightarrow 0 \quad 0 \rightarrow 1 \quad 0 \rightarrow 0 \quad 0 \rightarrow 1 \quad 0 \rightarrow 1 \quad 1 \stackrel{1}{\nrightarrow}$
 $1 \stackrel{1}{\rightarrow} 1 \quad 1 \rightarrow 0 \quad 1 \xrightarrow{1} 1$
ling for all but four of them. Compare with the statement of Theorem 3. Exercise 11. Prove that a square is admissible iff it is an equalizer square, with an additional direct summand A added to the Y term, and with the maps μ and v extended by 0 on A.
Exercise 12. Prove that the direct sum of two admissible squares is admissible. Warning: Harder than it seems! Not all quadratics on $V_{1} \oplus V_{2}$ are direct sums of quadratics on V_{1} and on V_{2}.
Exercise 13. Given a quadratic Q on a space V, let π be the projection $V \rightarrow V / \operatorname{rad}(Q)$ and show that $\pi_{*} Q=Q / \operatorname{rad}(Q)$, with the obvious definition for the latter.
Exercise 14. Show that for any partial quadratic Q on a space W there exists a space A and a fully-defined quadratic F on $W \oplus A$ such that $\pi_{*} F=Q$, where $\pi: W \oplus A \rightarrow W$ is the projection (these are not unique). Furthermore, if $\phi: V \rightarrow W$, then $\phi^{*} Q=\pi_{*} \phi_{+}^{*} F$, where $\phi_{+}=\phi \oplus I: V \oplus A \rightarrow W \oplus A$ and π also denotes the projection $V \oplus A \rightarrow V$.

Solutions / Hints.

Dror Bar－Natan：Talks：Tokyo－230911： Rooting the BKT for FTI Thanks for inviting me to UTokyo！圆回 $\omega \varepsilon \beta:=h t t p: / / d r o r b n . n e t / t o k 2309$ 回粈

Abstract．Following joint work with Itai Bar－Natan，Iva Halache－ va，and Nancy Scherich，I will show that the Best Known Time （BKT）to compute a typical Finite Type Invariant（FTI）of type d on a typical knot with n crossings is roughly equal to $n^{d / 2}$ ，which is roughly the square root of what I believe was the standard be－ lief before，namely about n^{d} ．
Conventions．• $\underline{\mathrm{n}}:=\{1,2, \ldots, n\}$ ．• For complexity estimates we ignore constant and logarithmic terms：$n^{3} \sim 2023 d!(\log n)^{d} n^{3}$ ．
A Key Preliminary．Let $Q \subset$ \underline{n}^{l} be an enumerated subset，with $1 \ll q=|Q| \ll n^{l}$ ．In time $\sim q$ we can set up a lookup table of size $\sim q$ so that we will be able ． to compute $|Q \cap R|$ in time ~ 1 ， for any rectangle $R \subset \underline{\mathrm{n}}^{l}$ ．
Fails．－Count after R is prese－ nted．－Make a lookup table of $|Q \cap R|$ counts for all R＇s．

Unfail．Make a restricted loo－ kup table of the form

$$
\{\underset{\text { dyadic }}{R} \rightarrow \mid Q \underset{>0}{\cap R \mid}\} .
$$

－Make the table by running through $x \in Q$ ，and for each one increment by 1 only the entries for dyadic $R \ni x$（or create such an entry，if it di－ dn＇t exist already）．This takes $q \cdot\left(\log _{2} n\right)^{l} \sim q$ ops．

－Entries for empty dyadic R＇s are not needed and not created．
－Using standard sorting techniques，access takes $\log _{2} q \sim 1$ ops．
－A general R is a union of at most $\left(2 \log _{2} n\right)^{l} \sim 1$ dyadic ones， so counting $|Q \cap R|$ takes ~ 1 ops．
Generalization．Without changing the conclusion，replace counts $|Q \cap R|$ with summations $\sum_{R} \theta$ ，where $\theta: \underline{\mathrm{n}}^{l} \rightarrow V$ is suppor－ ted on a sparse Q ，takes values in a vector space \bar{V} with $\operatorname{dim} V \sim 1$ ， and in some basis，all of its coefficients are＂easy＂．

Here＇s $|G|=n=100$
Here＇s $|G|=n=100$
（signs suppressed）：

Acknowledgement．This work was partially supported by NSERC grant RGPIN－2018－04350 and by the Chu Family Foundation（NYC）．

My Primary Interest．Strong，fast，homomorphic knot and tan－ gle invariants． $\omega \varepsilon \beta /$ Nara，$\omega \varepsilon \beta /$ Kyoto，$\omega \varepsilon \beta /$ Tokyo

The［GPV］Theorem．A knot invariant is fi－ nite type of type d iff it is of the form $\omega \circ \varphi_{\leq d}$ for some $\omega \in \mathcal{G}_{\leq d}^{*}$ ．

－\Leftarrow is easy；\Rightarrow is hard and IMHO not well understood．
－$\varphi_{\leq d}$ is not an invariants and not every ω gives an invariant！
－The theory of finite type invariants is very rich．Many knot invariants factor through finite type invariants，and it is possible that they separate knots．
－We need a fast algorithm to compute $\varphi_{\leq d}$ ！
Our Main Theorem．On an n－arrow Gauss diagram，φ_{d} can be computed in time $\sim n^{[d / 2]}$ ．
Proof．With $d=p+l$（ p for＂put＂，l for＂lookup＂），pick p arrows and look up in how many ways the remaining l can be placed in between the legs of the first p ：

To reconstruct $D=P \#_{\lambda} L$ from P and L we need a non－decreasing ＇placement function＂$\lambda: \underline{2 l} \rightarrow \underline{2 p+1}$ ．

Define $\theta_{G}: \underline{2 n}^{2 l} \rightarrow \mathcal{G}_{l}$ by
$\left(L_{1}, \ldots, L_{2 l}\right) \mapsto \begin{cases}L & \text { if }\left(L_{1}, \ldots, L_{2 l}\right) \text { are the ends of some } L \subset G \\ 0 & \text { otherwise }\end{cases}$ and now $\varphi_{d}(G)=\binom{d}{p}^{-1} \sum_{P \in\binom{G}{p}} \sum_{\substack{\text { non－derecasing } \\:=\underline{l l} \rightarrow 2 p+1}} P \#_{\lambda}\left(\sum_{\prod_{i}\left(P_{\lambda(i)-1}, P_{\lambda(i)}\right)} \theta_{G}\right)$
can be computed in time $\sim n^{p}+n^{l}$ ．Now take $p=\lceil d / 2\rceil$ ．
 planar projections（here likely $n \sim L^{4 / 3}$ ）？
［BBHS］D．Bar－Natan，I．Bar－Natan，I．Halacheva，and N．Scherich，Yarn Ball Knots and Faster Computations，J．of Appl．and Comp．Topology（to appear），arXiv：2108．10923． ［GPV］M．Goussarov，M．Polyak，and O．Viro，Finite type invariants of classical and virtual knots，Topology 39 （2000）1045－1068，arXiv：math．GT／9810073．

Abstract. Reporting on joint work with Roland van der Veen, I'll tell you some stories about ρ_{1}, an easy to define, strong, fast to compute, homomorphic, Veen and well-connected knot invariant. ρ_{1} was first studied by Rozansky and Overbay [Ro1, Ro2, Ro3, Ov] and Ohtsuki [Oh2], it has far-reaching generalizations, it is elementary and dominated by the coloured Jones polynomial, and I wish I understood it. Common misconception. Dominated, elementary \Rightarrow lesser.
We seek strong, fast, homomorphic knot and tangle invariants. Strong. Having a small "kernel".
Fast. Computable even for large knots (best: poly time).

Homomorphic. Extends to tangles and behaves under tangle operations; especially gluings and doublings:

Why care for "Homomorphic"? Theorem. A knot K is ribbon iff there exists a $2 n$-component tangle T with skeleton as below such that $\tau(T)=K$ and where $\delta(T)=U$ is the untangle:

Acknowledgement. This work was supported by NSERC grant RGPIN-2018-04350 and by the Chu Family Foundation (NYC).
[BV1] D. Bar-Natan and R. van der Veen, A Polynomial Time Knot References. Polynomial, Proc. Amer. Math. Soc. 147 (2019) 377-397, arXiv:1708.04853.
[BV2] D. Bar-Natan and R. van der Veen, Perturbed Gaussian Generating Functions for Universal Knot Invariants, arXiv:2109.02057.
[Dr] V. G. Drinfel'd, Quantum Groups, Proc. Int. Cong. Math., 798-820, Berkeley, 1986.
[Jo] V. F. R. Jones, Hecke Algebra Representations of Braid Groups and Link Polynomials, Annals Math., 126 (1987) 335-388.
[La] R. J. Lawrence, Universal Link Invariants using Quantum Groups, Proc. XVII Int. Conf. on Diff. Geom. Methods in Theor. Phys., Chester, England, August 1988. World Scientific (1989) 55-63.
[LTW] X-S. Lin, F. Tian, and Z. Wang, Burau Representation and Random Walk on String Links, Pac. J. Math., 182-2 (1998) 289-302, arXiv:q-alg/9605023.
[Oh1] T. Ohtsuki, Quantum Invariants, Series on Knots and Everything 29, World Scientific 2002.
[Oh2] T. Ohtsuki, On the 2-loop Polynomial of Knots, Geom. Top. 11 (2007) 1357-1475.
[Ov] A. Overbay, Perturbative Expansion of the Colored Jones Polynomial, Ph.D. thesis, University of North Carolina, August 2013, $\omega \varepsilon \beta / \mathrm{Ov}$.
[Ro1] L. Rozansky, A Contribution of the Trivial Flat Connection to the Jones Polynomial and Witten's Invariant of 3D Manifolds, I, Comm. Math. Phys. 175-2 (1996) 275-296, arXiv:hep-th/9401061.
[Ro2] L. Rozansky, The Universal R-Matrix, Burau Representation and the Melvin-Morton Expansion of the Colored Jones Polynomial, Adv. Math. 134-1 (1998) 1-31, arXiv:q-alg/9604005.
[Ro3] L. Rozansky, A Universal U(1)-RCC Invariant of Links and Rationality Conjecture, arXiv:math/0201139.
[Sch] S. Schaveling, Expansions of Quantum Group Invariants, Ph.D. thesis, Universiteit Leiden, September 2020, $\omega \varepsilon \beta /$ Scha.

Jones:
Formulas stay; interpretations change with time. Formulas. Draw an n-crossing knot K as on the right: all crossings face up, and the edges are marked with a running index $k \in\{1, \ldots, 2 n+1\}$ and with rotation numbers φ_{k}. Let A be the $(2 n+1) \times(2 n+1)$ matrix constructed by starting with the identity matrix I, and adding a 2×2 block for each crossing:

Let $G=\left(g_{\alpha \beta}\right)=A^{-1}$. For the trefoil example, it is:
$A=\left(\begin{array}{ccccccc}1 & -T & 0 & 0 & T-1 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & -T & 0 & 0 & T-1 \\ 0 & 0 & 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & T-1 & 0 & 1 & -T & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1\end{array}\right)$

$$
G=\left(\begin{array}{cccc}
1 & T & 1 & T \\
0 & 1 & \frac{1}{T^{2}-T+1} & \frac{T}{T^{2}-T+1} \\
0 & 0 & \frac{1}{T_{1}^{2}-T_{1}+1} & \frac{T}{T^{2}-T+1} \\
0 & 0 & \frac{1}{T^{2}-T+1} & \frac{1}{T_{2}^{2}-T+1} \\
0 & 0 & \frac{1 T}{T^{2}-T+1} & -\frac{(T-1) T}{T^{2}-T+1} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\text { "The Green Function" }
\end{array}\right.
$$

$$
\begin{array}{ccc}
1 & -1 & \\
0 & 1 & \\
1 & T & 1 \\
\frac{T}{T^{2}-T+1} & \frac{T^{2}}{T^{2}-T^{2}+1} & 1 \\
\frac{T}{T^{2}-T+1} & \frac{T^{2}}{T^{2}-T+1} & 1 \\
\frac{1}{T^{2}-T+1} & \frac{1}{T^{2}-T+1} & 1 \\
\frac{1}{T^{2}-T+1} & \frac{T}{T^{2}-T+1} & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}
$$

Note. The Alexander polynomial Δ is given by

$$
\Delta=T^{(-\varphi-w) / 2} \operatorname{det}(A), \quad \text { with } \varphi=\sum_{k} \varphi_{k}, w=\sum_{c} s .
$$

Classical Topologists: This is boring. Yawn.
Formulas, continued. Finally, set

$$
\begin{aligned}
& \qquad R_{1}(c):=s\left(g_{j i}\left(g_{j+1, j}+g_{j, j+1}-g_{i j}\right)-g_{i i}\left(g_{j, j+1}-1\right)-1 / 2\right) \\
& \rho_{1}:=\Delta^{2}\left(\sum_{c} R_{1}(c)-\sum_{k} \varphi_{k}\left(g_{k k}-1 / 2\right)\right) \\
& \text { In our example } \rho_{1}=-T^{2}+2 T-2+2 T^{-1}-T^{-2}
\end{aligned}
$$

Theorem. ρ_{1} is a knot invariant.
Proof: later.
Classical Topologists: Whiskey Tango Foxtrot?
Cars, Interchanges, and Traffic Counters. Cars always drive forward. When a car crosses over a bridge t goes through with (algebraic) probability $T^{s} \sim 1$, but falls off with probability $1-T^{s} \sim 0^{*}$. At the very end, cars fall off and disappear. See also [Jo, LTW].

$$
\begin{aligned}
& s=+1 \quad s=-1 \\
& \begin{array}{c|c}
A & \operatorname{col} i+1 \\
\hline \text { row } i & -T^{s} \\
\text { row } j & 0
\end{array}
\end{aligned}
$$

Preliminaries

This is Rho．nb of http：／／drorbn．net／oa22／ap．
Once［＜＜KnotTheory ；＜＜Rot．m］；
Loading KnotTheory｀version of February 2，2020，10：53：45．2097．
Read more at http：／／katlas．org／wiki／KnotTheory．
Loading Rot．m from http：／／drorbn．net／la22／ap to compute rotation numbers．

The Program

$$
\begin{aligned}
& \mathbf{R}_{1}\left[S_{-}, i_{-}, j_{-}\right]:= \\
& s\left(g_{j i}\left(g_{j^{+}, j}+g_{j, j^{+}}-g_{i j}\right)-g_{i i}\left(g_{j, j^{+}}-1\right)-1 / 2\right) ; \\
& \text { Z [K_] := Module }[\{C s, \varphi, n, A, s, i, j, k, \Delta, G, \rho 1\} \text {, } \\
& \{\mathrm{Cs}, \varphi\}=\operatorname{Rot}[K] ; \mathrm{n}=\text { Length[Cs]; } \\
& \text { A = IdentityMatrix[2n+1]; } \\
& \text { Cases }\left[C s,\left\{s, i_{-}, j_{-}\right\}: \rightarrow\right. \\
& \left.\left(A \llbracket\{i, j\},\{i+1, j+1\} \rrbracket+=\left(\begin{array}{cc}
-\mathrm{T}^{s} \mathrm{~T}^{s}-1 \\
0 & -1
\end{array}\right)\right)\right] ; \\
& \Delta=T^{(-\operatorname{Total}[\varphi]-\operatorname{Total}[\operatorname{Cs}[A 11,1 \rrbracket]) / 2} \operatorname{Det}[A] ; \\
& \mathrm{G}=\text { Inverse [A]; } \\
& \rho 1=\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{R}_{1} \text { @@Cs【k】-} \sum_{\mathrm{k}=1}^{2 \mathrm{n}} \varphi \llbracket \mathrm{k} \rrbracket\left(\mathrm{~g}_{\mathrm{kk}}-1 / 2\right) ; \\
& \text { Factor@ } \\
& \left.\left\{\Delta, \Delta^{2} \rho 1 / \cdot \alpha_{-}^{+}: \rightarrow \alpha+1 / \cdot \mathrm{g}_{\alpha_{-}, \beta_{-}}: \rightarrow \mathrm{G} \llbracket \alpha, \beta \rrbracket\right\}\right] ;
\end{aligned}
$$

The First Few Knots

Timing＠

$$
\begin{aligned}
& Z\left[\text { GST48 }=\operatorname{EPD}\left[X_{14,1}, \bar{X}_{2,29}, X_{3,40}, X_{43,4}, \bar{X}_{26,5}, X_{6,95}\right. \text {, }\right. \\
& X_{96,7}, X_{13,8}, \bar{X}_{9,28}, X_{10,41}, X_{42,11}, \bar{X}_{27,12}, X_{30,15} \text {, } \\
& \bar{X}_{16,61}, \bar{X}_{17,72}, \bar{X}_{18,83}, X_{19,34}, \bar{X}_{89,28}, \bar{X}_{21,92}, \\
& \bar{X}_{79,22}, \bar{X}_{68,23}, \bar{X}_{57,24}, \bar{X}_{25,56}, X_{62,31}, X_{73,32}, \\
& x_{84,33}, \bar{X}_{50,35}, x_{36,81}, x_{37,70}, X_{38,59}, \bar{X}_{39,54}, X_{44,55}, \\
& X_{58,45}, X_{69,46}, X_{80,47}, X_{48,91}, X_{90,49}, X_{51,82}, X_{52,71}, \\
& X_{53,68}, \bar{X}_{63,74}, \bar{X}_{64,85}, \bar{X}_{76,65}, \bar{X}_{87,66}, \bar{X}_{67,94}, \\
& \left.\left.\bar{X}_{75,86}, \bar{X}_{88,77}, \bar{X}_{78,93}\right]\right] \\
& \left\{170.313,\left\{-\frac{1}{\mathrm{~T}^{8}}\left(-1+2 \mathrm{~T}-\mathrm{T}^{2}-\mathrm{T}^{3}+2 \mathrm{~T}^{4}-\mathrm{T}^{5}+\mathrm{T}^{8}\right)\right.\right. \\
& \left(-1+T^{3}-2 T^{4}+T^{5}+T^{6}-2 T^{7}+T^{8}\right), \frac{1}{T^{16}} \\
& (-1+T)^{2}\left(5-18 T+33 T^{2}-32 T^{3}+2 T^{4}+42 T^{5}-62 T^{6}-\right. \\
& 8 T^{7}+166 T^{8}-242 T^{9}+108 T^{10}+132 T^{11}-226 T^{12}+ \\
& 148 T^{13}-11 T^{14}-36 T^{15}-11 T^{16}+148 T^{17}-226 T^{18}+ \\
& 132 \mathrm{~T}^{19}+108 \mathrm{~T}^{2 \theta}-242 \mathrm{~T}^{21}+166 \mathrm{~T}^{22}-8 \mathrm{~T}^{23}-62 \mathrm{~T}^{24}+ \\
& \left.\left.\left.42 T^{25}+2 T^{26}-32 T^{27}+33 T^{28}-18 T^{29}+5 T^{30}\right)\right\}\right\}
\end{aligned}
$$

Strong！

\｛NumberOfKnots［ \｛ 3，12\}],

Length＠

Union＠Table［Z［K］，\｛K，AllKnots［\｛3，12\}]\}],
Length＠
Union＠Table［ \｛HOMFLYPT［K］，Kh［K］\},
$\{K, A l l K n o t s[\{3,12\}]\}]\}$
\｛2977，2882，2785\}
So the pair（ Δ, ρ_{1} ）attains 2,882 distinct values on the 2,977 prime knots with up to 12 crossings（a deficit of 95），whereas the pair （HOMFLYPT，Khovanov Homology）attains only 2，785 distinct values on the same knots（a deficit of 192）．

Theorem. The Green function $g_{\alpha \beta}$ is the reading of a traffic counter at β, if car traffic is injected at α (if $\alpha=\beta$, the counter is after the injection point).
Example.

苞
Wearing my Quantum Algebra hat, I spy a Heisenberg algebra $\mathbb{H}=A\langle p, x\rangle /([p, x]=1):$

$$
\text { cars } \leftrightarrow p \quad \text { traffic counters } \leftrightarrow x
$$

HEISENBERG
Where did it come from? Consider $\mathfrak{g}_{\epsilon}:=s l_{2+}^{\epsilon}:=L\langle y, b, a, x\rangle$ with relations

$$
\begin{gathered}
{[b, x]=\epsilon x, \quad[b, y]=-\epsilon y, \quad[b, a]=0} \\
{[a, x]=x, \quad[a, y]=-y, \quad[x, y]=b+\epsilon a .}
\end{gathered}
$$

At invertible ϵ, it is isomorphic to $s l_{2}$ plus a central factor, and it can be quantized à la Drinfel'd [Dr] much like $s l_{2}$ to get an algebra $Q U=A\langle y, b, a, x\rangle$ subject to (with $q=\mathbb{e}^{\hbar \epsilon}$):

$$
[b, a]=0, \quad[b, x]=\epsilon x, \quad[b, y]=-\epsilon y,
$$

$$
[a, x]=x, \quad[a, y]=-y, \quad x y-q y x=\frac{1-\mathbb{e}^{-\hbar(b+\epsilon a)}}{\hbar}
$$

Invariance of ρ_{1}. We start with the hardest, Reidemeister 3:

\Rightarrow Overall traffic patterns are unaffected by Reid3!
\Rightarrow Green's $g_{\alpha \beta}$ is unchanged by Reid3, provided the cars injection site α and the traffic counters β are away.
\Rightarrow Only the contribution from the R_{1} terms within the Reid3 move matters, and using g-rules the relevant $g_{\alpha \beta}$'s can be pu-

```
shed outside of the Reid3 area:
\deltai_,j_
gRules
```



```
    \mp@subsup{g}{\alpha-}{\prime},i}:->\mp@subsup{\mathbf{T}}{}{-s}(\mp@subsup{\textrm{g}}{\alpha,\mp@subsup{i}{}{+}}{}-\mp@subsup{\delta}{\alpha,\mp@subsup{i}{}{+}}{})
    g}\mp@subsup{\alpha}{~}{\prime}j:->\mp@subsup{\textrm{g}}{\alpha,\mp@subsup{j}{}{+}}{
```


Ihs $=R_{1}[1, j, k]+R_{1}\left[1, i, k^{+}\right]+R_{1}\left[1, i^{+}, j^{+}\right] / /$.
gRules $_{1, j, k}$ grules $_{1, i, k^{+}}$U gRules $_{1, \mathrm{i}^{+}, \mathrm{j}^{+}}$;
$r h s=R_{1}[1, i, j]+R_{1}\left[1, i^{+}, k\right]+R_{1}\left[1, j^{+}, k^{+}\right] / /$.
gRules $_{1, i, j} \cup$ gRules $_{1, \mathrm{i}^{+}, k} \cup$ gRules $_{1, \mathrm{j}^{+}, \mathrm{k}^{+}}$;
Simplify[lhs == rhs]
True

Next comes Reid1, where we use results from an earlier example:
$\mathrm{R}_{1}[1,2,1]-1\left(\mathrm{~g}_{22}-1 / 2\right) / . \mathrm{g}_{\alpha_{-}, \beta_{-}}: \rightarrow\left(\begin{array}{ccc}1 & \mathrm{~T}^{-1} 1 \\ 0 & \mathrm{~T}^{-1} & 1 \\ 0 & 0 & 1\end{array}\right) \llbracket \alpha, \beta \rrbracket$
$\frac{1}{\mathrm{~T}^{2}}-\frac{1}{\mathrm{~T}}-\frac{-1+\frac{1}{\mathrm{~T}}}{\mathrm{~T}}=\square$

Invariance under the other moves is proven similarly.
Wearing my Topology hat the formula for R_{1}, and even the idea to look for R_{1}, remain a complete mystery to me.

$\mathcal{R} \in \mathbb{H} \otimes \mathbb{H}$.

Everything still makes sense at $\epsilon=0$ and can be expanded near $\epsilon=0$ resulting with $\mathcal{R}=\mathcal{R}_{0}\left(1+\epsilon \mathcal{R}_{1}+\cdots\right)$, with $\mathcal{R}_{0}=\mathbb{e}^{t(x p \otimes 1-x \otimes p)}$ and \mathcal{R}_{1} a quartic polynomial in p and x. So p 's and x 's get created along K and need to be pushed around to a standard location ("normal ordering"). This is done using

$$
\begin{aligned}
& (p \otimes 1) \mathcal{R}_{0}=\mathcal{R}_{0}(T(p \otimes 1)+(1-T)(1 \otimes p)) \\
& (1 \otimes p) \mathcal{R}_{0}=\mathcal{R}_{0}(1 \otimes p)
\end{aligned}
$$

and when the dust settles, we get our formulas for ρ_{1}. But $Q U$ is a quasi-triangular Hopf algebra, and hence ρ_{1} is homomorphic. Read more at $[B V 1, B V 2]$ and hear more at $\omega \varepsilon \beta /$ SolvApp, $\omega \varepsilon \beta /$ Dogma, $\omega \varepsilon \beta /$ DoPeGDO, $\omega \varepsilon \beta /$ FDA, $\omega \varepsilon \beta / A Q D W$. Also, we can (and know how to) look at higher powers of ϵ and we can (and more or less know how to) replace $s l_{2}$ by arbitrary semi-simple Lie algebra

Schaveling These constructions are very similar to Rozansky-Overbay [Ro1, Ro2, Ro3, Ov] and hence to the "loop expansion" of the Kontsevich integral and the coloured Jones polynomial [Oh2].
$\varphi_{2}=1$ If this all reads like insanity to you, it should (and you haven't seen half of it). Simple things should have simple explanations.
21 Hence, Homework. Explain ρ_{1} with no reference to quantum voodoo and find it a topology home (large enough to house generalizations!). Make explicit the homomorphic properties of ρ_{1}. Use them to do topology!
P.S. As a friend of Δ, ρ_{1} gives a genus bound, sometimes better than Δ 's. How much further does this friendship extend?

A Small-Print Page on ρ_{d}, $d>1$.
Definition. $\left\langle f\left(z_{i}\right), h\left(\zeta_{i}\right)\right\rangle_{\left\{z_{i}\right\}}:=\left.f\left(\partial_{\zeta_{i}}\right) h\right|_{\zeta_{i}=0}$, so $\left\langle p^{2} x^{2}, \mathbb{e}^{g \pi \xi}\right\rangle=2 g^{2}$. Baby Theorem. There exist (non unique) power series $r^{ \pm}\left(p_{1}, p_{2}, x_{1}, x_{2}\right)=\sum_{d} \epsilon^{d} r_{d}^{ \pm}\left(p_{1}, p_{2}, x_{1}, x_{2}\right) \in$ $\mathbb{Q}\left[T^{ \pm 1}, p_{1}, p_{2}, x_{1}, x_{2}\right] \llbracket \epsilon \rrbracket$ with $\operatorname{deg} r_{d}^{ \pm} \leq 2 d+2$ ("docile") such that the power series $Z^{b}=\sum \rho_{d}^{b} \epsilon^{d}:=$

$$
\left\langle\exp \left(\sum_{c} r^{s}\left(p_{i}, p_{j}, x_{i}, x_{j}\right)\right), \exp \left(\sum_{\alpha, \beta} g_{\alpha \beta} \pi_{\alpha} \xi_{\beta}\right)\right\rangle_{\left\{p_{\alpha}, x_{\beta}\right\}}
$$

is a bnot invariant. Beyond the once-and-for-all computation of $g_{\alpha \beta}$ (a matrix inversion), Z^{b} is computable in $O\left(n^{d}\right)$ operations in the ring $\mathbb{Q}\left[T^{ \pm 1}\right]$.
(Bnots are knot diagrams modulo the braid-like Reidemeister moves, but not the cyclic ones).
Theorem. There also exist docile power series $\gamma^{\varphi}(\bar{p}, \bar{x})=$ $\sum_{d} \epsilon^{d} \gamma_{d}^{\varphi} \in \mathbb{Q}\left[T^{ \pm 1}, \bar{p}, \bar{x}\right] \llbracket \epsilon \rrbracket$ such that the power series $Z=$ $\sum \rho_{d} \epsilon^{d}:=$

$$
\begin{aligned}
& \left\langle\exp \left(\sum_{c} r^{s}\left(p_{i}, p_{j}, x_{i}, x_{j}\right)+\sum_{k} \gamma^{\varphi_{k}}\left(\bar{p}_{k}, \bar{x}_{k}\right)\right)\right. \\
& \left.\quad \exp \left(\sum_{\alpha, \beta} g_{\alpha \beta}\left(\pi_{\alpha}+\bar{\pi}_{\alpha}\right)\left(\xi_{\beta}+\bar{\xi}_{\beta}\right)+\sum_{\alpha} \pi_{\alpha} \bar{\xi}_{\alpha}\right)\right\rangle_{\left\{p_{\alpha}, \bar{p}_{\alpha},, x_{\beta}, \bar{x}_{\beta}\right\}}
\end{aligned}
$$

is a knot invariant, as easily computable as Z^{b}.
Implementation. Data, then program (with output using the Conway variable $z=\sqrt{T}-1 / \sqrt{T}$), and then a demo. See Rho.nb of $\omega \varepsilon \beta / \mathrm{ap}$.


```
V@\mp@subsup{\gamma}{3,\varphi}{-}
v@\mp@subsup{r}{1,\mp@subsup{s}{-}{}}{[i_, j_] :=}
    s(-1+2 pi x i - 2p p}\mp@subsup{x}{i}{}+(-1+\mp@subsup{T}{}{s})\mp@subsup{p}{i}{}\mp@subsup{p}{j}{}\mp@subsup{x}{i}{2}+(1-\mp@subsup{T}{}{s})\mp@subsup{p}{j}{2}\mp@subsup{x}{i}{2}-2\mp@subsup{p}{i}{}\mp@subsup{p}{j}{}\mp@subsup{x}{i}{}\mp@subsup{x}{j}{}+2\mp@subsup{p}{j}{2}\mp@subsup{x}{i}{}\mp@subsup{x}{j}{\prime})/
V@\mp@subsup{r}{2,1}{}[\mp@subsup{i}{-}{\prime},\mp@subsup{j}{-}{\prime}]:=
```



```
        18 p
        6 pi p p
v@r 2,-1[i_, j_] :=
    (-6 T 2 p}\mp@subsup{p}{i}{}\mp@subsup{x}{i}{}+6\mp@subsup{T}{}{2}\mp@subsup{p}{j}{}\mp@subsup{x}{i}{}+3(-3+T)T\mp@subsup{p}{i}{}\mp@subsup{p}{j}{}\mp@subsup{x}{i}{2}-3(-3+T)T\mp@subsup{p}{j}{2}\mp@subsup{x}{i}{2}
```



```
V@r}\mp@subsup{r}{3,1}{[i_, j_] ]:=
    (4 pi c
        4(-16+17T+2 T') pi p
        3(-1+T)(4+3T) pi p p
        (-1+T)}(4+13T+\mp@subsup{T}{}{2})\mp@subsup{p}{j}{4}\mp@subsup{x}{i}{4}-28\mp@subsup{p}{i}{}\mp@subsup{p}{j}{}\mp@subsup{x}{i}{}\mp@subsup{x}{j}{}+28\mp@subsup{p}{j}{2}\mp@subsup{x}{i}{}\mp@subsup{x}{j}{}+36\mp@subsup{p}{i}{2}\mp@subsup{p}{j}{}\mp@subsup{x}{i}{2}\mp@subsup{x}{j}{}
```



```
        4(-6+17T+T'T) pi p
        24 p
        4 p}\mp@subsup{p}{i}{}\mp@subsup{\mathbf{p}}{j}{3}\mp@subsup{\mathbf{x}}{i}{}\mp@subsup{\mathbf{x}}{j}{3}+4\mp@subsup{\mathbf{p}}{j}{4}\mp@subsup{\mathbf{x}}{i}{}\mp@subsup{\mathbf{x}}{j}{3})/\mathbf{24
```

$\mathrm{V} @ r_{3,-1}\left[i_{-}, j_{-}\right]:=$
$\left(-4 T^{3} p_{i} x_{i}+4 T^{3} p_{j} x_{i}-2 T^{2}(7+5 T) p_{i} p_{j} x_{i}^{2}+2 T^{2}(7+5 T) p_{j}^{2} x_{i}^{2}-\right.$
$4 \mathrm{~T}^{2}(-6+5 \mathrm{~T}) \mathrm{p}_{i}^{2} \mathrm{p}_{j} \mathrm{x}_{i}^{3}+4 \mathrm{~T}\left(-2-17 \mathrm{~T}+16 \mathrm{~T}^{2}\right) \mathrm{p}_{i} \mathrm{p}_{j}^{2} \mathrm{x}_{i}^{3}-$
$4 \mathrm{~T}\left(-2-11 \mathrm{~T}+11 \mathrm{~T}^{2}\right) \mathrm{p}_{j}^{3} \mathrm{x}_{i}^{3}+3(-1+\mathrm{T}) \mathrm{T}^{2} \mathrm{p}_{i}^{3} \mathrm{p}_{j} \mathrm{x}_{i}^{4}-3(-1+\mathrm{T}) \mathrm{T}(3+4 \mathrm{~T}) \mathrm{p}_{i}^{2} \mathrm{p}_{j}^{2} \mathrm{x}_{i}^{4}+$
$(-1+T)\left(1+22 T+13 T^{2}\right) p_{i} p_{j}^{3} x_{i}^{4}-(-1+T)\left(1+13 T+4 T^{2}\right) p_{j}^{4} x_{i}^{4}+$
$28 \mathrm{~T}^{3} \mathrm{p}_{i} \mathrm{p}_{j} \mathrm{x}_{i} \mathrm{x}_{j}-28 \mathrm{~T}^{3} \mathrm{p}_{j}^{2} \mathrm{x}_{i} \mathrm{x}_{j}-36 \mathrm{~T}^{3} \mathrm{p}_{i}^{2} \mathrm{p}_{j} \mathrm{x}_{i}^{2} \mathrm{x}_{j}+12 \mathrm{~T}^{2}(2+9 \mathrm{~T}) \mathrm{p}_{i} \mathrm{p}_{j}^{2} \mathrm{x}_{i}^{2} \mathrm{x}_{j}-$
$24 \mathrm{~T}^{2}(1+3 \mathrm{~T}) \mathrm{p}_{j}^{3} \mathrm{x}_{i}^{2} \mathrm{x}_{j}+4 \mathrm{~T}^{3} \mathrm{p}_{i}^{3} \mathrm{p}_{j} \mathrm{x}_{i}^{3} \mathrm{x}_{j}-28 \mathrm{~T}^{2} \mathrm{p}_{i}^{2} \mathrm{p}_{j}^{2} \mathrm{x}_{i}^{3} \mathrm{x}_{j}-$
$4 \mathrm{~T}\left(-1-17 \mathrm{~T}+6 \mathrm{~T}^{2}\right) \mathrm{p}_{i} \mathrm{p}_{j}^{3} \mathrm{x}_{i}^{3} \mathrm{x}_{j}+4 \mathrm{~T}\left(-1-10 \mathrm{~T}+5 \mathrm{~T}^{2}\right) \mathrm{p}_{j}^{4} \mathrm{x}_{i}^{3} \mathrm{x}_{j}-$
$24 \mathrm{~T}^{3} \mathrm{p}_{i} \mathrm{p}_{j}^{2} \mathrm{x}_{i} \mathrm{x}_{j}^{2}+24 \mathrm{~T}^{3} \mathrm{p}_{j}^{3} \mathrm{x}_{i} \mathrm{x}_{j}^{2}+24 \mathrm{~T}^{3} \mathrm{p}_{i}^{2} \mathrm{p}_{j}^{2} \mathrm{x}_{i}^{2} \mathrm{x}_{j}^{2}-6 \mathrm{~T}^{2}(1+10 \mathrm{~T}) \mathrm{p}_{i} \mathrm{p}_{j}^{3} \mathrm{x}_{i}^{2} \mathrm{x}_{j}^{2}+$
$\left.6 \mathrm{~T}^{2}(1+6 \mathrm{~T}) \mathrm{p}_{j}^{4} \mathrm{x}_{i}^{2} \mathrm{x}_{j}^{2}+4 \mathrm{~T}^{3} \mathrm{p}_{i} \mathrm{p}_{j}^{3} \mathrm{x}_{i} \mathrm{x}_{j}^{3}-4 \mathrm{~T}^{3} \mathrm{p}_{j}^{4} \mathrm{x}_{i} \mathrm{x}_{j}^{3}\right) /\left(24 \mathrm{~T}^{3}\right)$
$\left\{\mathrm{p}^{*}, \mathrm{x}^{*}, \overline{\mathrm{p}}^{*}, \overrightarrow{\mathrm{x}}^{*}\right\}=\{\pi, \xi, \bar{\pi}, \bar{\xi}\} ; \quad\left(z_{-i_{-}}\right)^{*}:=\left(z^{*}\right)_{i} ;$
$\operatorname{Zip}_{\{ \}}\left[\varepsilon_{-}\right]:=\varepsilon$;
$\mathrm{Zip}_{\left\{Z_{-}, z s_{-}\right\}}\left[\delta_{-}\right]:=$
$\left(\operatorname{Collect}\left[\varepsilon / / \mathrm{Zip}_{\{z s\}}, z\right] / \cdot f_{-} \cdot z^{d_{-}} \rightarrow\left(\mathrm{D}\left[f,\left\{z^{*}, d\right\}\right]\right)\right) / \cdot z^{*} \rightarrow 0$
gPair[fs_, $\left.w_{-}\right]:=$
gPair [fs, w] =
Collect $\left[\right.$ zip $_{\text {Joineetable }}\left[\left\{p_{\alpha}, \overline{\mathrm{p}}_{\alpha},,_{\alpha}, \overline{\mathrm{x}}_{\alpha}\right\},\{\alpha, w\}\right][$
(Times @@ (V/@fs))
$\left.\operatorname{Exp}\left[\operatorname{Sum}\left[g_{\alpha, \beta}\left(\pi_{\alpha}+\bar{\pi}_{\alpha}\right)\left(\xi_{\beta}+\bar{\xi}_{\beta}\right),\{\alpha, w\},\{\beta, w\}\right]-\operatorname{Sum}\left[\bar{\xi}_{\alpha} \pi_{\alpha},\{\alpha, w\}\right]\right]\right]$,
$\mathrm{g}_{\text {_- }}$, Factor]
T2z[p_]:=Module[$\{q=\operatorname{Expand}[p], n, c\}$,
If $[q==0,0, c=\operatorname{Coefficient}[q, T, n=\operatorname{Exponent}[q, T]]$;
$\left.\left.\mathrm{c} \mathrm{z}^{2 \mathrm{n}}+\mathrm{T} 2 \mathrm{z}\left[\mathrm{q}-\mathrm{c}\left(\mathrm{T}^{1 / 2}-\mathrm{T}^{-1 / 2}\right)^{2 \mathrm{n}}\right]\right]\right]$;
$Z_{d_{-}}\left[K_{-}\right]:=\operatorname{Module}[\{\mathrm{Cs}, \varphi, \mathrm{n}, \mathrm{A}, \mathrm{s}, \mathrm{i}, \mathrm{j}, \mathrm{k}, \Delta, \mathrm{G}, \mathrm{d} 1, \mathrm{z} 1, \mathrm{z} 2, \mathrm{z} 3\}$,
$\{C s, \varphi\}=\operatorname{Rot}[K] ; \mathrm{n}=$ Length $[\mathrm{Cs}] ; \mathrm{A}=$ IdentityMatrix[2n+1];
$\operatorname{Cases}\left[C s,\left\{s_{-}, i_{-}, j_{-}\right\}: \rightarrow\left(A \llbracket\{i, j\},\{i+1, j+1\} \rrbracket+=\left(\begin{array}{cc}-T^{s} T^{s}-1 \\ 0 & -1\end{array}\right)\right)\right] ;$
$\{\Delta, G\}=$ Factor@ $\left\{T^{(-T o t a l}[\varphi]-\right.$ Total $\left.\left.[\operatorname{cs} \llbracket A 11,1]\right]\right) / 2 \operatorname{Det@A}$, Inverse@A $\} ;$
z1 =
$\operatorname{Exp}\left[\operatorname{Total}\left[\operatorname{Cases}\left[C s,\left\{s_{-}, i_{-}, j_{-}\right\}: \rightarrow \operatorname{Sum}\left[\epsilon^{\mathrm{d} 1} \mathrm{r}_{\mathrm{d} 1, s}[i, j],\{\mathrm{d} 1, d\}\right]\right]\right]+\right.$
$\left.\operatorname{Sum}\left[\epsilon^{d 1} \gamma_{d 1, \varphi \mathbb{I} \mathbb{1}}[k],\{k, 2 n\},\{d 1, d\}\right] / . \gamma_{-}, \theta\left[_\right] \rightarrow \theta\right] ;$
$Z 2=$ Expand $[F[\},\{ \}] \times$ Normal@Series $[Z 1,\{\in, 0, d\}]] / /$.
$\mathrm{F}\left[f s_{-},\left\{e s_{-}\right\}\right] \times\left(f:(r \mid \gamma)_{p s_{-}}\left[i s_{-}\right]\right)^{p_{-}}: \rightarrow$
F[Join [$f s$, Table[$f, p]$], DeleteDuplicates@\{es, is\}];
Z3 $=$ Expand $\left[Z 2 / . \mathrm{F}^{2}\left[f s_{-}\right.\right.$, es_] $: \rightarrow$ Expand [gPair [
Replace[fs, Thread [es \rightarrow Range@Length@es], \{2\}], Length@es
] /. $\mathrm{g}_{\alpha_{-}, \beta_{-}}: \rightarrow G \llbracket e s \llbracket \alpha \rrbracket$, es $\left.\left.\llbracket \beta \rrbracket \rrbracket\right]\right]$;
Collect $\left.\left[\left\{\Delta, \mathrm{zz} / . \epsilon^{p_{-}-} \rightarrow \mathrm{p}!\Delta^{2 p} \epsilon^{p}\right\}, \in, \mathrm{T} 2 \mathrm{z}\right]\right]$;
$\mathbf{Z}_{\mathbf{2}}$ [GST48] (* takes a few minutes *)
$\left\{1-4 z^{2}-61 z^{4}-207 z^{6}-296 z^{8}-210 z^{10}-77 z^{12}-14 z^{14}-z^{16}\right.$,
$1+\left(38 z^{2}+255 z^{4}+1696 z^{6}+16281 z^{8}+86952 z^{1 \theta}+259994 z^{12}+487372 z^{14}+615066 z^{16}+543148 z^{18}+341714 z^{2 \theta}+\right.$
$\left.153722 z^{22}+48983 z^{24}+10776 z^{26}+1554 z^{28}+132 z^{30}+5 z^{32}\right) \epsilon+$
$\left(-8-484 z^{2}+9709 z^{4}+165952 z^{6}+1590491 z^{8}+16256508 z^{10}+115341797 z^{12}+432685748 z^{14}+395838354 z^{16}-4017557792 z^{18}-23300064167 z^{2 \theta}-\right.$
$70082264972 z^{22}-142572271191 z^{24}-209475503700 z^{26}-221616295209 z^{28}-151502648428 z^{38}-23700199243 z^{32}+$
$99462146328 z^{34}+164920463074 z^{36}+162550825432 z^{38}+119164552296 z^{4 \theta}+69153062608 z^{42}+32547596611 z^{44}+12541195448 z^{46}+$
$\left.\left.3961384155 z^{48}+1021219696 z^{50}+212773106 z^{52}+35264208 z^{54}+4537548 z^{56}+436600 z^{58}+29536 z^{60}+1252 z^{62}+25 z^{64}\right) \epsilon^{2}\right\}$
TableForm [Table[Join $\left.\left[\{K \llbracket 1]_{K \llbracket 2 \mathbb{1}}\right\}, Z_{3}[K]\right],\{K$, AllKnots $\left.[\{3,6\}]\}\right]$, TableAlignments \rightarrow Center] (* takes a few minutes *)
$3_{1} \quad 1+z^{2}$
$1+\left(2 z^{2}+z^{4}\right) \in+\left(2-4 z^{2}+3 z^{4}+4 z^{6}+z^{8}\right) \epsilon^{2}+\left(-12+74 z^{2}-27 z^{4}-20 z^{6}+8 z^{8}+6 z^{10}+z^{12}\right) \epsilon^{3}$
$\begin{array}{r}1+z^{2} \\ 1-z^{2}\end{array} \quad 1+\left(2 z^{2}+z^{4}\right) \epsilon+\left(2-4 z^{2}+3 z^{4}+4 z^{6}+z^{8}\right) \epsilon^{2}+\left(-12+74{ }^{2}+\left(-2+2 z^{4}\right) \epsilon^{2}\right.$

$\begin{array}{cc}1+3 z^{2}+z^{4} \\ 1+2 z^{2} & 1+\left(19 z^{2}+21 z^{4}+12 z^{6}+2 z^{8}\right) \epsilon+\left(6-28 z^{2}+33 z^{4}+364 z^{6}+655 z^{8}+536 z^{19}+227 z^{12}+48 z^{19}+4 z^{16}\right) \epsilon^{2}+\left(-6 \theta+978 z^{2}+645 z^{4}-3380 z^{6}-3288 z^{8}+7478 z^{10}+19475 z^{12}+2856\right. \\ 1+\left(6 z^{2}+5 z^{4}\right) \epsilon+\left(4-29 z^{2}+43 z^{4}+64 z^{6}+26 z^{8}\right) \epsilon^{2}+\left(-36+498 z^{2}-883 z^{4}+100 z^{6}+816 z^{8}+556 z^{10}+146 z^{12}\right) \epsilon^{3}\end{array}$

$1-2 z^{2}$
$\left.+29 z^{4}+28 z^{6}+42 z^{8}-8 z^{19}-2 z^{12}+4 z^{14}+z^{16}\right) \epsilon^{2}+\left(12+166 z^{2}+155 z^{4}-194 z^{6}-2453 z^{8}-1622 z^{19}-1967 z^{12}-258 z^{2^{4}}+49 z^{16}-30 z^{18}+z^{29}+6 z^{22}+z^{24}\right) \epsilon^{3}$
$\begin{array}{rl}1-z^{2}-z^{4} \\ 1+z^{2}+z^{4} & 1+\left(-2 z^{2}-3 z^{4}+2 z^{6}+z^{8}\right) \epsilon+\left(-2-4 z^{2}+29 z^{4}+28 z^{6}+42 z^{8}-8 z^{19}-2 z^{12}+4 z^{14}+z^{16}\right) \epsilon^{2}+\left(12+166 z^{2}+155 z^{4}-194 z^{6}-2\right. \\ 1+\left(2+8 z^{2}-16 z^{6}-24 z^{8}-16 z^{10}-2 z^{12}\right) \epsilon^{2}\end{array}$

Why Tangles? - As common as knots!

- Faster computations!
- Conceptually clearer proofs of invariance (and of skein relations).
"Nautical Knots" Abstract. The zombies need to compute a quantity, the zombian, that pertains to some structure - say, a columbarium. But unfortunately (for them), a part of that structure will only be known in the future. What can they compute today with the parts they already have to hasten tomorrow's computation?
That's a common quest, and I will illustrate it with a few examples from knot theory and with two examples about matrices determinants and signatures. I will also mention two of my dreams (perhaps delusions): that one day I will be able to reproduce, and extend, the Rolfsen table of knots using code of the highest

Columbaria in an East Sydney Cemetery Jacobian, Hamiltonian, Zombian
Computing Zombians of Unfinished Columbaria.

- Future zombies must be able to complete the computation.
- Must be no slower than for finished ones.
- Future zombies must not even know the size of the task that today's zombies were facing.
- We must be able to extend to ZPUCs, Zombie Processed Unfinished Columbaria!
Exercise 1. Compute the sum of 1,000 numbers, the last 50 of which are still unknown.
Exercise 2. Compute the determinant of a Columbarium near Assen $1,000 \times 1,000$ matrix in which 50 entries are not yet given. Example 3. Same, for signatures of matrices / quadratic forms.
A quadratic form on a v.s. V over \mathbb{C} is a quadratic $Q: V \rightarrow \mathbb{C}$ or a sesquilinear Hermitian $\langle\cdot, \cdot\rangle$ on $V \times V$ (so $\langle x, y\rangle=\overline{\langle y, x\rangle}$ and Embarrassment 1 (personal). I don't know how to reproduce $Q(y)=\langle y, y\rangle$), or given a basis η_{i} of V^{*}, a matrix $A=\left(a_{i j}\right)$ with the Rolfsen table of knots! Many others can, yet I still take it on $A=\bar{A}^{T}$ and $Q=\sum a_{i j} \bar{\eta}_{i} \eta_{j}$. The signature σ of Q is $\sigma_{+}-\sigma_{-}$, faith, contradicting one of the tenets of our practice, "thou shalt where for some $P, \bar{P}^{T} A P=\operatorname{diag}\left(1, \stackrel{\sigma}{+}^{\circ}, 1,-1, \stackrel{\sigma-}{\sigma},-1,0, \ldots\right)$.

A Partial Quadratic ($P Q$) on V is a quadratic Q defined only on a subspace $\mathcal{D}_{Q} \subset V$. We add PQs with $\mathcal{D}_{Q_{1}+Q_{2}}:=\mathcal{D}_{Q_{1}} \cap \mathcal{D}_{Q_{2}}$. Given a linear $\psi: V \rightarrow W$ and a PQ Q on W, there is an obvious pullback $\psi^{*} Q$, a PQ on V.
Theorem 1 (with Jessica Liu). Given a linear $\phi: V \rightarrow$ W and a PQ Q on V, there is a unique pushforward PQ $\phi_{*} Q$ on W such that for every $P Q U$ on W,

$$
\sigma_{V}\left(Q+\phi^{*} U\right)=\sigma_{\operatorname{ker} \phi}\left(\left.Q\right|_{\operatorname{ker} \phi}\right)+\sigma_{W}\left(U+\phi_{*} Q\right)
$$

Gist of the Proof. \quad Jessica Liu

. and the quadratic $F=: \phi_{*} Q$ is well-defined only on $D:=\operatorname{ker} C$.
(more at $\omega \varepsilon \beta /$ icerm.)
Acknowledgement. This work was partially supported by NSERC grant RGPIN-2018-04350 and by the Chu Family Foundation (NYC).
 not use what thou canst not prove".
It's harder than it seems! Producing all knot diagrams is a mess, identifying all available Reidemeister moves is a mess, and you sometimes have to go up in crossing number before you can go down again.
Embarrassment 2 (communal). There isn't anywhere a tabulation of tangles! When you want to test your new discoveries, where do you go?
Dream. Conquer both embarrassments at once. Reproduce the Rolfsen table, and extend it to tangles, using code of the highest level of beauty. The algorithm should be so clear and simple that anyone should be able to easily implement it in an afternoon without messing with any technicalities.

We don't even need to look at all knot diagrams!

The dreaded slide moves, which go up in crossing number, are parametrized by tangles!

R-moves are tangle equalities!

Preliminary Definitions．Fix $p \in \mathbb{N}$ and $\mathbb{F}=\mathbb{Q} / \mathbb{C}$ ． Let $D_{p}:=D^{2} \backslash(p \mathrm{pts})$ ，and let the Pole Dance Studio be $P D S_{p}:=D_{p} \times I$ ．
Abstract．I will report on joint work with Zsuzsanna Dancso，Tamara Hogan，Jessica Liu，and Nancy Sche－ rich．Little of what we do is original，
and much of it is simply a reading of Massuyeau［Ma］and Alek－ seev and Naef［AN1］．
We study the pole－strand and strand－strand double filtration on the space of tangles in a pole dance studio（a punctured disk cross an interval），the correspon－ ding homomorphic expansions， and a strand－only HOMFLY－PT
 relation．When the strands are transparent or nearly transparent to each other we recover and perhaps simplify substantial parts of the work of the aforementioned authors on expansions for the Goldman－Turaev Lie bi－algebra．
Definitions．Let $\pi:=F G\left\langle X_{1}, \ldots, X_{p}\right\rangle$ be the free group（of defor－ mation classes of based curves in D_{p} ）， $\bar{\pi}$ be the framed free group （deformation classes of based immersed curves），$|\pi|$ and $|\bar{\pi}|$ deno－ te \mathbb{F}－linear combinations of cyclic words $\left(\left|x_{i} w\right|=\left|w x_{i}\right|\right.$ ，unbased curves），$A:=F A\left\langle x_{1}, \ldots, x_{p}\right\rangle$ be the free associative algebra，and let $|A|:=A /\left(x_{i} w=w x_{i}\right)$ denote cyclic algebra words．

Theorem 1 （Goldman，Turaev，Massuyeau，Alekseev，Kawazu－ mi，Kuno，Naef）．$|\bar{\pi}|$ and $|A|$ are Lie bialgebras，and there is a ＂homomorphic expansion＂$W:|\bar{\pi}| \rightarrow|A|:$ a morphism of Lie bial－ gebras with $W\left(\left|X_{i}\right|\right)=1+\left|x_{i}\right|+\ldots$
Further Definitions．$\bullet \mathcal{K}=\mathcal{K}_{0}=\mathcal{K}_{0}^{0}=\mathcal{K}(S):=$ $\mathbb{F}\left\langle\right.$ framed tangles in $\left.P D S_{p}\right\rangle$ ．
－ $\mathcal{K}_{t}^{s}:=$（the image via $\times \rightarrow$ ス $-八$ of tangles in $P D S_{p}$ that have t double points，of which s are strand－strand）．
E．g．，
－ $\mathcal{K}^{/ s}:=\mathcal{K} / \mathcal{K}^{s}$ ．Most important， $\mathcal{K}^{/ 1}(\bigcirc)=|\bar{\pi}|$ ，and there is $P: \mathcal{K}(\bigcirc) \rightarrow|\bar{\pi}|$.
－ $\mathcal{A}:=\prod \mathcal{K}_{t} / \mathcal{K}_{t+1}, \quad \mathcal{A}^{s}:=\prod \mathcal{K}_{t}^{s} / \mathcal{K}_{t+1}^{s} \subset \mathcal{A}, \quad \mathcal{A}^{s}:=\mathcal{A} / \mathcal{A}^{s}$ ．
Fact 1．The Kontsevich Integral is an＂expansion＂$Z: \mathcal{K} \rightarrow \mathcal{A}$ ， compatible with several noteworthy structures．
Fact 2 （Le－Murakami，［LM1］）．Z satisfies the strand－strand HOMFLY－PT relations：It descends to $Z_{H}: \mathcal{K}_{H} \rightarrow \mathcal{A}_{H}$ ，where

$$
\begin{aligned}
& \mathcal{K}_{H}:=\mathcal{K} /\left(\AA-\AA^{\pi}=\left(\mathbb{e}^{\hbar / 2}-\mathbb{e}^{-\hbar / 2}\right) \cdot \Gamma て\right)
\end{aligned}
$$

and $\operatorname{deg} \hbar=(1,1)$ ．
Proof of Fact 2．$Z(\approx)-Z\left(\mathbb{N}^{\top}\right)=X \cdot\left(\mathbb{e}^{H / 2}-\mathbb{e}^{-\mathcal{H} / 2}\right)$

Other Passions．With Roland van der Veen，I use＂so－ lvable approximation＂and＂Perturbed Gaussian Differe－ ntial Operators＂to unveil simple，strong，fast to compu－ te，and topologically meaningful knot invariants near the Alexander polynomial．（ \subset polymath！）van der Veen

Key 1．$W:|\bar{\pi}| \rightarrow|A|$ is $Z_{H}^{/ 1}: \mathcal{K}_{H}^{/ 1}(\bigcirc) \rightarrow \mathcal{A}_{H}^{11}(\bigcirc)$ ．
Key 2 （Schematic）．Suppose $\lambda_{0}, \lambda_{1}:|\bar{\pi}| \rightarrow \mathcal{K}(\bigcirc)$ are two ways of lifting plane curves into knots in $P D S_{p}$（namely，$P \circ \lambda_{i}=I$ ）． Then for $\gamma \in|\bar{\pi}|$ ，

Lemma 1．＂Division by \hbar＂is well－defined．

$$
\eta(\gamma):=\left(\lambda_{0}(\gamma)-\lambda_{1}(\gamma)\right) / \hbar \in \mathcal{K}_{H}^{/ 1}(\bigcirc \bigcirc)=|\bar{\pi}| \otimes|\bar{\pi}|
$$

and we get an operation η on plane curves．If Kontsevich likes λ_{0} and λ_{1}（namely if there are λ_{i}^{a} with $Z^{2}\left(\lambda_{i}(\gamma)\right)=\lambda_{i}^{a}(W(\gamma))$ ），then η will have a compatible algebraic companion η^{a} ：

$$
\eta^{a}(\alpha):=\left(\lambda_{0}^{a}(\alpha)-\lambda_{1}^{a}(\alpha)\right) / \hbar \in \mathcal{A}_{H}^{/ 1}(\bigcirc \bigcirc)=|A| \otimes|A|
$$

For indeed，in $\mathcal{A}_{H}^{/ 2}$ we have $\hbar W(\eta(\gamma))=\hbar Z(\eta(\gamma))=Z\left(\lambda_{0}(\gamma)\right)-$ $Z\left(\lambda_{1}(\gamma)\right)=\lambda_{0}^{a}(W(\gamma))-\lambda_{1}^{a}(W(\gamma))=\hbar \eta^{a}(W(\gamma))$.

Example 1．With $\gamma_{1}, \gamma_{2} \in$ $|\pi|($ or $|\bar{\pi}|)$ set $\lambda_{0}\left(\gamma_{1}, \gamma_{2}\right)=$
 $\tilde{\gamma}_{1} \cdot \tilde{\gamma}_{2}$ and $\lambda_{1}\left(\gamma_{1}, \gamma_{2}\right)=\tilde{\gamma}_{2}$
$\tilde{\gamma}_{1}$ where $\tilde{\gamma}_{i}$ are arbitrary lifts of γ_{i} ．Then η_{1} is the Gol－ dman bracket！Note that here λ_{0} and λ_{1} are not well－ defined，yet η_{1} is．
Example 2．With $\gamma_{1}, \gamma_{2} \in \pi$（or $\bar{\pi}$ ）and with λ_{0}, λ_{1} as on the right，we get the＂double bra－ cket＂$\eta_{2}: \pi \otimes \pi \rightarrow \pi \otimes \pi$（or $\bar{\pi} \otimes \bar{\pi} \rightarrow \bar{\pi} \otimes \bar{\pi}$ ）．
Example 3．With $\gamma \in \bar{\pi}$ and $\lambda_{0}(\gamma)$ its ascending realization as a bottom tangle and $\lambda_{1}(\gamma)$ its descending realization as a bottom tangle，we get $\eta_{3}: \bar{\pi} \rightarrow \bar{\pi} \otimes|\bar{\pi}|$ ．Closing the first component and anti－symmetrizing，this is the Turaev cobracket．

Example 4 ［Ma］．With $\gamma \in \bar{\pi}$ and $\lambda_{0}(\gamma)$ its ascending outer double and $\lambda_{1}(\gamma)$ its ascen－ ding inner double we get $\eta_{4}: \bar{\pi} \rightarrow \bar{\pi} \otimes \bar{\pi}$ ．A－ fter some massaging，it too becomes the Tu－ raev cobracket．

Kontsevich in a Pole Dance Studio. (w/o poles? See [Ko, BN]) Unignoring the Complications. We need λ_{0} and λ_{1} such that:

Comments on the Kontsevich Integral.

1. In the tangle case, the endpoints are fixed at top and bottom.
2. The $(\cdots)^{\sim}$ means "a correction is needed near the caps and the cups" (for the framed version, see [LM2, Da]).
3. There are never $p p$ chords, and no $4 T_{p p s}$ and $4 T_{p p p}$ relations.
4. Z is an "expansion".
5. Z respects the $s s$ filtration and so descends to $Z^{/ s}: \mathcal{K}^{/ s} \rightarrow \mathcal{A}^{/ s}$.

Comments on \mathcal{A}. In $\mathcal{A}^{/ 1}$ legs on poles commute,
so $\mathcal{A}^{/ 1}(\bigcirc)=|A|$!
$\hat{p}_{p=1}^{A}+\underset{s_{s}}{t_{s}} \uparrow$
In $\mathcal{A}_{H}^{\top 2^{-}}$we have:

Example 3^{a}. Ignoring complications, $\eta_{3}^{a}(x x y x y x)=$

Proof of Lemma 1. We partially prove Theorem 2 instead:
Theorem 2. gr ${ }^{\bullet} \mathcal{K}_{H} \cong \mathbb{F} \llbracket \hbar \rrbracket \otimes\left(\mathcal{K}^{/ 1}\right)_{0}$.
Proof mod \hbar^{2}. The map \leftarrow is obvious. To go \rightarrow, map $\mathcal{K}_{H} \rightarrow$
 functor gr^{\bullet}.

1. $\lambda_{1}(\gamma)$ is obtained from $\lambda_{0}(\gamma)$ by flipping all self-intersections from ascending to descending.
2. Up to conjugation, $\lambda_{1}(\gamma)$ is obtained from $\lambda_{0}(\gamma)$ by a global flip.
3. $Z\left(\lambda_{i}(\gamma)\right)$ is computable from $W(\gamma)$ and $Z^{/ 1}\left(\lambda_{i}(\gamma)\right)=W(\gamma)$.

4. Is there more than Examples 1-4?

Homework
2. Derive the bialgebra axioms from this perspective.
3. What more do we get if we don't mod out by HOMFLY-PT?
4. What more do we get if we allow more than one strand-strand interaction?
5. In this language, recover KashiwaraVergne [AKKN1, AKKN2].
6. How is all this related to w-knots?

7. Do the same with associators. Use that to derive formulas for solutions of Kashiwara-Vergne.
8. What's the relationship with the Habiro-Massuyeau invariants of links in handlebodies [HM] (different filtration!).
9. Pole dance on other surfaces!
10. Explore the action of the mapping class group.

Acknowledgement. This work was partially supported by NSERC grant RGPIN-2018-04350 and by the Chu Family Foundation (NYC). I also wish to thanks A. Alekseev, F. Naef, and M. Ren for listening to an earlier version and catching some bugs, and Dhanya S. for the dance studio photos. And of course, thanks for listening!
[AKKN1] A. Alekseev, N. Kawazumi, Y. Kuno, \& F. Naef, References The Goldman-Turaev Lie Bialgebra in Genus Zero and the KashiwaraVergne Problem, Adv. Math. 326 (2018) 1-53, arXiv:1703.05813.
[AKKN2] A. Alekseev, N. Kawazumi, Y. Kuno, \& F. Naef, Goldman-Turaev formality implies Kashiwara-Vergne, Quant. Topol. 11-4 (2020) 657-689, arXiv:1812.01159.
[AN1] A. Alekseev \& F. Naef, Goldman-Turaev Formality from the KnizhnikZamolodchikov Connection, Comp. Rend. Math. 355-11 (2017) 1138-1147, arXiv:1708.03119.
[BN] D. Bar-Natan, On the Vassiliev Knot Invariants, Top. 34 (1995) 423-472.
[Da] Z. Dancso, On the Kontsevich Integral for Knotted Trivalent Graphs, Alg. Geom. Topol. 10 (2010) 1317-1365, arXiv:0811.4615.
[HM] K. Habiro \& G. Massuyeau, The Kontsevich Integral for Bottom Tangles in Handlebodies, Quant. Topol. 12-4 (2021) 593-703, arXiv:1702.00830.
[Ko] M. Kontsevich, Vassiliev's Knot Invariants, Adv. in Sov. Math. 16(2) (1993) 137-150.
[LM1] T. Q. T. Le \& J. Murakami, Kontsevich's Integral for the HOMFLY Polynomial and Relations Between Values of Multiple Zeta Functions, Top. and its Appl. 62-2 (1995) 193-206.
[LM2] T. Q. T. Le \& J. Murakami, The Universal Vassiliev-Kontsevich Invariant for Framed Oriented Links, Comp. Math. 102-1 (1996) 41-64, arXiv: hep-th/9401016.
[Ma] G. Massuyeau, Formal Descriptions of Turaev's Loop Operations, Quant. Topol. 9-1 (2018) 39--117, arXiv:1511.03974.

Kashaev's Signature Conjecture

CMS Winter 2021 Meeting, December 4, 2021
Dror Bar-Natan with Sina Abbasi
Agenda. Show and tell with signatures
Abstract. I will display side by side two nearly identical computer programs whose inputs are knots and whose outputs seem to always be the same. I'll then admit, very reluctantly, that I don't know how to prove that these outputs are always the same. One program I wrote mostly in Bedlewo, Poland, in the summer of 2003 and as of recently I understand why it computes the Levine-Tristram signature of a knot. The other is based on the 2018 preprint On Symmetric Matrices Associated with Oriented Link Diagrams by Rinat Kashaev (arXiv:1801.04632), where he conjectures that a certain simple algorithm also computes that same signature.
If you can, please turn your video on! (And mic, whenever needed).

```
Med [\mp@subsup{K}{_}{\prime},\mp@subsup{\omega}{_}{\prime}]:=
    xingsByArmpits =
```



```
        If[PositiveQ [x], X+[-i,j,k,-l], X [ [-j,k,l,-i]];
        ds = Times @e XingsByarmpits /,
```



```
    = Table [0, Length@ faces, Lengthe faces];
    Do[is = Position[faces,#]\llbracket1, 1] & /® List @ e x;
        A[is, is] += If[Head[x] === X (,
        ([-r -t crc
        (x, XingsByArmpits)];
    MatrixSignature[A] ];
    Kas[\mp@subsup{K}{_}{\prime},\mp@subsup{\omega}{_}{\prime}]:=
    Module [u,v, XingsByArm,
    u=Re[\mp@subsup{\omega}{}{1/2}];
        List @@PD[K]/. X: X[i, j_, __, l_]
```



```
        nds = Times XingsByarmpits /
        [x][\mp@subsup{a}{-}{\prime},\mp@subsup{b}{-}{\prime},\mp@subsup{c}{-}{},\mp@subsup{d}{-}{\prime}]\mapsto~\mp@subsup{p}{a,-a}{}\mp@subsup{p}{b,-a}{}\mp@subsup{p}{c,-b}{}\mp@subsup{p}{d,-c}{};
        = Table [0, Lengthefaces, Lengthefaces],
        = [is = Position[faces, [][1, 1] & &es];
        Do is = Position[faces,#] \llbracket1, 1| & /e List e@;
        A[is, is| += If [Head[x] === X,
        ( (\begin{array}{llll}{v}&{u}&{1}&{u}\\{u}&{1}&{u}&{1}\\{1}&{u}&{v}&{u}\\{u}&{1}&{u}&{1}\end{array}),(\begin{array}{llll}{v}&{u}&{1}&{u}\\{u}&{1}&{u}&{1}\\{1}&{u}&{v}&{|}\\{u}&{1}&{u}&{1}\end{array})]
        (x, Xingsbyarmpits)];
        (MatrixSignature[A] - Writhe[K])/2];
```


Verification.

Once [<< KnotTheory ${ }^{`}$]
Loading KnotTheory` version of February 2, 2020, 10:53:45.2097.
Read more at http://katlas.org/wiki/KnotTheory.
MatrixSignature[A_{-}] :=
Total[Sign[Select[Eigenvalues [A], Abs[\#] > 10^{-12} \&]]];
Writhe [K_{-}] := Sum[If[PositiveQ[x], 1, -1], \{x, List @@ PD@K\}];
$\operatorname{Sum}\left[\omega=e^{\text {ii RandomReal }[\{0,2 \pi\}]} ; \operatorname{Bed}[K, \omega]=\operatorname{Kas}[K, \omega],\{10\}\right.$,
$\{K$, AllKnots [\{3, 10\}] $\}]$
... KnotTheory: Loading precomputed data in PD4Knots
2490 True

Why am I showing you \times code ?

- I love code - it's fun!
- Believe it or not, it is more expressive than math-talk (though I'll do the math-talk as well, to confirm with prevailing norms).
- It is directly verifiable. Once it is up and running, you'll never ask yourself "did he misplace a sign somewhere"?
Module $\left[K_{\sim}, \omega_{1}\right]:=$
Mot, r, xingsbyarmpits, bends, faces, $p, A, i s\}$,
$t=1-\omega ; r=t+t^{*} ;$
Xings eyarmpits $=$
List ee PD $[k] /$.
If Positiveq $\left.[x], x_{-}, j_{-}, k_{-}, l_{-}\right]:$
$\mathrm{If}\left[\right.$ Positive $\left.[x], \mathrm{X},[-i, j, k,-L], \mathrm{X}_{-}[-j, k, l,-i]\right]$;
= Times eexingsbyarmpits /
faces = bends $/ / \cdot p_{x} \quad p_{y} p_{y},-p_{b} \rightarrow p_{x,-a} p_{c,-b} p_{d,-c}$
$A=$ Table [θ, Lengthe faces, Lengthe faces];
Do $[$ is $=$ Position $[f a c e s, \#] \llbracket 1,1 \rrbracket \& / e$ List e x ;
A[IIS, is $]+=\mathrm{If}\left[\right.$ Head $[\mathrm{x}]==\mathrm{X}_{\mathrm{t}}$,
$\left.\left(\begin{array}{cccc}-r & -t & 2 t & t^{*} \\ -t^{*} & \theta & t^{*} & 0 \\ 2 t^{*} & t & -r & -t^{*} \\ t & 0 & -t & \theta\end{array}\right),\left(\begin{array}{cccc}r & -t & -2 t^{*} & t^{*} \\ -t^{*} & \theta & t^{*} & \theta \\ -2 t & t & r & -t^{*} \\ t & 0 & -t & 0\end{array}\right)\right]$,
\{ x, Xingsbyarmpits $\}$];
$\boldsymbol{K a s}\left[K_{-}, \omega_{-}\right]:=$
Kas $\left[K_{-}, \omega_{-}\right]:=$
$\operatorname{Module}[\{u, v$, XingsByarmpits, bends, faces, $p, A, i s\}$,
$u=\operatorname{Re}\left[\omega^{1 / 2}\right] ; \quad v=\operatorname{Re}[\omega] ;$
Xings Byarmpits $=$
List ee PD $\left.[K] / . x: \mathrm{X}_{[} i_{-}, j_{-}, k_{-}, L_{-}\right]:$
If [Positiveq $\left.[x], \mathrm{X}_{+}[-i, j, k,-l], \mathrm{X}_{-}[-j, k, l,-i]\right]$;

faces $=$ bends $/ /, p_{x}, y_{-} p_{y}, z_{z} \Rightarrow p_{x, y, z} ;$
$\mathrm{A}_{\circ}[$ Table $[\theta$, Lengthe faces, Lengthe faces] ;
${ }^{\circ}[15=$ Position [faces, $\left.\#] \llbracket 1,1\right] \& / e$ List x;
A $\left[1 \mathrm{is}, \mathrm{is} \rrbracket \mathrm{f}=\mathrm{If}\left[\right.\right.$ Head $[\mathrm{x}]==\mathrm{X}_{\mathrm{t}}$,
\{ x, Xingsbyarmpits\});
(MatrixSignature[A] - Writhe[K_{K})/2];

Label everything!

Lets run our code line by line. $\operatorname{PD}\left[8_{2}\right]=\operatorname{PD}[X[10,1,11,2]$, $X[2,11,3,12], X[12,3,13,4]$, $x[4,13,5,14], x[14,5,15,6]$, $X[8,16,9,15], X[16,8,1,7]$, $X[6,9,7,10]]$;
$K=82 ;$

$P D[X[10,1,11,2], X[2,11,3,12], \ldots] \quad\left\{X_{-}[-1,11,2,-10], X_{-}[-11,3,12,-2], \ldots\right\}$

Video and more at http://www.math.toronto.edu/~drorbn/Talks/CMS-2112/

XingsByArmpits＝

List＠＠PD［K］／．
$x: X\left[i_{-}, j_{-}, k_{-}, l_{-}\right]: \rightarrow$
If［PositiveQ $[x], \mathbf{X}_{+}[-i, j, k,-l]$ ， $\left.\mathrm{X}_{-}[-j, k, l,-i]\right]$
$\left\{X_{-}[-1,11,2,-10], X_{-}[-11,3,12,-2]\right.$ ， $X_{-}[-3,13,4,-12], X_{-}[-13,5,14,-4]$ ， $X_{-}[-5,15,6,-14], X_{+}[-8,16,9,-15]$ ， $\left.X_{+}[-16,8,1,-7], X_{-}[-9,7,10,-6]\right\}$

bends＝Times＠＠XingsByArmpits／．
${ }_{-}[\mathbf{X}]\left[a_{-}, b_{-}, c_{-}, d_{-}\right]: \rightarrow$

$$
\mathbf{p}_{a,-d} \mathbf{p}_{b,-a} \mathbf{p}_{c,-b} \mathbf{p}_{d,-c}
$$

$\mathrm{P}_{-16,7} \mathrm{P}_{-15,-9} \mathrm{P}_{-14,-6} \mathrm{P}_{-13,4} \mathrm{P}_{-12,-4} \mathrm{P}_{-11,2}$ $\mathrm{p}_{-10,-2} \mathrm{p}_{-9,6} \mathrm{P}_{-8,15} \mathrm{P}_{-7,-1} \mathrm{P}_{-6,-10} \mathrm{P}_{-5,14}$ $p_{-4,-14} \mathrm{P}_{-3,12} \mathrm{P}_{-2,-12} \mathrm{P}_{-1,10} \mathrm{p}_{1,-8} \mathrm{P}_{2,-11}$ $p_{3,11} p_{4,-13} p_{5,13} p_{6,-15} p_{7,9} p_{8,16} p_{9,-16}$ $p_{10,-7} p_{11,1} p_{12,-3} p_{13,3} p_{14,-5} p_{15,5} p_{16,8}$ faces $=$ bends $/ / \cdot \mathbf{p}_{x_{-}, y_{-}} \mathbf{p}_{y_{-}, z_{--}}: \rightarrow p_{x, y, z}$
$\mathrm{P}_{-13,4,-13} \mathrm{P}_{-11,2,-11} \mathrm{P}_{-5,14,-5} \mathrm{P}_{-3,12,-3}$
$\mathrm{P}_{8,16,8} \mathrm{P}_{6,-15,-9,6} \mathrm{P}_{9,-16,7,9} \mathrm{P}_{10,-7,-1,10}$
$\mathrm{P}_{-10,-2,-12,-4,-14,-6,-10} \mathrm{P}_{1},-8,15,5,13,3,11,1$

A＝Table［0，Length＠faces，Length＠faces］；
A／／MatrixForm
$\left(\begin{array}{llllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$

Do［is＝Position［faces，\＃］ $\mathbb{1} 1,1 \rrbracket$ \＆／＠List＠＠ \mathbf{x} ；
$\mathbf{A} \llbracket \mathbf{i s}, \mathbf{i s} \rrbracket+=\operatorname{If}\left[\operatorname{Head}[\mathbf{x}]===\mathrm{X}_{+}\right.$,

$\{x$, XingsByArmpits $\}$ ］；
x＝XingsByArmpits 【1】
X＿$[-1,11,2,-10]$
faces
$\mathrm{P}_{-13,4,-13} \mathrm{P}_{-11,2,-11} \mathrm{P}_{-5,14,-5} \mathrm{P}_{-3,12,-3} \mathrm{P}_{8,16,8} \mathrm{P}_{6,-15,-9,6}$
$\mathrm{P}_{9,-16,7,9} \mathrm{P}_{10,-7,-1,10} \mathrm{P}_{-10,-2,-12,-4,-14,-6,-10} \mathrm{P}_{1,-8,15,5,13,3,11,1}$ is＝Position［faces，\＃］［1，1】 \＆／＠List＠＠x $\{8,10,2,9\}$

A【is，is】 $+=\operatorname{If}\left[\operatorname{Head}[x]===X_{+}\right.$，
$\left.\left(\begin{array}{llll}v & u & 1 & u \\ u & 1 & u & 1 \\ 1 & u & v & u \\ u & 1 & u & 1\end{array}\right),-\left(\begin{array}{llll}v & u & 1 & u \\ u & 1 & u & 1 \\ 1 & u & v & u \\ u & 1 & u & 1\end{array}\right)\right] ;$
A／／MatrixForm
$\left(\begin{array}{cccccccccc}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -v & 0 & 0 & 0 & 0 & 0 & -1 & -u & -u \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 & 0 & -v & -u & -u \\ 0 & -u & 0 & 0 & 0 & 0 & 0 & -u & -1 & -1 \\ 0 & -u & 0 & 0 & 0 & 0 & 0 & -u & -1 & -1\end{array}\right)$

$$
\text { Recall, is }=\{8,10,2,9\}
$$

Do［is＝Position［faces，\＃］［1，1】 \＆／＠List＠＠ x ；
$A \llbracket i s, i s \rrbracket+=\operatorname{If}\left[\right.$ Head $[x]===X_{+}$，
$\left.\left(\begin{array}{llll}v & u & 1 & u \\ u & 1 & u & 1 \\ 1 & u & v & u \\ u & 1 & u & 1\end{array}\right),-\left(\begin{array}{llll}v & u & 1 & u \\ u & 1 & u & 1 \\ 1 & u & v & u \\ u & 1 & u & 1\end{array}\right)\right]$,
\｛x，Rest＠XingsByArmpits \}]

A／／MatrixForm

$\left(\begin{array}{cccccccccc}-2 v & 0 & -1 & -1 & 0 & 0 & 0 & 0 & -2 u & -2 u \\ 0 & -2 v & 0 & -1 & 0 & 0 & 0 & -1 & -2 u & -2 u \\ -1 & 0 & -2 v & 0 & 0 & -1 & 0 & 0 & -2 u & -2 u \\ -1 & -1 & 0 & -2 v & 0 & 0 & 0 & 0 & -2 u & -2 u \\ 0 & 0 & 0 & 0 & 2 & 1 & 2 u & 1 & 0 & 2 u \\ 0 & 0 & -1 & 0 & 1 & 1-2 v & 0 & -1 & -2 u & 0 \\ 0 & 0 & 0 & 0 & 2 u & 0 & -1+2 v & 0 & -1 & 2 \\ 0 & -1 & 0 & 0 & 1 & -1 & 0 & 1-2 v & -2 u & 0 \\ -2 u & -2 u & -2 u & -2 u & 0 & -2 u & -1 & -2 u & -6 & -5 \\ -2 u & -2 u & -2 u & -2 u & 2 u & 0 & 2 & 0 & -5 & -5+2 v\end{array}\right)$
$\operatorname{Plot}\left[\omega=\mathbb{e}^{\text {it } t} ; u=\operatorname{Re}\left[\omega^{1 / 2}\right] ; \quad v=\operatorname{Re}[\omega] ;\right.$
(MatrixSignature [A] - Writhe[K]) / 2,
$\{t, 0,2 \pi\}$]

http://drorbn.net/cms21

Bedlewo for Mathematicians.

For a knot K and a complex unit ω set $t=1-\omega, r=2 \Re(t)$, make an $F \times F$ matrix A with contributions

Why are they equal?

I dunno, yet note that

- Kashaev is over the \mathbb{R} eals, Bedlewo is over the Complex numbers.
- There's a factor of 2 between them, and a shift.
...so it's not merely a matrix manipulation.

and output $\frac{1}{2}(\sigma(A)-w(K))$.

(conjugate if going against the flow) and output $\sigma(A)$.

Theorem. The Bedlewo program computes the Levine-Tristram signature of K at ω.
(Easy) Proof. Levine and Tristram tell us to look at $\sigma\left((1-\omega) L+\left(1-\omega^{*}\right) L^{T}\right)$, where L is the linking matrix for a Seifert surface S for $K: L_{i j}=\operatorname{lk}\left(\gamma_{i}, \gamma_{i}^{+}\right)$where γ_{i} run over a basis of $H_{1}(S)$ and γ_{i}^{+} is the pushout of γ_{i}. But signatures don't change if you run over and overdetermined basis, and the faces make such and over-determined basis whose linking numbers are controlled by the crossings. The rest is details.

Warning. The second formula on page (-2) "Conclusion" is silly-wrong. A fix will be posted here soon: some of the numbers written in this handout are a bit off, yet the qualitative results remain exactly the same (namely, for finite type, 3D seems to beat 2D, with the same algorithms).

Thanks for inviting me to speak at [K-OS]!

Most important: http://drorbn.net/kos21

See also arXiv:2108.10923.

If you can, please turn your video on! (And mic, whenever needed).

We often think of knots as planar diagrams. 3-dimensionally, they are embedded in "pancakes".

Knot by Lisa Piccirillo, pancake by DBN

'Connector' by Alexandra Griess and Jorel Heid (Hamburg, Germany). Image from www.waterfrontbia.com/ice-breakers-2019-presented-by-ports/.

Yarn-Ball Knots

[K-OS] on October 21, 2021
Dror Bar-Natan with Itai Bar-Natan, Iva Halacheva, and Nancy Scherich
Agenda. A modest light conversation on how knots should be measured.
Abstract. Let there be scones! Our view of knot theory is biased in favour of pancakes.
Technically, if K is a 3D knot that fits in volume V (assuming fixed-width yarn) then its projection to 2D will have about $V^{4 / 3}$ crossings. You'd expect genuinely 3D quantities associated with K to be computable straight from a 3D presentation of K. Yet we can hardly ever circumvent this $V^{4 / 3} \gg V$ "projection fee".
Exceptions include linking numbers (as we shall prove), the hyperbolic volume, and likely finite type invariants (as we shall discuss in detail). But knot polynomials and knot homologies seem to always pay the fee. Can we exempt them?
More at http://drorbn.net/kos21

A recurring question in knot theory is "do we have a 3D understanding of our invariant?"

- See Witten and the Jones polynomial.
- See Khovanov homology.

I'll talk about my perspective on the matter...

A Yarn Ball

The difference matters when

- We make statements about "random knots".
- We figure out computational complexity. Let's try to make it quantitative...

Theorem 1. Let $l k$ denote the linking number of a 2-component link. Then $C_{l k}(2 D, n) \sim n$ while $C_{l k}(3 D, V) \sim V$, so $l k$ is C3D!
Proof. WLOG, we are looking at a link in a grid, which we project as on the right:

/green
-blue

And here's a bigger knot.

This may look like a lot of information, but if V is big, it's less than the information in a planar diagram, and it is easily computable.

So $2 L^{2}$ times we have to solve the problem "given two sets R and G of integers in $[0, L]$, how many pairs $\{(r, g) \in R \times G: r<g\}$ are there?". This takes time $\sim L$ (see below), so the overall computation takes time $\sim L^{3}$.

Below. Start with $r b=c f=0$ ("reds before" and "cases found") and slide ∇ from left to right, incrementing $r b$ by one each time you cross a \bullet and incrementing of by $r b$ each time you cross a \bullet :

Conversation Starter 1. A knot invariant ζ is said to be Computationally 3D, or C3D, if

$$
C_{\zeta}(3 D, V) \ll C_{\zeta}\left(2 D, V^{4 / 3}\right) .
$$

This isn't a rigorous definition! It is time- and naïveté-dependent! But there's room for less-stringent rigour in mathematics, and on a philosophical level, our definition means something.

Here's what it look like, in the case of a knot:

There are $2 L^{2}$ triangular "crossings fields" F_{k} in such a projection.

WLOG, in each F_{k} all over strands and all under strands are oriented in the same way and all green edges belong to one component and all red edges to the other.

In general, with our limited tools, speedup arises because appropriately projected 3D knots have many uniform "red over green" regions:

Great Embarrassment 1. I don't know if any of the Alexander, Jones,
HOMFLY-PT, and Kauffman polynomials is C3D. I don't know if any
Reshetikhin-Turaev invariant is C3D. I don't know if any knot homology is C3D.

Or maybe it's a cause for optimism - there's still something very basic we don't know about (say) the Jones polynomial. Can we understand it well enough 3-dimensionally to compute it well? If not, why not?
(What a weak statement!)

All pre-categorification knot polynomials are power series whose coefficients are finite type invariants. (This is sometimes helpful for the computation of finite type invariants, but rarely helpful for the computation of knot polynomials).

Conversation Starter 2. Similarly, if η is a stingy quantity (a quantity we expect to be small for small knots), we will say that η has Savings in 3D, or "has S3D" if $M_{\eta}(3 D, V) \ll M_{\eta}\left(2 D, V^{4 / 3}\right)$.

Example (R. van der Veen, D. Thurston, private communications). The hyperbolic volume has S3D.

Great Embarrassment 2. I don't know if the genus of a knot has S3D! In other words, even if a knot is given in a 3-dimensional, the best way I know to find a Seifert surface for it is to first project it to 2D, at a great cost.

Theorem FT2D. If ζ is a finite type invariant of type d then $C_{\zeta}(2 D, n)$ is at most $\sim n^{\lfloor 3 d / 4\rfloor}$.

With more effort, $C_{\zeta}(2 D, n) \lesssim n^{\left(\frac{2}{3}+\epsilon\right) d}$.
Note that there are some exceptional finite type invariants, e.g. high coefficients of the Alexander polynomial and other poly-time knot polynomials, which can be computed much faster!

Theorem FT3D. If ζ is a finite type invariant of type d then $C_{\zeta}(3 D, V)$ is at most $\sim V^{6 d / 7+1 / 7}$. With more effort, $C_{\zeta}(2 D, V) \lesssim V^{\left(\frac{4}{5}+\epsilon\right) d}$

Tentative Conclusion. As
$n^{3 d / 4} \sim\left(V^{4 / 3}\right)^{3 d / 4}=V \gg V^{6 d / 7+1 / 7} \quad n^{2 d / 3} \sim\left(V^{4 / 3}\right)^{2 d / 3}=V^{8 d / 9} \gg V^{4 d / 5}$ these theorems say "most finite type invariants are probably C3D; the ones in greater doubt are the lucky few that can be computed unusually quickly".

Theorem FT2D. If ζ is a finite type invariant of type d then $C_{\zeta}(2 D, n)$ is at most $\sim n^{\lfloor 3 d / 4\rfloor}$. With more effort, $C_{\zeta}(2 D, n) \lesssim n^{\left(\frac{2}{3}+\epsilon\right) d}$.

With an appropriate look-up table, it can also be done in time $\sim n^{2}$ (in general, $\sim n^{d-1}$). That look-up table ($T_{q_{1}, q_{2}}^{p_{1}, p_{2}}$) is of size (and production cost) $\sim n^{4}$ if you are naive, and $\sim n^{2}$ if you are just a bit smarter. Indeed

$$
T_{q_{1}, q_{2}}^{p_{1}, p_{2}}=T_{0, q_{2}}^{0, p_{2}}-T_{0, q_{2}}^{0, p_{1}}-T_{0, q_{1}}^{0, p_{2}}+T_{0, q_{1}}^{0, p_{1}},
$$

and $\left(T_{0, q}^{0, p}\right)$ is easy to compute.

With multiple uses of the same lookup table, what naively takes $\sim n^{5}$ can be reduced to $\sim n^{3}$.

In general within a big d-arrow diagram we need to find an as-large-as possible collection of arrows to delay. These must be non-adjacent to each other. As the adjacency graph for the arrows is at worst quadrivalent, we can always find $\left\lceil\frac{d}{4}\right\rceil$ non-adjacent arrows, and hence solve the counting problem in time
$\sim n^{d-\left\lceil\frac{d}{4}\right\rceil}=n^{\lfloor 3 d / 4\rfloor}$.

On to

Theorem FT3D. If ζ is a finite type invariant of type d then $C_{\zeta}(3 D, V)$ is at most
$\sim V^{6 d / 7+1 / 7}$.
With more effort, $C_{\zeta}(2 D, V) \lesssim V^{\left(\frac{4}{5}+\epsilon\right) d}$

The line/feather method:

Accurate but takes forever.

In reality, you take a few shark bites and feather the rest ..

.. and then there's an optimization problem to solve: when to stop biting and start feathering.

Note that this counting argument works equally well if each of the d arrows is pulled from a different set!
It follows that we can compute φ_{d} in time $\sim n^{\lfloor 3 d / 4\rfloor}$.

With bigger look-up tables that allow looking up "clusters" of G arrows, we can reduce this to $\sim n^{\left(\frac{2}{3}+\epsilon\right) d}$

An image editing problem:

(Yarn ball and background coutesy of Heather Young)

The rectangle/shark method:

Coarse but fast.

The structure of a crossing field.

There are about $\log _{2} L$ "generations". There are 2^{g} bites in generation g, and the total number of crossings in them is $\sim L^{2} / 2^{g}$

Let's go hunt!

Video and more at http://www.math.toronto.edu/~drorbn/Talks/KOS-211021/

The effort to take a single multi-bite is tiny. Indeed,
Lemma Given $2 d$ finite sets $B_{i}=\left\{t_{i 1}, t_{i 2}, \ldots\right\} \subset\left[1 . . L^{3}\right]$ and a permutation $\pi \in S_{2 n}$ the quantity

$$
N=\mid\left\{\left(b_{i}\right) \in \prod_{i=1}^{2 d} B_{i}: \text { the } b_{i} \text { 's are ordered as } \pi\right\} \mid
$$

can be computed in time $\sim \sum\left|B_{i}\right| \sim \max \left|B_{i}\right|$.
Proof. WLOG $\pi=I d$. For $\iota \in[1 . .2 d]$ and $\beta \in B:=\cup B_{i}$ let

$$
N_{\iota, \beta}=\left|\left\{\left(b_{i}\right) \in \prod_{i=1}^{\iota} B_{i}: b_{1}<b_{2}<\ldots<b_{\iota} \leq \beta\right\}\right|
$$

We need to know $N_{2 d, \text { max } B}$; compute it inductively using $N_{\iota, \beta}=$ $N_{\iota, \beta^{\prime}}+N_{\iota-1, \beta^{\prime}}$, where β^{\prime} is the predecessor of β in B.

$t_{41} t_{42} t_{43}$

Conclusion. We wish to compute the contribution to φ_{d} coming from d-tuples of crossings of multi-generation \bar{g}.

- The multi-shark method does it in time

$$
\sim(\text { no. of bites }) \cdot(\text { time per bite })=L^{2 d} 2^{G} \cdot \frac{L}{2^{\min \bar{g}}}<L^{2 d+1} 2^{G}
$$

(increases with G).

- The multi-feather method (project and use the 2D algorithm) does it in time

$$
\sim(\text { no. of crossings })^{\left\lfloor\frac{3}{4} d\right\rfloor}=\left(\prod_{i=1}^{d} L^{2} \frac{L^{2}}{2^{g_{i}}}\right)^{\left\lfloor\frac{3}{4} d\right\rfloor}<\frac{L^{3 d}}{\left(2^{G}\right)^{3 / 4}}
$$

(decreases with G).
Of course, for any specific G we are free to choose whichever is better, shark or feather.

If time - a word about braids.
The two methods agree (and therefore are at their worst) if $2^{G}=L^{\frac{4}{7}(d-1)}$, and in that case, they both take time $\sim L^{\frac{18}{7}} d+\frac{3}{7}=V^{\frac{6}{7}} d+\frac{1}{7}$.
The same reasoning, with the $n^{\left(\frac{2}{3}+\epsilon\right) d}$ feather, gives $V^{\left(\frac{4}{5}+\epsilon\right) d}$.

I Still Don't Understand the Alexander Polynomial

Dror Bar-Natan, http://drorbn.net/mo21

Moscow by Web, April 2021

Abstract. As an algebraic knot theorist, I still don't understand the Alexander polynomial. There are two conventions as for how to present tangle theory in algebra: one may name the strands of a tangle, or one may name their ends. The distinction might seem too minor to matter, yet it leads to a completely different view of the set of tangles as an algebraic structure. There are lovely formulas for the Alexander polynomial as viewed from either perspective, and they even agree where they meet. But the "strands" formulas know about strand doubling while the "ends" ones don't, and the "ends" formulas know about skein relations while the "strands" ones don't. There ought to be a common generalization, but I don't know what it is.

I use talks to self-motivate; so often I choose a topic and write an abstract when I know I can do it, yet when I haven't done it yet. This time it turns out my abstract was wrong - I'm still uncomfortable with the Alexander polynomial, but in slightly different ways than advertised two slides before.

My discomfort.

- I can compute the multivariable Alexander polynomial real fast:

$$
\longrightarrow(u v w)^{-1 / 2}(u-1)(v-1)(w-1) .
$$

- But I can only prove "skein relations" real slow:

1. Virtual Skein Theory Heaven

Definition. A "Contraction Algebra" assigns a set $\mathcal{T}(\mathcal{X}, X)$ to any pair of finite sets $\mathcal{X}=\{\xi \ldots\}$ and $X=\{x, \ldots\}$ provided $|\mathcal{X}|=|X|$, and has operations

- "Disjoint union" $\sqcup: \mathcal{T}(\mathcal{X}, X) \times \mathcal{T}(\mathcal{Y}, Y) \rightarrow \mathcal{T}(\mathcal{X} \sqcup \mathcal{Y}, X \sqcup Y)$, provided $\mathcal{X} \cap \mathcal{Y}=X \cap Y=\emptyset$.
- "Contractions" $c_{X, \xi}: \mathcal{T}(\mathcal{X}, X) \rightarrow \mathcal{T}(\mathcal{X} \backslash \xi, X \backslash x)$, provided $x \in X$ and $\xi \in \mathcal{X}$.
- Renaming operations $\sigma_{\eta}^{\xi}: \mathcal{T}(\mathcal{X} \sqcup\{\xi\}, X) \rightarrow \mathcal{T}(\mathcal{X} \sqcup\{\eta\}, X)$ and $\sigma_{y}^{x}: \mathcal{T}(\mathcal{X}, X \sqcup\{x\}) \rightarrow \mathcal{T}(\mathcal{X}, X \sqcup\{y\})$.
Subject to axioms that will be specified right after the two examples in the next three slides.
If R is a ring, a contraction algebra is said to be " R-linear" if all the $\mathcal{T}(\mathcal{X}, X)$'s are R-modules, if the disjoint union operations are R-bilinear, and if the contractions $c_{x, \xi}$ and the renamings σ. are R-linear.
(Contraction algebras with some further "unit" properties are called "wheeled props" in [MMS, DHR])

Note 3. A contraction algebra morphism out of \mathcal{T} is an invariant of virtual tangles (and hence of virtual knots and links) and would be an ideal tool to prove Skein Relations:

Thanks for inviting me to Moscow! As most of you have never seen it, here's a picture of the lecture room:

If you can, please turn your video on! (And mic, whenever needed).

This talk is to a large extent an elucidation of the Ph.D. theses of my former students Jana Archibald and Iva Halacheva. See [Ar, Ha1, Ha2].

Also thanks to Roland van der Veen for comments.
A technicality. There's supposed to be fire alarm testing in my building today. Don't panic!

Example 1. Let $\mathcal{T}(\mathcal{X}, X)$ be the set of virtual tangles with incoming ends ("tails") labeled by \mathcal{X} and outgoing ends ("heads") labeled by X, with \sqcup and σ. the obvious disjoint union and end-renaming operations, and with $c_{x, \xi}$ the operation of attaching a head x to a tail ξ while introducing no new crossings.
Note 1. \mathcal{T} can be made linear by allowing formal linear combinations.
Note 2. \mathcal{T} is finitely presented, with generators the positive and negative crossings, and with relations the Reidemeister moves! (If you want, you can take this to be the definition of "virtual tangles").

Example 2. Let V be a finite dimensional vector space and set $\mathcal{V}(\mathcal{X}, X):=\left(V^{*}\right)^{\otimes \mathcal{X}} \otimes V^{\otimes X}$, with $\sqcup=\otimes$, with σ : the operation of renaming a factor, and with $c_{X, \xi}$ the operation of contraction: the evaluation of tensor factor ξ (which is a V^{*}) on tensor factor \times (which is a V).

Axioms. One axiom is primary and interesting,

- Contractions commute! Namely, $c_{x, \xi} / / c_{y, \eta}=c_{y, \eta} / / c_{x, \xi}$ (or in old-speak, $\left.c_{y, \eta} \circ c_{x, \xi}=c_{x, \xi} \circ c_{y, \eta}\right)$.
And the rest are just what you'd expect:
- \sqcup is commutative and associative, and it commutes with $c_{\text {., }}$, and with σ. whenever that makes sense.

- $\sigma_{\xi}^{\xi}=\sigma_{x}^{x}=I d, \sigma_{\eta}^{\xi} / / \sigma_{\zeta}^{\eta}=\sigma_{\zeta}^{\xi}, \sigma_{y}^{x} / / \sigma_{z}^{y}=\sigma_{z}^{x}$, and renaming operations commute where it makes sense.

2. Heaven is a Place on Earth

(A version of the main results of Archibald's thesis, [Ar]).
Let us work over the base ring $\mathcal{R}=\mathbb{Q}\left[\left\{T^{ \pm 1 / 2}: T \in C\right\}\right]$. Set

$$
\mathcal{A}(\mathcal{X}, X):=\left\{w \in \Lambda(\mathcal{X} \sqcup X): \operatorname{deg}_{\mathcal{X}} w=\operatorname{deg}_{X} w\right\}
$$

(so in particular the elements of $\mathcal{A}(\mathcal{X}, X)$ are all of even degree). The union operation is the wedge product, the renaming operations are changes of variables, and $c_{x, \xi}$ is defined as follows. Write $w \in \mathcal{A}(\mathcal{X}, X)$ as a sum of terms of the form $u w^{\prime}$ where $u \in \Lambda(\xi, x)$ and $w^{\prime} \in \mathcal{A}(\mathcal{X} \backslash \xi, X \backslash x)$, and map u to 1 if it is 1 or $x \xi$ and to 0 is if is ξ or x :

$$
1 w^{\prime} \mapsto w^{\prime}, \quad \xi w^{\prime} \mapsto 0, \quad x w^{\prime} \mapsto 0, \quad x \xi w^{\prime} \mapsto w^{\prime} .
$$

Proposition. \mathcal{A} is a contraction algebra.

We construct a morphism of coloured contraction algebras $\mathcal{A}: \mathcal{T} \rightarrow \mathcal{A}$ by declaring

$$
\begin{aligned}
X_{i j k l}[S, T] & \mapsto T^{-1 / 2} \exp \left(\left(\begin{array}{ll}
\xi_{l} & \xi_{i}
\end{array}\right)\left(\begin{array}{cc}
1 & 1-T \\
0 & T
\end{array}\right)\binom{x_{j}}{x_{k}}\right) \\
\bar{X}_{i j k l}[S, T] & \mapsto T^{1 / 2} \exp \left(\left(\begin{array}{ll}
\xi_{i} & \xi_{j}
\end{array}\right)\left(\begin{array}{cc}
T^{-1} & 0 \\
1-T^{-1} & 1
\end{array}\right)\binom{x_{k}}{x_{l}}\right) \\
P_{i j}[T] & \mapsto \exp \left(\xi_{i} x_{j}\right)
\end{aligned}
$$

with

(Note that the matrices appearing in these formulas are the Burau matrices).

3. An Implementation of \mathcal{A}

If I didn't implement I wouldn't believe myself.

Written in Mathematica [Wo], available as the notebook Alpha.nb at http://drorbn.net/mo21/ap. Code lines are highlighted in grey, demo lines are plain. We start with an implementation of elements ("Wedge") of exterior algebras, and of the wedge product ("WP"):

```
WP[Wedge [u___], Wedge[v___]] := Signature [{u,v}] * Wedge @@ Sort [ {u,v}];
WP[0, _] = WP[_, 0] = 0;
WP[\mp@subsup{A}{-}{\prime},\mp@subsup{B}{-}{\prime}]:=
    Expand[Distribute[A ** B] /.
        (a_. * u_Wedge) ** (b_. * v_Wedge) : }->\mathrm{ abWP[u,v]];
WP[Wedge[^] + Wedge[a]-2b^a, Wedge[^]-3 Wedge[b] + 7c^d]
Wedge [] + Wedge [a] - 3 Wedge[b] -a^b + 7c^d + 7a^c^d+14a^b^c^d
```


Comments.

- We can relax $|\mathcal{X}|=|X|$ at no cost.
- We can lose the distinction between \mathcal{X} and X and get "circuit algebras".
- There is a "coloured version", where $\mathcal{T}(\mathcal{X}, X)$ is replaced with $\mathcal{T}(\mathcal{X}, X, \lambda, I)$ where $\lambda: \mathcal{X} \rightarrow C$ and $I: X \rightarrow C$ are "colour functions" into some set C of "colours", and contractions $c_{x, \xi}$ are allowed only if x and ξ are of the same colour, $I(x)=\lambda(\xi)$. In the world of tangles, this is "coloured tangles".

Alternative Formulations.

$-\quad c_{x, \xi} w=\iota_{\xi} \iota_{x} \mathbb{e}^{\chi \xi} w, \quad$ where ι. denotes interior multiplication.

- Using Fermionic integration,

$$
c_{x, \xi} w=\int \mathbb{e}^{x \xi} w d \xi d x
$$

- $c_{x, \xi}$ represents composition in exterior algebras! With $X^{*}:=\left\{x^{*}: x \in X\right\}$, we have that $\operatorname{Hom}(\wedge X, \wedge Y) \cong \wedge\left(X^{*} \sqcup Y\right)$ and the following square commutes:

- Similarly, $\Lambda(\mathcal{X} \sqcup X) \cong\left(H^{*}\right)^{\otimes \mathcal{X}} \otimes H^{\otimes X}$ where H is a 2-dimensional "state space" and H^{*} is its dual. Under this identification, $c_{X, \xi}$ becomes the contraction of an H factor with an H^{*} factor.

Theorem.

If D is a classical link diagram with k components coloured T_{1}, \ldots, T_{k} whose first component is open and the rest are closed, if MVA is the multivariable Alexander polynomial of the closure of D (with these colours), and if ρ_{j} is the counterclockwise rotation number of the j th component of D, then

$$
\mathcal{A}(D)=T_{1}^{-1 / 2}\left(T_{1}-1\right)\left(\prod_{j} T_{j}^{\rho_{j} / 2}\right) \cdot M V A \cdot\left(1+\xi_{\text {in }} \wedge x_{\mathrm{out}}\right)
$$

(\mathcal{A} vanishes on closed links).

We then define the exponentiation map in exterior algebras ("WExp") by summing the series and stopping the sum once the current term ("t") vanishes:
$\operatorname{WExp}\left[A_{-}\right]:=\operatorname{Module}[\{s=$ Wedge $[\wedge], t=$ Wedge $[\wedge], k=0\}$,
While $[t=!=0, s+=(t=\operatorname{Expand}[W P[t, A] /(++k)])] ; s]$
$\operatorname{WExp}[a \wedge b+c \wedge d+e \wedge f]$
Wedge [] $+a \wedge b+c \wedge d+e \wedge f+a \wedge b \wedge c \wedge d+a \wedge b \wedge e \wedge f+c \wedge d \wedge e \wedge f+a \wedge b \wedge c \wedge d \wedge e \wedge f$

Contractions!
$\mathbf{c}_{x_{-}, y_{-}}\left[{ }^{\prime}\right.$ _Wedge] $:=$ Module $[\{i, j\}$,

$c_{x, y}\left[\varepsilon_{-}\right]:=\varepsilon / . w_{-}$Wedge $: \rightarrow \mathbf{c}_{x, y}[w]$
WExp [a^b+2c^d]
$c_{d, c}$ @WExp [a^b+2c^d]
Wedge [] $+a \wedge b+2 c \wedge d+2 a \wedge b \wedge c \wedge d$
Wedge [] - $\mathrm{a} \wedge \mathrm{b}$

The negative crossing and the "point":

$\mathcal{A}\left[\mathbf{P}_{i_{-}, j_{-}}\left[T_{-}\right]\right]:=\mathcal{F}\left[\{i\},\{j\},\langle | \xi_{i} \rightarrow T, x_{j} \rightarrow T| \rangle, \operatorname{WExp}\left[\xi_{i} \wedge x_{j}\right]\right] ;$
$\mathscr{F}\left[\mathbf{P}_{\left.i_{-}, j_{-}\right]}\right]:=\mathcal{F}\left[\mathbf{P}_{i, j}\left[\tau_{i}\right]\right]$
\mathcal{A} [is,os,cs,w] is also a container for the values of the \mathcal{A}-invariant of a tangle. In it, is are the labels of the input strands, os are the labels of the output strands, cs is an assignment of colours (namely, variables) to all the ends $\left\{\xi_{i}\right\}_{i \in \mathrm{is}} \sqcup\left\{x_{j}\right\}_{j \in \text { os }}$, and w is the "payload": $\quad X_{i j k l}[S, T]$ an element of $\Lambda\left(\left\{\xi_{i}\right\}_{i \in \mathrm{is}} \sqcup\left\{x_{j}\right\}_{j \in \text { os }}\right)$.
$\mathscr{H}\left[\mathbf{X}_{i_{-}, j_{-}, k_{-}, L_{-}}\left[S_{-}, T_{-}\right]\right]:=\mathcal{F}\left[\{L, i\},\{j, k\},\langle | \xi_{i} \rightarrow S, \mathbf{x}_{j} \rightarrow T, \mathbf{x}_{k} \rightarrow S, \xi_{L} \rightarrow T| \rangle\right.$,

$$
\left.\operatorname{Expand}\left[T^{-1 / 2} \operatorname{WExp}\left[\operatorname{Expand}\left[\left\{\xi_{l}, \xi_{i}\right\} \cdot\left(\begin{array}{cc}
1 & 1-T \\
0 & T
\end{array}\right) \cdot\left\{\mathrm{X}_{j}, \mathrm{x}_{k}\right\}\right] / \cdot \xi_{a_{-}} \mathrm{x}_{b_{-}}: \rightarrow \xi_{a} \wedge \mathrm{X}_{b}\right]\right]\right] \text {; }
$$

$\mathcal{F}\left[\mathrm{X}_{1,2,3,4}[\mathrm{u}, \mathrm{v}]\right]$
$\mathscr{F}\left[\{4,1\},\{2,3\},\langle | \xi_{1} \rightarrow u, x_{2} \rightarrow v, x_{3} \rightarrow u, \xi_{4} \rightarrow v| \rangle\right.$,
$\left.\frac{\text { Wedge }[]}{\sqrt{v}}-\frac{x_{2} \wedge \xi_{4}}{\sqrt{v}}-\sqrt{v} x_{3} \wedge \xi_{1}-\frac{x_{3} \wedge \xi_{4}}{\sqrt{v}}+\sqrt{v} x_{3} \wedge \xi_{4}+\sqrt{v} \mathbf{x}_{2} \wedge \mathbf{x}_{3} \wedge \xi_{1} \wedge \xi_{4}\right]$
$\mathscr{F}\left[\mathrm{X}_{\left.i_{-}, j_{-}, k_{-}, \iota_{-}\right]}\right]:=\mathcal{F}\left[\mathrm{X}_{i, j, k, l}\left[\tau_{i}, \tau_{l}\right]\right]$

The linear structure on \mathcal{A} 's:
$\mathcal{F} /: \alpha_{-} \times \mathcal{F}\left[i s_{-}, o s_{-}, c s_{-}, w_{-}\right]:=\mathcal{A}[i s, o s, c s$, Expand $[\alpha w]]$
$\mathcal{F} /: \mathcal{A}\left[i s 1_{-}\right.$, os1_, cs1_, w1_] + $\mathcal{H}\left[i s 2_{-}, o s 2_{-}, c s 2_{-}, w 2_{-}\right] / ;$
(Sort@is1 == Sort@is2) ^(Sort@os1 == Sort@os2) ^
(Sort@Normal@cs1 $==$ Sort@Normal@cs2) := $\mathcal{F}[i s 1, o s 1, c s 1, w 1+w 2]$
Deciding if two \mathcal{A} 's are equal:
$\mathcal{F} /: \mathcal{A}\left[i s 1_{-}, o s 1_{-}, \quad, w 1_{-}\right] \equiv \mathcal{F}\left[i s 2_{-}\right.$, os2_, _, w2_] :=
TrueQ [(Sort@is1 === Sort@is2) ^(Sort@os1 === Sort@os2) ^
PowerExpand [$w 1$ == $w 2$]]

The union operation on \mathcal{A} 's (implemented as "multiplication"):
$\mathcal{F} /: \mathcal{A}\left[i s 1_{-}, o s 1_{-}, c s 1_{-}, w 1_{-}\right] \times \mathcal{F}\left[i s 2_{-}, o s 2_{-}, c s 2_{-}, w 2_{-}\right]:=$
$\mathcal{A}[i s 1 \cup i s 2$, os1 Uos2, Join [cs1, cs2], WP [w1, w2]]
Short $\left[\mathcal{F}\left[\mathrm{X}_{2,4,3,1}[\mathrm{~S}, \mathrm{~T}]\right] \times \mathcal{F}\left[\overline{\mathrm{X}}_{3,4,6,5}\right], 5\right]$
$\mathcal{F}[\{1,2,3,4\},\{3,4,5,6\}$,
$\langle | \xi_{2} \rightarrow S, x_{4} \rightarrow T, x_{3} \rightarrow S, \xi_{1} \rightarrow T, \xi_{3} \rightarrow \tau_{3}, \xi_{4} \rightarrow \tau_{4}, x_{6} \rightarrow \tau_{3}, x_{5} \rightarrow \tau_{4}| \rangle, \frac{\sqrt{\tau_{4}} \text { Wedge }[]}{\sqrt{T}}-$

$$
\frac{\sqrt{\tau_{4}} x_{3} \wedge \xi_{1}}{\sqrt{T}}+\sqrt{T} \sqrt{\tau_{4}} x_{3} \wedge \xi_{1}-\sqrt{T} \sqrt{\tau_{4}} \mathbf{x}_{3} \wedge \xi_{2}-\frac{\sqrt{\tau_{4}} \mathbf{x}_{4} \wedge \xi_{1}}{\sqrt{T}}-\frac{\sqrt{\tau_{4}} \mathbf{x}_{5} \wedge \xi_{4}}{\sqrt{T}}-
$$

$$
\frac{\mathbf{x}_{6} \wedge \xi_{3}}{\sqrt{T} \sqrt{\tau_{4}}}+\ll \mathbf{4 0} \gg+\frac{\sqrt{T} \mathbf{x}_{3} \wedge \mathbf{x}_{5} \wedge \mathbf{x}_{6} \wedge \xi_{1} \wedge \xi_{3} \wedge \xi_{4}}{\sqrt{\tau_{4}}}-\frac{\sqrt{T} \mathbf{x}_{3} \wedge \mathbf{x}_{5} \wedge \mathbf{x}_{6} \wedge \xi_{2} \wedge \xi_{3} \wedge \xi_{4}}{\sqrt{\tau_{4}}}-
$$

$$
\left.\frac{\mathbf{x}_{4} \wedge \mathbf{x}_{5} \wedge \mathbf{x}_{6} \wedge \xi_{1} \wedge \xi_{3} \wedge \xi_{4}}{\sqrt{T} \sqrt{\tau_{4}}}+\frac{\sqrt{T} \mathbf{x}_{3} \wedge \mathbf{x}_{4} \wedge \mathbf{x}_{5} \wedge \mathbf{x}_{6} \wedge \xi_{1} \wedge \xi_{2} \wedge \xi_{3} \wedge \xi_{4}}{\sqrt{\tau_{4}}}\right]
$$

```
Contractions of }\mathcal{A}\mathrm{ -objects:
c}\mp@subsup{\boldsymbol{h}}{-}{},\mp@subsup{t}{-}{\prime}@\mathcal{F}[i\mp@subsup{s}{-}{\prime},o\mp@subsup{s}{-}{\prime},c\mp@subsup{s}{-}{\prime},\mp@subsup{w}{-}{\prime}]:=\mathcal{F}
    DeleteCases[is, t], DeleteCases [os,h], KeyDrop[cs, {\mp@subsup{x}{h}{},\mp@subsup{\xi}{t}{}}],\mp@subsup{\mathbf{c}}{\mp@subsup{\mathbf{x}}{h}{},\mp@subsup{\xi}{t}{}}{[w]}][\mp@code{l}
    ] /. If[MatchQ[cs[\mp@subsup{\xi}{t}{\prime}],\mp@subsup{\tau}{-}{\prime}],\operatorname{cs}[\mp@subsup{\xi}{t}{}]->cs[\mp@subsup{x}{h}{}],\operatorname{cs}[\mp@subsup{x}{h}{}]->cs[\mp@subsup{\xi}{t}{\prime}]];
c
\mathcal{F}[{1,2,3},{3,5,6},\langle| \xi2->S, \mp@subsup{x}{3}{}->\textrm{S},\mp@subsup{\xi}{1}{}->\textrm{T},\mp@subsup{\xi}{3}{}->\mp@subsup{\tau}{3}{},\mp@subsup{\textrm{x}}{6}{}->\mp@subsup{\tau}{3}{},\mp@subsup{\textrm{x}}{5}{}->\textrm{T}|\rangle,
Wedge[] - 攵^
```



```
    \mp@subsup{x}{3}{}\wedge\mp@subsup{x}{6}{}\wedge\mp@subsup{\xi}{1}{}\wedge\mp@subsup{\xi}{3}{}
```

4. Skein relations and evaluations for \mathcal{A}

$$
\begin{aligned}
& \mathcal{F} @\left\{\bar{x}_{4,1,6,3}[v, u], \bar{x}_{3,2,5,4}\right\} \\
& \mathcal{F}\left[\{1,2\},\{5,6\},\langle | \xi_{2} \rightarrow v, x_{5} \rightarrow u, \xi_{1} \rightarrow u, x_{6} \rightarrow v| \rangle,\right. \\
& \sqrt{u} \sqrt{v} \text { Wedge }[]-\frac{\sqrt{u} x_{5} \wedge \xi_{1}}{\sqrt{v}}+\frac{\sqrt{u} x_{5} \wedge \xi_{2}}{\sqrt{v}}-\sqrt{u} \sqrt{v} x_{5} \wedge \xi_{2}+\frac{\sqrt{v} x_{6} \wedge \xi_{1}}{\sqrt{u}}-\sqrt{u} \sqrt{v} x_{6} \wedge \xi_{1} \\
& \left.\frac{\sqrt{v} x_{6} \wedge \xi_{2}}{\sqrt{u}}-\frac{\sqrt{u} x_{5} \wedge x_{6} \wedge \xi_{1} \wedge \xi_{2}}{\sqrt{v}}-\frac{\sqrt{v} x_{5} \wedge x_{6} \wedge \xi_{1} \wedge \xi_{2}}{\sqrt{u}}+\sqrt{u} \sqrt{v} x_{5} \wedge x_{6} \wedge \xi_{1} \wedge \xi_{2}\right]
\end{aligned}
$$

Automatic and intelligent multiple contractions:

$\mathcal{F} @\left\{\mathrm{X}_{2,4,3,1}[\mathrm{~S}, \mathrm{~T}], \bar{X}_{3,4,6,5}\right\} \equiv \mathcal{F} @\left\{\mathrm{P}_{1,5}[\mathrm{~T}], \mathrm{P}_{2,6}[\mathrm{~S}]\right\}$
True
$\mathcal{F} @\left\{\bar{X}_{3,1,2,4}[\mathrm{~S}, \mathrm{~T}], \mathrm{X}_{6,5,3,4}\right\} \equiv \mathcal{F} @\left\{\mathrm{P}_{1,5}[\mathrm{~T}], \mathrm{P}_{6,2}[\mathrm{~S}]\right\}$
True

$\mathcal{H} @\left\{X_{2,5,4,1}\left[T_{2}, T_{1}\right], X_{3,7,6,5}\left[T_{3}, T_{1}\right], X_{6,9,8,4}\right\} \equiv$ $\mathcal{F} @\left\{X_{3,5,4,2}\left[T_{3}, T_{2}\right], X_{4,6,8,1}\left[T_{3}, T_{1}\right], X_{5,7,9,6}\right\}$ True

MVA $=u^{-1 / 2} v^{-1 / 2} w^{-1 / 2}(u-1)(v-1)(w-1) ;$
$A=\left\{\bar{X}_{1,12,2,13}[u, v], \bar{X}_{13,2,6,3}, X_{8,4,9,3}, X_{4,10,5,9}, X_{6,17,7,16}[v, w]\right.$,
$\left.\mathrm{X}_{15,8,16,7}, \overline{\mathrm{X}}_{14,10,15,11}, \overline{\mathrm{X}}_{11,17,12,14}\right\} / / \mathcal{F} / /$ Last // Factor
$\frac{(-1+u)^{2}(-1+v)(-1+w)\left(\text { Wedge }[]-x_{5} \wedge \xi_{1}\right)}{u v}$
$A==u^{-1 / 2}(u-1) u^{\theta} v^{-1 / 2} w^{1 / 2}$ MVA (Wedge $[\wedge]-x_{5} \wedge \xi_{1}$)
True

The Conway Relation
(see [Co])
$\mathcal{F} @\left\{\mathrm{X}_{2,3,4,1}[\mathrm{~T}, \mathrm{~T}]\right\}-\mathcal{F} @\left\{\overline{\mathrm{X}}_{1,2,3,4}[\mathrm{~T}, \mathrm{~T}]\right\} \equiv\left(\mathrm{T}^{-1 / 2}-\mathrm{T}^{1 / 2}\right) \mathcal{A} @\left\{\mathrm{P}_{1,4}[\mathrm{~T}], \mathrm{P}_{2,3}[\mathrm{~T}]\right\}$ True

Virtual versions (Archibald, [Ar])
(2
$\mathcal{F} @\left\{\mathrm{X}_{2,3,4,1}\right\}+\mathcal{F} @\left\{\overline{\mathrm{X}}_{2,1,4,3}\right\} \equiv\left(\tau_{1}^{1 / 2}+\tau_{1}^{-1 / 2}\right) \mathcal{F} @\left\{\mathrm{P}_{1,3}, \mathrm{P}_{2,4}\right\}$
True
$\mathcal{F} @\left\{\overline{\mathrm{X}}_{1,2,3,4}\right\}+\mathcal{F} @\left\{\mathrm{X}_{1,4,3,2}\right\} \equiv\left(\tau_{2}^{1 / 2}+\tau_{2}^{-1 / 2}\right) \mathcal{H} @\left\{\mathrm{P}_{1,3}, \mathrm{P}_{2,4}\right\}$
True

Jun Murakami's Fifth Axiom (see [Mu])

$\mathcal{F} @\left\{\mathrm{X}_{1,4,2,5}[\mathrm{~T}, \mathrm{~S}], \mathrm{X}_{4,3,5,2}\right\} \equiv \frac{\sqrt{S}(1-\mathrm{T})}{\sqrt{T}} \mathcal{A} @\left\{\mathrm{P}_{1,3}[\mathrm{~T}]\right\}$
True

Virtual version (Archibald, [Ar])

$\mathcal{F} @\left\{X_{3,7,6,1}, \bar{X}_{7,2,4,5}\right\}+\mathcal{F} @\left\{X_{2,4,7,1}, X_{3,5,6,7}\right\} \equiv$
$\mathcal{F} @\left\{X_{3,7,6,2}, X_{7,4,5,1}\right\}+\mathcal{F} @\left\{\bar{X}_{1,2,7,5}, X_{3,4,6,7}\right\}$
True

Virtual versions (Archibald, [Ar])

$\mathcal{P} @\left\{X_{3,2,3,1}[S, T]\right\} \equiv\left(T^{-1 / 2}-T^{1 / 2}\right) \mathcal{F} @\left\{\mathrm{P}_{1,2}[\mathrm{~T}]\right\}$
True
$\mathcal{F} @\left\{X_{1,3,2,3}\right\}$
$\mathcal{F}\left[\{1\},\{2\},\langle | \xi_{1} \rightarrow \tau_{1}, x_{2} \rightarrow \tau_{1}| \rangle, 0\right]$

The Naik-Stanford Double Delta Move

Timing[$\mathcal{F @}\left\{\mathrm{X}_{6,10,28,24}[\mathrm{w}, \mathrm{v}], \overline{\mathrm{X}}_{28,3,29,19}[\mathrm{w}, \mathrm{v}], \mathrm{X}_{26,20,27,19}[\mathrm{w}, \mathrm{v}], \overline{\mathrm{X}}_{27,23,11,24}[\mathrm{w}, \mathrm{v}]\right.$, $X_{1,12,13,30}[u, w], \bar{X}_{13,5,14,25}[u, w], X_{17,26,18,25}[u, w], \bar{X}_{18,29,8,30}[u, w]$, $\left.x_{4,7,22,15}[v, u], \bar{x}_{22,2,23,16}[v, u], x_{20,17,21,16}[v, u], \bar{x}_{21,14,9,15}[v, u]\right\} \equiv$ $\mathcal{F} @\left\{\mathrm{X}_{5,9,25,21}[\mathrm{w}, \mathrm{v}], \overline{\mathrm{x}}_{25,4,26,22}[\mathrm{w}, \mathrm{v}], \mathrm{X}_{29,23,30,22}[\mathrm{w}, \mathrm{v}], \overline{\mathrm{X}}_{30,20,12,21}[\mathrm{w}, \mathrm{v}]\right.$, $X_{2,11,16,27}[u, w], \bar{X}_{16,6,17,28}[u, w], X_{14,29,15,28}[u, w], \bar{x}_{15,26,7,27}[u, w]$,
$\left.\left.X_{3,8,19,18}[v, u], \bar{X}_{19,1,20,13}[v, u], X_{23,14,24,13}[v, u], \bar{X}_{24,17,18,18}[v, u]\right\}\right]$ \{190.422, True

Virtual Version 2 (Archibald, [Ar])

$\mathcal{F} @\left\{\bar{X}_{20,1,10,13}[v, u], X_{3,14,19,13}[v, u], X_{14,11,15,21}[u, w], \bar{X}_{15,6,7,22}[u, w]\right.$, $\left.X_{2,12,16,22}[u, w], \bar{x}_{16,5,17,21}[u, w], \bar{x}_{19,17,9,18}[v, u], X_{4,8,28,18}[v, u]\right\} \equiv$ $\mathcal{F} @\left\{\mathrm{X}_{1,11,13,21}[\mathrm{u}, \mathrm{w}], \bar{x}_{13,6,14,22}[\mathrm{u}, \mathrm{w}], \overline{\mathrm{X}}_{28,14,18,15}[\mathrm{v}, \mathrm{u}], \mathrm{X}_{3,7,19,15}[\mathrm{v}, \mathrm{u}]\right.$,
$\left.\bar{x}_{19,2,9,16}[v, u], x_{4,17,28,16}[v, u], x_{17,12,18,22}[u, w], \bar{x}_{18,5,8,21}[u, w]\right\}$
True

Video and more at http://www.math.toronto.edu/~drorbn/Talks/MoscowByWeb-2104/

5．Some Problems in Heaven

Unfortunately， $\operatorname{dim} \mathcal{A}(\mathcal{X}, X)=\operatorname{dim} \Lambda(\mathcal{X}, X)=4^{|X|}$ is big．Fortunately，we have the following theorem，a version of one of the main results in Halacheva＇s thesis，［Ha1，Ha2］：
Theorem．Working in $\Lambda(\mathcal{X} \cup X)$ ，if $w=\omega e^{\lambda}$ is a balanced Gaussian（namely，a scalar ω times the exponential of a quadratic $\lambda=\sum_{\zeta \in \mathcal{X}, z \in X} \alpha_{\zeta, z} \zeta z$ ），then generically so is $c_{x, \xi} \mathbb{e}^{\lambda}$ ．
（This is great news！The space of balanced quadratics is only $|\mathcal{X}||X|$－dimensional！）

「－calculus．

Thus we have an almost－always－defined＂Γ－calculus＂：a contraction algebra morphism $\mathcal{T}(\mathcal{X}, X) \rightarrow R \times\left(\mathcal{X} \otimes_{R / R} X\right)$ whose behaviour under contractions is given by

$$
c_{x, \xi}(\omega, \lambda=\mu+\eta x+\xi y+\alpha \xi x)=((1-\alpha) \omega, \mu+\eta y /(1-\alpha)) .
$$

（ Γ is fully defined on pure tangles－tangles without closed components－and hence on long knots）．

Proof．Recall that $c_{x, \xi}:(1, \xi, x, x \xi) w^{\prime} \mapsto(1,0,0,1) w^{\prime}$ ，write $\lambda=\mu+\eta x+\xi y+\alpha \xi x$ ，and ponder $\mathbb{e}^{\lambda}=$
$\ldots+\frac{1}{k!} \underbrace{(\mu+\eta x+\xi y+\alpha \xi x)(\mu+\eta x+\xi y+\alpha \xi x) \cdots(\mu+\eta x+\xi y+\alpha \xi x)}_{k \text { 伴 }}+\ldots$
Then $c_{x, \xi \mathrm{e}^{\lambda}}$ has three contributions：
－ \mathbb{e}^{μ} ，from the term proportional to 1 （namely，independent of ξ and x ）in \mathbb{e}^{λ}
$-\alpha \mathbb{e}^{\mu}$ ，from the term proportional to $x \xi$ ，where the x and the ξ come from the same factor above．
－$\eta y \mathbb{e}^{\mu}$ ，from the term proportional to $x \xi$ ，where the x and the ξ come from different factors above
So $c_{x, \xi} \mathbb{e}^{\lambda}=\mathbb{e}^{\mu}(1-\alpha+\eta y)=(1-\alpha) \mathbb{e}^{\mu}(1+\eta y /(1-\alpha))=(1-\alpha) \mathbb{e}^{\mu} \mathbb{e}^{\eta y /(1-\alpha)}=$ $(1-\alpha) \mathbb{e}^{\mu+\eta y /(1-\alpha)}$ ．

6．An Implementation of Γ ．

If I didn＇t implement I wouldn＇t believe myself．
Written in Mathematica［Wo］，available as the notebook Gamma．nb at http：／／drorbn．net／mo21／ap．Code lines are highlighted in grey，demo lines are plain．We start with canonical forms for quadratics with rational function coefficients：
CCF［ $\left.\mathcal{E}_{-}\right]$：＝Factor［ δ ］；
$\operatorname{CF}\left[\varepsilon_{-}\right]:=\operatorname{Module}\left[\left\{\mathrm{vs}=\operatorname{Union@Cases}\left[\varepsilon,(\xi \mid x)_{-}, \infty\right]\right\}\right.$ ， Total［（CCF［\＃［2』］（Times＠＠vs $\left.{ }^{\text {\＃［1］}}\right)$ ）\＆／＠CoefficientRules［ \mathcal{E}, vs］］］；

```
Contractions:
ch,t_@\Gamma[i\mp@subsup{s}{-}{\prime},o\mp@subsup{s}{-}{\prime},c\mp@subsup{s}{-}{\prime},\mp@subsup{\omega}{-}{\prime},\mp@subsup{\lambda}{-}{\prime}]:= Module [{\alpha,\eta,y,\mu},
    \alpha=\partial\mp@subsup{\varepsilon}{t}{},\mp@subsup{\textrm{x}}{h}{}}\lambda\mp@code{; \mu=\lambda/. \xi
```



```
    r[
        DeleteCases[is, t], DeleteCases[os, h], KeyDrop[cs, {\mp@subsup{x}{h}{},\mp@subsup{\xi}{t}{\prime}}],
        CCF[(1-\alpha)\omega], CF [ }\mu+\etay/(1-\alpha)
        ] /. If[MatchQ[cs[\mp@subsup{\xi}{t}{\prime}],\mp@subsup{\tau}{-}{\prime}],\operatorname{cs}[\mp@subsup{\xi}{t}{}]->\operatorname{cs}[\mp@subsup{x}{h}{}],\operatorname{cs}[\mp@subsup{x}{h}{}]->\operatorname{cs}[\mp@subsup{\xi}{t}{\prime}]]];
c@\Gamma[is_, os_, cs_, \mp@subsup{\omega}{-}{\prime},\mp@subsup{\lambda}{_}{\prime}]:= Fold[\mp@subsup{c}{#2,#2}{[#1] &, \Gamma[is,os, cs, \omega, \lambda], is\bigcapos]}]
```

```
Automatic intelligent contractions:
\(\Gamma\left[\left\{\gamma_{-} \Gamma\right\}\right]:=\mathbf{c}[\gamma]\)
\(\Gamma\left[\left\{\gamma 1 \_\Gamma, \gamma s \_=\Gamma\right\}\right]:=\) Module \([\{\gamma 2\}\),
        \(\gamma 2=\) First@MaximalBy[\{ \(\gamma \leqslant\}\), Length \([\gamma 1 \llbracket 1 \rrbracket \cap \# \llbracket 2 \rrbracket]\) + Length \([\gamma 1 \llbracket 2 \rrbracket \cap\) \#【1』] \& ] ;
    \(\Gamma[\) Join [\{c \([\gamma 1 \gamma 2]\}, ~ D e l e t e C a s e s[\{\gamma s\}, \gamma 2]]]]\)
\(\Gamma[\) Os_List] := Г[г/@Os]
```

Conversions $\mathcal{A} \leftrightarrow \Gamma$ ：

```
@\mathcal{A}[is_, os_, CS_, w_] := Module[{i, j, \omega = Coefficient[w, Wedge[^]]},
    \Gamma[is, os, cs, \omega, Sum[Cancel[-Coefficient[ }\omega,\mp@subsup{\mathbf{x}}{j}{}\wedge\mp@subsup{\xi}{i}{}] \mp@subsup{\xi}{i}{}\mp@subsup{\mathbf{x}}{j}{\prime}/\omega]
        {i, is}, {j, os}]]
    ];
А@Г[is_, os_, Cs_, \mp@subsup{\omega}{-}{\prime},\mp@subsup{\lambda}{_}{\prime}]:=
```

 \(\mathcal{A}\left[i s, o s, c s, \operatorname{Expand}\left[\omega \operatorname{WExp}\left[E x p a n d[\lambda] / . \mathcal{\xi}_{a-} \mathbf{x}_{b_{-}}: \rightarrow \xi_{a} \wedge X_{b}\right]\right]\right]\);
 The conversions are inverses of each other:
$\gamma=\Gamma\left[\{1,2,3\},\{1,2,3\},\left\{x_{1} \rightarrow \tau_{1}, x_{2} \rightarrow \tau_{2}, x_{3} \rightarrow \tau_{3}, \xi_{1} \rightarrow \tau_{1}, \xi_{2} \rightarrow \tau_{2}, \xi_{3} \rightarrow \tau_{3}\right\}\right.$,
$\omega, a_{11} x_{1} \xi_{1}+a_{12} x_{2} \xi_{1}+a_{13} x_{3} \xi_{1}+a_{21} x_{1} \xi_{2}+a_{22} x_{2} \xi_{2}+a_{23} x_{3} \xi_{2}+a_{31} x_{1} \xi_{3}+$
$\left.a_{32} x_{2} \xi_{3}+a_{33} x_{3} \xi_{3}\right]$;
@ $\mathcal{H} @ \gamma=\gamma$
True
The conversions commute with contractions:
「@ $\mathbf{C}_{3,3} @ \mathcal{F} @ \gamma \equiv \mathbf{c}_{3,3} @ \gamma$
True

Conway＇s Third Identity

Sorry，「 has nothing to say about that．．．＇

The Naik－Stanford Double Delta Move（again）

Timing $\left[\Gamma @\left\{X_{6,10,28,24}[w, v], \bar{X}_{28,3,29,19}[w, v], X_{26,20,27,19[w, ~ v],} \bar{X}_{27,23,11,24}[\mathrm{w}, \mathrm{v}]\right.\right.$ ， $X_{1,12,13,30}[u, w], \bar{X}_{13,5,14,25}[u, w], X_{17,26,18,25}[u, w], \bar{X}_{18,29,8,30}[u, w]$ ， $\left.X_{4,7,22,15}[v, u], \bar{X}_{22,2,23,16}[v, u], X_{20,17,21,16}[v, u], \bar{X}_{21,14,9,15}[v, u]\right\} \equiv$ $\Gamma @\left\{X_{5,9,25,21}[\mathrm{w}, \mathrm{v}], \bar{X}_{25,4,26,22}[\mathrm{w}, \mathrm{v}], X_{29,23,30,22}[\mathrm{w}, \mathrm{v}], \bar{X}_{30,20,12,21}[\mathrm{w}, \mathrm{v}]\right.$ ， $X_{2,11,16,27}[u, w], \bar{x}_{16,6,17,28}[u, w], X_{14,29,15,28}[u, w], \bar{X}_{15,26,7,27}[u, w]$ ，
$\left.\left.X_{3,8,19,18}[v, u], \bar{X}_{19,1,20,13}[v, u], X_{23,14,24,13}[v, u], \bar{X}_{24,17,10,18}[v, u]\right\}\right]$ \｛0．703125，True $\}$

What I still don＇t understand．
－What becomes of $c_{x, \xi} \mathbb{e}^{\lambda}$ if we have to divide by 0 in order to write it again as an exponentiated quadratic？Does it still live within a very small subset of $\Lambda(\mathcal{X} \sqcup X) ?$
－How do cablings and strand reversals fit within \mathcal{A} ？
－Are there＂classicality conditions＂satisfied by the invariants of classical tangles（as opposed to virtual ones）？

References

R J．Archibald，The Multivariable Alexander Polynomial on Tangles，University of Toronto Ph．D．thesis，2010，http：／／drorbn．net／mo21／AT．
图 J．H．Conway，An Enumeration of Knots and Links，and some of their Algebraic Properties，Computational Problems in Abstract Algebra（Proc． Conf．，Oxford，1967），Pergamon，Oxford，1970，329－－358．
B Z．Dancso，I．Halacheva，and M．Robertson，Circuit Algebras are Wheeled Props，J．Pure and Appl．Alg．，to appear，arXiv：2009．09738．
R I．Halacheva，Alexander Type Invariants of Tangles，Skew Howe Duality for Crystals and The Cactus Group，University of Toronto Ph．D．thesis，2016， http：／／drorbn．net／mo21／HT．
图 I．Halacheva，Alexander Type Invariants of Tangles，arXiv：1611．09280．
：M．Markl，S．Merkulov，and S．Shadrin，Wheeled PROPs，Graph Complexes and the Master Equation，J．Pure and Appl．Alg．213－4（2009）496－535， arXiv：math／0610683．
圊 J．Murakami，A State Model for the Multivariable Alexander Polynomial， Pacific J．Math．157－1（1993）109－－135．
© S．Naik and T．Stanford，A Move on Diagrams that Generates S－Equivalence of Knots，J．Knot Theory Ramifications 12－5（2003）717－－724，arXiv： math／9911005．
－Wolfram Language \＆System Documentation Center， https：／／reference．wolfram．com／language／．
\rightarrow On a chat window here I saw a The Yang-Baxter Technique. Given an algebra U (typically some comment "Alexander is the quantum $\hat{\mathcal{U}}(\mathrm{g})$ or $\hat{\mathcal{U}}_{q}(\mathfrak{g})$) and suitable elements R, C, $g l(1 \mid 1)$ invariant". I have an opinion about this, and I'd like to share it. First,
some stories.
I left the wonderful subject of Categorification nearly 15 years ago. It got crowded, lots of very smart people had things to say, and I feared I will have nothing to add. Also, clearly the next step was to categorify all other "quantum invariants". Except it was not clear what "categorify" means. Worse, I felt that I (perhaps "we all") didn't understand "quantum invariants" well enough to try to categorify them, whatever that might mean.
I still feel that way! I learned a lot since 2006, yet I'm still not comfortable with quantum algebra, quantum groups, and quantum invariants. I still don't feel that I know what God had in mind when She created this topic.
Yet I'm not here to rant about my philosophical quandaries, but only about things that I learned about the Alexander polynomial after 2006.
Yes, the Alexander polynomial fits within the Dogma, "one invariant for every Lie algebra and representation" (it's $g l(1 \mid 1)$, I hear). But it's better to think of it as a quantum invariant arising by other means, outside the Dogma.
Alexander comes from (or in) practically any non-Abelian Lie algebra. Foremost from the not-even-semisimple 2D " $a x+b$ " algebra. You get a polynomially-sized extension to tangles using some lovely formulas (can you categorify them?). It generalizes to higher dimensions and it has an organized family of siblings. (There are some questions too, beyond categorification).
I note the spectacular existing categorification of Alexander by Ozsváth and Szabó. The theorems are proven and a lot they say, the programs run and fast they run. Yet if that's where the story ends, She has abandoned us. Or at least abandoned me: a simpleton will never be able to catch up.

If you care only about categorification, the take-home from my talk will be a challenge: Categorify what I believe is the best Alexander invariant for tangles.
$R=\sum a_{i} \otimes b_{i} \in U \otimes U \quad$ with $\quad R^{-1}=\sum \bar{a}_{i} \otimes \bar{b}_{i} \quad$ and $\quad C, C^{-1} \in U$,
form

$$
Z(K)=\sum_{i, j, k} a_{i} C^{-1} \bar{b}_{k} \bar{a}_{j} b_{i} \otimes \bar{b}_{j} \bar{a}_{k}
$$

Problem. Extract information from Z.
The Dogma. Use representation theory. In principle finite, but slow.

Example 1. Let $\mathfrak{a}:=L\langle a, x\rangle /([a, x]=x), \mathfrak{b}:=\mathfrak{a}^{\star}=\langle b, y\rangle$, and \quad Gentle's Agreement. $\mathfrak{g}:=\mathfrak{b} \rtimes \mathfrak{a}=\mathfrak{b} \oplus \mathfrak{a}$ with $[a, x]=x,[a, y]=-y,[b, \cdot]=0$, and Everything converges! $[x, y]=b$ and with $\operatorname{deg}(y, b, a, x)=(1,1,0,0)$. Let $U=\hat{\mathcal{U}}(\mathfrak{g})$ and

$$
R:=\mathbb{e}^{b \otimes a+y \otimes x} \in U \otimes U \quad \text { or better } \quad R_{i j}:=\mathbb{e}^{b_{i} a_{j}+y_{i} x_{j}} \in U_{i} \otimes U_{j}, \quad \text { and } \quad C_{i}=\mathbb{e}^{-b_{i} / 2}
$$

Theorem 1. With "scalars":=power series in $\left\{b_{i}\right\}$ which are rational functions in $\left\{b_{i}\right\}$ and

Example 2. Let $\mathfrak{h}:=A\langle p, x\rangle /([p, x]=1)$ be Theorem 3. Full evaluation via
the Heisenberg algebra, with $C_{i}=\mathbb{e}^{t / 2}$ and
$R_{i j}=\mathbb{C}^{t / 2} \mathbb{C}^{t\left(p_{i}-p_{j}\right) x_{j}}$. $\begin{gathered}\text { I just told you the whole Alexander } \\ \text { sorov! Everything else is details. }\end{gathered}$

$$
K_{1} \sqcup K_{2} \rightarrow \begin{array}{c|cc}
\omega_{1} \omega_{2} & X_{1} & X_{2} \\
\hline P_{1} & A_{1} & 0 \\
P_{2} & 0 & A_{2}
\end{array}
$$

ω	x_{i}	x_{j}	\cdots
p_{i}	α	β	θ
p_{j}	γ	δ	ϵ
\vdots	ϕ	ψ	Ξ

$$
\begin{array}{c|cc}
(1+\gamma) \omega & x_{k} & \cdots \\
\hline p_{k} & 1+\beta-\frac{(1-\alpha)(1-\delta)}{1+\gamma} & \theta+\frac{(1-\alpha) \epsilon}{1+\gamma} \\
\vdots & \psi+\frac{(1-\delta) \phi}{1+\gamma} & \Xi-\frac{\phi \epsilon}{1+\gamma}
\end{array}
$$

" Γ-calculus" relates via $A \leftrightarrow I-A^{T}$ and has slightly simpler formulas: $\omega \rightarrow(1-\beta) \omega$,

$$
\begin{gathered}
\mathbb{E}_{12}\left[\frac{2 T-1}{T}, \frac{(T-1)\left(p_{1}-p_{2}\right)\left(T x_{1}-x_{2}\right)}{2 T-1}\right] \\
\left.\quad=\begin{array}{c|cc}
2-T^{-1} & x_{1} & x_{2} \\
\hline p_{1} & \frac{T(T-1)}{2 T-1} & \frac{1-T}{2 T-1} \\
p_{2} & \frac{T(1-T)}{2 T-1} & \frac{T-1}{2 T-1}
\end{array} \quad 1 \begin{array}{l}
1 \\
\hline
\end{array}\right)
\end{gathered}
$$

Generated by $\left\{\approx, \aleph^{\chi}\right\}$!

$$
\left(\begin{array}{lll}
\alpha & \beta & \theta \\
\gamma & \delta & \epsilon \\
\phi & \psi & \Xi
\end{array}\right) \rightarrow\left(\begin{array}{ll}
\gamma+\frac{\alpha \delta}{1-\beta} & \epsilon+\frac{\delta \theta}{1-\beta} \\
\phi+\frac{\alpha \psi}{1-\beta} & \Xi+\frac{\psi \theta}{1-\beta}
\end{array}\right)
$$

Why Should You Categorify This? The simplest and fastest Alexander for tangles, easily generalizes to the multi-variable case, generalizes to v -tangles and w tangles, generalizes to other Lie algebras. In fact, it's in almost any Lie algebra, and you don't even need to know what is $g l(1 \mid 1)$! But you'll have to deal with denominators and/or divisions!
Note. Example $1 \leftrightarrow$ Example 2 via $\mathfrak{g} \hookrightarrow \mathfrak{h}(t)$ via $(y, b, a, x) \mapsto(-t p, t, p x, x)$.

The PBW Principle Lots of algebras are isomorphic as vector spaces to polynomial algebras. So we want to understand arbitrary linear maps between polynomial algebras.
Convention. For a finite set A, let $z_{A}:=\left\{z_{i}\right\}_{i \in A}$ and let $\zeta_{A}:=\left\{z_{i}^{*}=\zeta_{i}\right\}_{i \in A}$.
$(p, x)^{*}=(\pi, \xi)$
The Generating Series $\mathcal{G}: \operatorname{Hom}\left(\mathbb{Q}\left[z_{A}\right] \rightarrow \mathbb{Q}\left[z_{B}\right]\right) \rightarrow \mathbb{Q} \llbracket \zeta_{A}, z_{B} \rrbracket$.
Claim. $L \in \operatorname{Hom}\left(\mathbb{Q}\left[z_{A}\right] \rightarrow \mathbb{Q}\left[z_{B}\right]\right) \underset{\mathcal{G}}{\underset{\sim}{Q}} \mathbb{Q}\left[z_{B}\right] \llbracket \zeta_{A} \rrbracket \ni \mathcal{L}$ via

$$
\begin{gathered}
\mathcal{G}(L):=\sum_{n \in \mathbb{N}^{A}} \frac{\zeta_{A}^{n}}{n!} L\left(z_{A}^{n}\right)=L\left(\mathbb{e}^{\sum_{a \in A} \zeta_{a \alpha a}}\right)=\mathcal{L}=\text { greek } \mathcal{L}_{\text {latin }}, \\
\mathcal{G}^{-1}(\mathcal{L})(p)=\left(\left.p\right|_{z_{a} \rightarrow \partial_{\zeta a}} \mathcal{L}\right)_{\zeta_{a}=0} \quad \text { for } p \in \mathbb{Q}\left[z_{A}\right] .
\end{gathered}
$$

Claim. If $L \in \operatorname{Hom}\left(\mathbb{Q}\left[z_{A}\right] \rightarrow \mathbb{Q}\left[z_{B}\right]\right), M \in \operatorname{Hom}\left(\mathbb{Q}\left[z_{B}\right] \rightarrow\right.$ $\left.\mathbb{Q}\left[z_{C}\right]\right)$, then $\mathcal{G}(L / / M)=\left(\left.\mathcal{G}(L)\right|_{z_{b} \rightarrow \partial_{\zeta_{b}}} \mathcal{G}(M)\right)_{\zeta_{b}=0}$.
Examples. • $\mathcal{G}(i d: \mathbb{Q}[p, x] \rightarrow \mathbb{Q}[p, x])=\mathbb{e}^{\pi p+\xi x}$.

- Consider $R_{i j} \in\left(\mathfrak{h}_{i} \otimes \mathfrak{h}_{j}\right) \llbracket t \rrbracket \cong \operatorname{Hom}\left(\mathbb{Q}[] \rightarrow \mathbb{Q}\left[p_{i}, x_{i}, p_{j}, x_{j}\right]\right) \llbracket t \rrbracket$. Then $\mathcal{G}\left(R_{i j}\right)=\mathbb{e}^{\left(\mathbb{e}^{t}-1\right)\left(p_{i}-p_{j}\right) x_{j}}=\mathbb{e}^{(T-1)\left(p_{i}-p_{j}\right) x_{j}}$.

Heisenberg Algebras. Let $\mathfrak{h}=A\langle p, x\rangle /([p, x]=1)$, let $\mathbb{O}_{i}: \mathbb{Q}\left[p_{i}, x_{i j}\right] \rightarrow \mathfrak{h}_{i}$ is the " p before x " PBW normal ordering map and let $h m_{k}^{i j}$ be the composition

$$
\mathbb{Q}\left[p_{i}, x_{i}, p_{j}, x_{j}\right] \xrightarrow{\mathbb{O}_{i} \otimes \mathcal{O}_{j}} \mathfrak{h}_{i} \otimes \mathfrak{h}_{j} \xrightarrow{m_{k}^{i j}} \mathfrak{h}_{k} \xrightarrow{\mathbb{O}_{k}^{-1}} \mathbb{Q}\left[p_{k}, x_{k}\right] .
$$

Then $\mathcal{G}\left(h m_{k}^{i j}\right)=\mathbb{e}^{-\xi_{i} \pi_{j}+\left(\pi_{i}+\pi_{j}\right) p_{k}+\left(\xi_{i}+\xi_{j}\right) x_{k}}$.
Proof. Recall the "Weyl CCR" $\mathbb{e}^{\xi x} \mathbb{C}^{\pi p}=\mathbb{e}^{-\xi \pi} \mathbb{C}^{\pi p} \mathbb{C}^{\xi x}$, and find

$$
\begin{aligned}
& \mathcal{G}\left(h m_{k}^{i j}\right)=\mathbb{e}^{\pi_{i} p_{i}+\xi_{i} x_{i}+\pi_{j} p_{j}+\xi_{j} x_{j}} / / \mathbb{O}_{i} \otimes \mathbb{O}_{j} / / m_{k}^{i j} / / \mathbb{O}_{k}^{-1} \\
& \quad=\mathbb{e}^{\pi_{i} p_{i}} \mathbb{C}^{\xi_{i} x_{i}} \mathbb{C}^{\pi_{j} p_{j}} \mathbb{Q}^{\xi_{j} x_{j}} / / m_{k}^{i j} / / \mathbb{O}_{k}^{-1}=\mathbb{e}^{\pi_{i} p_{k}} \mathbb{e}^{\xi_{i} x_{k}} \mathbb{C}^{\pi_{j} p_{k}} \mathbb{E}^{\xi_{j} x_{k}} / / \mathbb{O}_{k}^{-1} \\
& \quad=\mathbb{e}^{-\xi_{i} \pi_{j}} \mathbb{e}^{\left(\pi_{i}+\pi_{j}\right) p_{k}} \mathbb{e}^{\left(\xi_{i}+\xi_{j}\right) x_{k}} / / \mathbb{O}_{k}^{-1}=\mathbb{e}^{-\xi_{i} \pi_{j}+\left(\pi_{i}+\pi_{j}\right) p_{k}+\left(\xi_{i}+\xi_{j}\right) x_{k}} .
\end{aligned}
$$

GDO := The category with objects finite sets and

$$
\operatorname{mor}(A \rightarrow B)=\left\{\mathcal{L}=\omega \mathbb{E}^{Q}\right\} \subset \mathbb{Q} \llbracket \zeta_{A}, z_{B} \rrbracket
$$

where: • ω is a scalar. $\bullet Q$ is a "small" quadratic in $\zeta_{A} \cup z_{B}$. - Compositions: $\mathcal{L} / / \mathcal{M}:=\left(\left.\mathcal{L}\right|_{z_{i} \rightarrow \partial_{\zeta_{i}}} \mathcal{M}\right)_{\zeta_{i}=0}$.

Compositions. In $\operatorname{mor}(A \rightarrow B)$,

$$
Q=\sum_{i \in A, j \in B} E_{i j} \zeta_{i} z_{j}+\frac{1}{2} \sum_{i, j \in A} F_{i j} \zeta_{i} \zeta_{j}+\frac{1}{2} \sum_{i, j \in B} G_{i j} z_{i} z_{j}
$$

and so
(remember, $e^{x}=1+x+x x / 2+x x x / 6+\ldots$)

where $\bullet E=E_{1}\left(I-F_{2} G_{1}\right)^{-1} E_{2} \bullet F=F_{1}+E_{1} F_{2}\left(I-G_{1} F_{2}\right)^{-1} E_{1}^{T}$ - $G=G_{2}+E_{2}^{T} G_{1}\left(I-F_{2} G_{1}\right)^{-1} E_{2} \bullet \omega=\omega_{1} \omega_{2} \operatorname{det}\left(I-F_{2} G_{1}\right)^{-1 / 2}$ Proof of Claim in Example 2. Let $\Phi_{1}:=\mathbb{C}^{t\left(p_{i}-p_{j}\right) x_{j}}$ and $\Phi_{2}:=\mathbb{O}_{p_{j} x_{j}}\left(\mathbb{e}^{\left(\mathbb{C}^{t}-1\right)\left(p_{i}-p_{j}\right) x_{j}}\right)=: \mathbb{O}(\Psi)$. We show that $\Phi_{1}=\Phi_{2}$ in $\left(\mathfrak{h}_{i} \otimes \mathfrak{h}_{j}\right) \llbracket t \rrbracket$ by showing that both solve the $\operatorname{ODE} \partial_{t} \Phi=\left(p_{i}-p_{j}\right) x_{j} \Phi$ with $\left.\Phi\right|_{t=0}=1$. For Φ_{1} this is trivial. $\left.\Phi_{2}\right|_{t=0}=1$ is trivial, and

$$
\begin{gathered}
\partial_{t} \Phi_{2}=\mathbb{O}\left(\partial_{t} \Psi\right)=\mathbb{O}\left(\mathbb{C}^{t}\left(p_{i}-p_{j}\right) x_{j} \Psi\right) \\
\left(p_{i}-p_{j}\right) x_{j} \Phi_{2}=\left(p_{i}-p_{j}\right) x_{j} \mathbb{O}(\Psi)=\left(p_{i}-p_{j}\right) \mathbb{O}\left(x_{j} \Psi-\partial_{p_{j}} \Psi\right) \\
=\mathbb{O}\left(\left(p_{i}-p_{j}\right)\left(x_{j} \Psi+\left(\mathbb{e}^{t}-1\right) x_{j} \Psi\right)\right)=\mathbb{O}\left(\mathbb{C}^{t}\left(p_{i}-p_{j}\right) x_{j} \Psi\right)
\end{gathered}
$$

Implementation. Without, don't trust! CF = ExpandNumerator@*ExpandDenominator@*PowerExpand@*Factor;

Module [\{i, j, E1, F1, G1, E2, F2, G2, I, M = Table \},

I = IdentityMatrix@Length@B1;

$E 1=M\left[\partial_{i, j} Q 1,\{i, A 1\},\{j, B 1\}\right] ; E 2=M\left[\partial_{i, j} Q 2,\{i, A 2\},\{j, B 2\}\right] ;$
$F 1=M\left[\partial_{i, j} Q 1,\{i, A 1\},\{j, A 1\}\right] ; F 2=M\left[\partial_{i}, j Q 2,\{i, A 2\},\{j, A 2\}\right] ;$ $G 1=M\left[\partial_{i, j} Q 1,\{i, B 1\},\{j, B 1\}\right] ; G 2=M\left[\partial_{i, j} Q 2,\{i, B 2\},\{j, B 2\}\right] ;$
$\mathbb{E}_{A 1 \rightarrow B 2}\left[C F\left[\omega 1 \omega 2 \operatorname{Det}[I-F 2 . G 1]^{1 / 2}\right], C F @ P l u s[\right.$
If $[A 1===\{ \} \vee B 2===\{ \}, 0, A 1$.E1.Inverse[I-F2.G1].E2.B2],
$\operatorname{If}\left[A 1===\{ \}, 0, \frac{1}{2} A 1 \cdot\left(F 1+E 1 . F 2\right.\right.$.Inverse[I-G1.F2].E1 $\left.\left.{ }^{\top}\right) \cdot A 1\right]$,
$\operatorname{If}\left[B 2==\{ \}, 0, \frac{1}{2} B 2 \cdot\left(G 2+E 2^{\top} \cdot G 1\right.\right.$. Inverse[I-F2.G1].E2) $\left.\left.\left.\left.\cdot B 2\right]\right]\right]\right]$
$A_{-} \backslash B_{-}:=$Complement $[A, B]$;
$\left(\mathbb{E}_{A 1_{-} \rightarrow B 1_{-}}\left[\omega 1_{-}, Q 1_{-}\right] / / \mathbb{E}_{A 2_{-} \rightarrow B 2_{-}}\left[\omega 2_{-}, Q 2_{-}\right]\right) / ;\left(B 1^{*}=!=A 2\right):=$
$\mathbb{E}_{A 1 U}\left(A 2 \backslash B 1^{*}\right) \rightarrow B 1 \cup A 2^{*}\left[\omega 1, Q 1+\operatorname{Sum}\left[\zeta^{*} \zeta,\left\{\zeta, A 2 \backslash B 1^{*}\right\}\right]\right] / /$
$\mathbb{E}_{B 1^{*} \cup A 2 \rightarrow B 2 U\left(B 1 \backslash A 2^{*}\right)}\left[\omega 2, Q 2+\operatorname{Sum}\left[z^{*} z,\left\{z, B 1 \backslash A 2^{*}\right\}\right]\right]$
$\left\{\mathrm{p}^{*}, \mathrm{x}^{*}, \pi^{*}, \xi^{*}\right\}=\{\pi, \xi, \mathrm{p}, \mathrm{x}\} ;\left(u_{-}\right)_{-}^{*}:=\left(u^{*}\right)_{i} ;$
L_List* $:=$ \#* $^{*} / @ L$;
$\mathbf{R}_{i_{-}, j_{-}}:=\mathbb{E}_{\{ \} \rightarrow\left\{p_{i}, x_{i}, p_{j}, x_{j}\right\}}\left[\mathrm{T}^{-1 / 2},(1-\mathrm{T}) \mathrm{p}_{j} \mathbf{x}_{j}+(\mathrm{T}-1) \mathrm{p}_{i} \mathbf{x}_{j}\right] ;$
$\bar{R}_{i_{-}, j_{-}}:=\mathbb{E}_{\{ \} \rightarrow\left\{p_{i}, x_{i}, p_{j}, x_{j}\right\}}\left[T^{1 / 2},\left(1-T^{-1}\right) p_{j} \mathbf{x}_{j}+\left(T^{-1}-1\right) p_{i} x_{j}\right] ;$
$C_{i_{-}}:=\mathbb{E}_{\{ \} \rightarrow\left\{p_{i}, x_{i}\right\}}\left[\mathrm{T}^{-1 / 2}, 0\right] ;$
$\overline{\mathbf{C}}_{i_{-}}:=\mathbb{E}_{\{ \} \rightarrow\left\{p_{i}, x_{i}\right\}}\left[\mathrm{T}^{1 / 2}, 0\right] ;$
$\mathrm{hm}_{i_{-}, j_{-} \rightarrow k_{-}}:=\mathbb{E}_{\left\{\pi_{i}, \xi_{i}, \pi_{j}, \xi_{j}\right\} \rightarrow\left\{\mathrm{p}_{k}, \mathrm{x}_{k}\right\}}\left[\mathbf{1},-\xi_{i} \pi_{j}+\left(\pi_{i}+\pi_{j}\right) \mathrm{p}_{k}+\left(\xi_{i}+\xi_{j}\right) \mathrm{x}_{k}\right]$
$\mathbb{E}_{\{ \} \rightarrow v s_{-}}\left[\omega i_{-}, Q_{-}\right]_{h}:=\operatorname{Module}[\{p s, x s, M\}$,
ps = Cases[vs, $\left.\mathrm{p}_{-}\right]$; xs = Cases[vs, $\left.\mathrm{x}_{-}\right]$;
$M=$ Table [$\omega i, 1$ + Length@ps, 1 + Length@xs];
M【2; ; , 2; ; $\mathbb{I}=$ Table[CF[$\left.\left.\partial_{i, j} Q\right],\{i, p s\},\{j, x s\}\right] ;$

MatrixForm[M] ${ }^{\text {] }}$

Proof of Reidemeister 3.

$\left(R_{1,2} R_{4,3} R_{5,6} / / h_{1,4 \rightarrow 1}{h m_{2,5 \rightarrow 2}}^{h m_{3,6 \rightarrow 3}}\right)=$
$\left(R_{2,3} R_{1,6} R_{4,5} / / h_{1,4 \rightarrow 1} h_{2,5 \rightarrow 2} h_{3,6 \rightarrow 3}\right)$
True

The "First Tangle".

Factor / @

$\left(z=R_{1,6} \overline{\mathrm{C}}_{3} \overline{\mathrm{R}}_{7,4} \overline{\mathrm{R}}_{5,2} / / \mathrm{hm}_{1,3 \rightarrow 1} / / \mathrm{hm}_{1,4 \rightarrow 1} / / \mathrm{hm}_{1,5 \rightarrow 1} / / \mathrm{hm}_{1,6 \rightarrow 1} / / \mathrm{hm}_{2,7 \rightarrow 2}\right)$
$\mathbb{E}_{\{ \} \rightarrow\left\{p_{1}, p_{2}, x_{1}, x_{2}\right\}}\left[\frac{-1+2 T}{T}, \frac{(-1+T)\left(p_{1}-p_{2}\right)\left(T x_{1}-x_{2}\right)}{-1+2 T}\right]$ z_{h}
$\left(\begin{array}{ccc}\frac{-1+2 T}{T} & X_{1} & x_{2} \\ p_{1} & \frac{-T+T^{2}}{-1+2 T} & \frac{1-T}{-1+2 T} \\ p_{2} & \frac{T-T^{2}}{-1+2 T} & \frac{-1+T}{-1+2 T}\end{array}\right)_{h}$

The knot 8_{17}.
$z=\bar{R}_{12,1} \bar{R}_{27} \bar{R}_{83} \bar{R}_{4,11} R_{16,5} R_{6,13} R_{14,9} R_{10,15}$;
Table[z=z // hm $\mathrm{lk}_{\mathrm{k} \rightarrow 1}$, $\left.\{\mathrm{k}, 2,16\}\right] / /$ Last
$\mathbb{E}_{\{ \} \rightarrow\left\{\mathrm{p}_{1}, \mathrm{x}_{1}\right\}}\left[\frac{1-4 \mathrm{~T}+8 \mathrm{~T}^{2}-11 \mathrm{~T}^{3}+8 \mathrm{~T}^{4}-4 \mathrm{~T}^{5}+\mathrm{T}^{6}}{\mathrm{~T}^{3}}, 0\right]$

Proof of Theorem 3, (3).
$\left\{\left(\gamma 1=\mathbb{E}_{\{ \} \rightarrow\left\{p_{1}, x_{1}, p_{2}, x_{2}, p_{3}, x_{3}\right\}}\left[\omega,\left\{p_{1}, p_{2}, p_{3}\right\} \cdot\left(\begin{array}{ccc}\alpha & \beta & \theta \\ \gamma & \delta & \epsilon \\ \phi & \psi & \Xi\end{array}\right) \cdot\left\{x_{1}, x_{2}, x_{3}\right\}\right]\right)_{h}\right.$,
$\left.\left(\gamma 1 / / \mathrm{hm}_{1,2 \rightarrow 0}\right)_{\mathrm{h}}\right\}$

References.
On $\omega \varepsilon \beta=$ http://drorbn.net/cat20

Video and more at http://www.math.toronto.edu/~drorbn/Talks/LearningSeminarOnCategorification-2006/

Video and more at http://www.math.toronto.edu/~drorbn/Talks/TrendsInLDT-2005//

Audio and more at http://www.math.toronto.edu/~drorbn/Talks/MoscowByWeb-2004//

Thanks for inviting me to the Chord Diagrams Everywhere session / Winter 2019 CMS meeting! $\omega \varepsilon \beta:=h t t p: / / d r o r b n . n e t / t o 19$

Abstract. This will be a service talk on ancient material - I will briefly describe how the exact same type of chord diagrams (and relations between them) occur in a natural way in both knot theory and in the theory of Lie algebras.

While preparing for this talk I realized that I've done it before, much better, within a book review. So here's that review! It has been modified from its original version: it had been formatted to fit this page, parts were highlighted, and commentary had been added in green italics.
[Book] Introduction to Vassiliev Knot Invariants, by S. Chmutov, S. Duzhin, and J. Mostovoy, Cambridge University Press, Cambridge UK, 2012, xvi+504 pp., hardback, \$70.00, ISBN 978-1-10702-083-2.

Merely 3036 years ago, if you had asked even the best informed mathematician about the relationship between knots and Lie algebras, she would have laughed, for there isn't and there can't be. Knots are flexible; Lie algebras are rigid. Knots are irregular; Lie algebras are symmetric. The list of knots is a lengthy mess; the collection of Lie algebras is well-organized. Knots are useful for sailors, scouts, and hangmen; Lie

A knot and a Lie algebra, a list of knots and a list of Lie algebras, and an unusual conference of the symmetric and the knotted. algebras for navigators, engineers, and high energy physicists. Knots are blue collar; Lie algebras are white. They are as similar as worms and crystals: both well-studied, but hardly ever together.

Then in the 1980s came Jones, and Witten, and Reshetikhin and Turaev [Jo, Wi, RT] and showed that if you really are the best informed, and you know your quantum field theory and conformal field theory and quantum groups, then you know that the two disjoint fields are in fact intricately related. This "quantum" approach remains the most powerful way to get computable knot invariants out of (certain) Lie algebras (and representations thereof). Yet shortly later, in the late 80 s and early 90 s , an alternative perspective arose, that of "finite-type" or "Vassiliev-Goussarov" invariants [Va1, Va2, Go1, Go2, BL, Ko1, Ko2, BN1], which made the surprising relationship between knots and Lie algebras appear simple and almost inevitable.

The reviewed [Book] is about that alternative perspective, the one reasonable sounding but not entirely trivial theorem that is crucially needed within it (the "Fundamental Theorem" or the "Kontsevich integral"), and the
many threads that begin with that perspective. Let me start with a brief summary of the mathematics, and even before, an even briefer summary.

In briefest, a certain space \mathcal{A} of chord diagrams is the dual to the dual of the space of knots, and at the same time, it is dual to Lie algebras.

The briefer summary is that in some combinatorial sense it is possible to "differentiate" knot invariants, and hence it makes sense to talk about "polynomials" on the space of knots - these are functions on the set of knots (namely, these are knot invariants) whose sufficiently high derivatives vanish. Such polynomials can be fairly conjectured to separate knots - elsewhere in math in lucky cases polynomials separate points, and in our case, specific computations are encouraging. Also, such polynomials are determined by their "coefficients", and each of these, by the one-side-easy "Fundamental Theorem", is a linear functional on some finite space of

[^1]graphs modulo relations. These same graphs turn out to parameterize formulas that make sense in a wide class of Lie algebras, and the said relations match exactly with the relations in the definition of a Lie algebra - antisymmetry and the Jacobi identity. Hence what is more or less dual to knots (invariants), is also, after passing to the coefficients, dual to certain graphs which are more or less dual to Lie algebras. QED, and on to the less brief summary ${ }^{1}$.

Let V be an arbitrary invariant of oriented knots in oriented space with values in (say) \mathbb{Q}. Extend V to be an invariant of 1 -singular knots, knots that have a single singularity that locally looks like a double point \times, using the formula

$$
\begin{equation*}
V\left(\Omega^{\pi}\right)=V\left({ }^{\pi} /\right)-V\left(\nwarrow^{\pi}\right) \tag{1}
\end{equation*}
$$

Further extend V to the set \mathcal{K}^{m} of m-singular knots (knots with m such double points) by repeatedly using (1).
Definition 1. We say that V is of type m (or "Vassiliev of type m ") if its extension $\left.V\right|_{\mathcal{K}^{m+1}}$ to $(m+1)$-singular knots vanishes identically. We say that V is of finite type (or "Vassiliev") if it is of type m for some m.

Repeated differences are similar to repeated derivatives and hence it is fair to think of the definition of $\left.V\right|_{\mathcal{K}^{m}}$ as repeated differentiation. With this in mind, the above definition imitates the definition of polynomials of degree m. Hence finite type invariants can be thought of as "polynomials" on the space of knots". It is known (see e.g. [Book]) that the class of finite type invariants is large and powerful. Yet the first question on finite type invariants remains unanswered:
Problem 2. Honest polynomials are dense in the space of functions. Are finite type invariants dense within the space of all knot invariants? Do they separate knots?

The top derivatives of a multi-variable polynomial form a system of constants that determine that polynomial up to polynomials of lower degree. Likewise the m th derivative ${ }^{3} V^{(m)}=\left.V\right|_{\mathcal{K}^{m}}=V\left(\nearrow^{\nearrow} \cdot m \cdot{ }^{\top}\right)$ of a type m invariant V is a constant in the sense that it does not see the difference between overcrossings and undercrossings and so it is blind to 3D topology. Indeed

Also, clearly $V^{(m)}$ determines V up to invariants of lower type. Hence a primary tool in the study of finite
type invariants is the study of the "top derivative" $V^{(m)}$, also known as "the weight system of V ".

Blind to 3D topology, $V^{(m)}$ only sees the combinatorics of the circle that parameterizes an m-singular knot.
 On this circle there are m pairs of points that are pairwise identified in the image; standardly one indicates those by drawing a circle with m chords marked (an " m-chord diagram") as above. Let \mathcal{D}_{m} denote the space of all formal linear combinations with rational coefficients of m-chord diagrams. Thus $V^{(m)}$ is a linear functional on \mathcal{D}_{m}.

I leave it for the reader to figure out or read in [Book, pp. 88] how the following figure easily implies the " $4 T$ " relations of the "easy side" of the theorem that follows:

Theorem 3. (The Fundamental Theorem, details in [Book]).

- (Easy side) If V is a rational val-
 ued type m invariant then $V^{(m)}$ satisfies the " $4 T$ " relations shown above, and hence it descends to a linear functional on $\mathcal{A}_{m}:=\mathcal{D}_{m} / 4 T$. If in addition $V^{(m)} \equiv 0$, then V is of type $m-1$.
- (Hard side, slightly misstated by avoiding "framings") For any linear functional W on \mathcal{A}_{m} there is a rational valued type m invariant V so that $V^{(m)}=W$.
Thus to a large extent the study of finite type invariants is reduced to the finite (though super-exponential in m) algebraic study of \mathcal{A}_{m}.

Much of the richness of finite type invariants stems from their relationship with Lie algebras. Theorem 4 below suggests this relationship on an abstract level and Theorem 5 makes that relationship concrete.

[^2]

Theorem 4. [BN1] The space \mathcal{A}_{m} is isomorphic to the space \mathcal{A}_{m}^{t} generated by "Jacobi diagrams in a circle" (chord diagrams that are also allowed to have oriented internal trivalent vertices) that have exactly $2 m$ vertices, modulo the AS, STU and IHX relations. See the figure above.

The key to the proof of Theorem 4 is
 the figure above, which shows that the $4 T$ relation is a consequence of two $S T U$ relations. The rest is more or less an exercise in induction.

Thinking of internal trivalent vertices as graphical analogs of the Lie bracket, the $A S$ relation becomes the anti-commutativity of the bracket, STU becomes the equation $[x, y]=x y-y x$ and $I H X$ becomes the Jacobi identity. This analogy is made concrete within the following construction, originally due to Penrose $[\mathrm{Pe}]$ and to Cvitanović [Cv]. Given a finite dimensional metrized Lie algebra \mathfrak{g} (e.g., any semi-simple Lie algebra) and a finite-dimensional representation $\rho: \mathfrak{g} \rightarrow \operatorname{End}(V)$ of \mathfrak{g}, choose an orthonormal basis ${ }^{4}\left\{X_{a}\right\}_{a=1}^{\text {dim }}$ of \mathfrak{g} and some basis $\left\{v_{\alpha}\right\}_{\alpha=1}^{\operatorname{dim}^{2} V}$ of V, let $f_{a b c}$ and $r_{a \beta}^{\gamma}$ be the "structure constants" defined by

$$
f_{a b c}:=\left\langle\left[X_{a}, X_{b}\right], X_{c}\right\rangle \quad \text { and } \quad \rho\left(X_{a}\right)\left(v_{\beta}\right)=\sum_{\gamma} r_{a \beta}^{\gamma} v_{\gamma} .
$$

Now given a Jacobi diagram D label its circle-arcs with Greek letters α, β, \ldots, and its chords with Latin letters a, b, \ldots, and map it to a sum as suggested by the following example:

$$
\longrightarrow \sum_{a, b, c, \alpha, \beta, \gamma} f_{a b c} r_{a \gamma}^{\beta} r_{b \alpha}^{\gamma} r_{c \beta}^{\alpha}
$$

$\binom{$ internal vertices go to f 's, }{ circle-vertices to r 's }
Theorem 5. This construction is well defined, and the basic properties of Lie algebras imply that it respects the AS, STU, and IHX relations. Therefore it defines a linear functional $W_{\mathrm{g}, \rho}: \mathcal{A}_{m} \rightarrow \mathbb{Q}$, for any m.

The last assertion along with Theorem 3 show that associated with any \mathfrak{g}, ρ and m there is a weight system and
hence a knot invariant. Thus knots are indeed linked with Lie algebras.

The above is of course merely a sketch of the beginning of a long story. You can read the details, and some of the rest, in [Book].

What I like about [Book]. Detailed, well thought out, and carefully written. Lots of pictures! Many excellent exercises! A complete discussion of "the algebra of chord diagrams". A nice discussion of the pairing of diagrams with Lie algebras, including examples aplenty. The discussion of the Kontsevich integral (meaning, the proof of the hard side of Theorem 3) is terrific - detailed and complete and full of pictures and examples, adding a great deal to the original sources. The subject of "associators" is huge and worthy of its own book(s); yet in as much as they are related to Vassiliev invariants, the discussion in [Book] is excellent. A great many further topics are touched - multiple ζ-values, the relationship of the Hopf link with the Duflo isomorphism, intersection graphs and other combinatorial aspects of chord diagrams, Rozansky's rationality conjecture, the MelvinMorton conjecture, braids, n-equivalence, etc.

For all these, I'd certainly recommend [Book] to any newcomer to the subject of knot theory, starting with my own students.

However, some proofs other than that of Theorem 3 are repeated as they appear in original articles with only a superficial touch-up, or are omitted altogether, thus missing an opportunity to clarify some mysterious points. This includes Vogel's construction of a non-Lie-algebra weight system and the Goussarov-Polyak-Viro proof of the existence of "Gauss diagram formulas".
What I wish there was in the book, but there isn't. The relationship with Chern-Simons theory, Feynman diagrams, and configuration space integrals, culminating in an alternative (and more "3D") proof of the Fundamental Theorem. This is a major omission.
Why I hope there will be a continuation book, one day. There's much more to the story! There are finite type invariants of 3-manifolds, and of certain classes of 2dimensional knots in \mathbb{R}^{4}, and of "virtual knots", and they each have their lovely yet non-obvious theories, and these theories link with each other and with other branches of Lie theory, algebra, topology, and quantum field theory. Volume 2 is sorely needed.

References

[BN1] D. Bar-Natan, On the Vassiliev knot invariants, Topology 34 (1995) 423-472.

[^3][BN2] D. Bar-Natan, Finite Type Invariants, in Encyclopedia of Mathematical Physics, (J.-P. Francoise, G. L. Naber and Tsou S. T., eds.) Elsevier, Oxford, 2006 (vol. 2 p. 340).
[Book] The reviewed book.
[BL] J. S. Birman and X-S. Lin, Knot polynomials and Vassiliev's invariants, Invent. Math. 111 (1993) 225-270.
[Cv] P. Cvitanović, Group Theory, Birdtracks, Lie's, and Exceptional Groups, Princeton University Press, Princeton 2008 and http://www.birdtracks.eu.
[Go1] M. Goussarov, A new form of the Conway-Jones polynomial of oriented links, Zapiski nauch. sem. POMI 193 (1991) 49 (English translation in Topology of manifolds and varieties (O. Viro, editor), Amer. Math. Soc., Providence 1994, 167172).
[Go2] M. Goussarov, On n-equivalence of knots and invariants of finite degree, Zapiski nauch. sem. POMI 208 (1993) 152-173 (English translation in Topology of manifolds and varieties (O. Viro, editor), Amer. Math. Soc., Providence 1994, 173192).
[Jo] V. F. R. Jones, A polynomial invariant for knots via von Neumann algebras, Bull. Amer. Math. Soc. 12 (1985) 103-111.
[Ko1] M. Kontsevich, Vassiliev's knot invariants, Adv. in Sov. Math., 16(2) (1993) 137-150.
[Ko2] M. Kontsevich, Feynman diagrams and low-dimensional topology, First European Congress of Mathematics II 97121, Birkhäuser Basel 1994.
[Pe] R. Penrose, Applications of negative dimensional tensors, Combinatorial mathematics and its applications (D. J. A. Welsh, ed.), Academic Press, San-Diego 1971, 221244.
[RT] N. Yu. Reshetikhin and V. G. Turaev, Ribbon graphs and their invariants derived from quantum groups, Commun. Math. Phys. 127 (1990) 1-26.
[Va1] V. A. Vassiliev, Cohomology of knot spaces, in Theory of Singularities and its Applications (Providence) (V. I. Arnold, ed.), Amer. Math. Soc., Providence, 1990.
[Va2] V. A. Vassiliev, Complements of discriminants of smooth maps: topology and applications, Trans. of Math. Mono. 98, Amer. Math. Soc., Providence, 1992.
[Wi] E. Witten, Quantum field theory and the Jones polynomial, Commun. Math. Phys. 121 (1989) 351-399.

Dror Bar-Natan
University of Toronto, Canada
December 6, 2019 (first edition February 7, 2013)

My talk yesterday:

More Dror: $\omega \varepsilon \beta /$ talks

Picture credits: Rope from "The Project Gutenberg eBook, Knots, Splices and Rope Work, by A. Hyatt Verrill", http://www. gutenberg.org/files/13510/13510-h/13510-h.htm. Plane from NASA, http://www.grc.nasa.gov/WWW/k-12/airplane/ rotations.html.

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Toronto-1912/

Dror Bar-Natan: Talks: Toronto-1912: ω e $1:$ http://drorbn.net/to19/

Geography vs. Identity

Thanks for inviting me to the Topology session!

Abstract. Which is better, an emphasis on where things happen or on who are the participants? I can't tell; there are advantages and disadvantages either way. Yet much of quantum topology seems to be heavily and unfairly biased in favour of geography. Geographers care for placement; for them, braids and tangles have ends at some distinguished points, hence they form categories whose objects are the placements of these
 points. For them, the basic operation is a binary "stacking of tangles". They are lead to monoidal categories, braided monoidal categories, representation theory, and much or most of we call "quantum topology".
Identiters believe that strand identity persists even if one crosses or is being crossed. The key operation is a unary stitching operation
 $m_{c}^{a b}$, and one is lead to study meta-monoids, meta-Hopf-algebras, etc. See $\omega \varepsilon \beta /$ reg, $\omega \varepsilon \beta / \mathrm{kbh}$.

Braids.

Geography:

(better topology!)

$$
G B:=\left\langle\gamma_{i}\right\rangle /\binom{\gamma_{i} \gamma_{k}=\gamma_{k} \gamma_{i} \text { when }|i-k|>1}{\gamma_{i} \gamma_{i+1} \gamma_{i}=\gamma_{i+1} \gamma_{i} \gamma_{i+1}}=B .
$$

Identity:
(captures quantum algebra!)
$I B:=\left\langle\sigma_{i j}\right\rangle /\binom{\sigma_{i j} \sigma_{k l}=\sigma_{k l} \sigma_{i j}$ when $|\{i, j, k, l\}|=4}{\sigma_{i j} \sigma_{i k} \sigma_{j k}=\sigma_{j k} \sigma_{i k} \sigma_{i j}$ when $\left.|\{i, j, k\}|=3}=P\right\rangle B$.
Theorem. Let $S=\{\tau\}$ be the symmetric group. Then $v B$ is both
$P \vee B \rtimes S \cong B * S /\left(\gamma_{i} \tau=\tau \gamma_{j}\right.$ when $\left.\tau i=j, \tau(i+1)=(j+1)\right)$ (and so $P \vee B$ is "bigger" then B, and hence quantum algebra doesn't see topology very well).
Proof. Going left, $\gamma_{i} \mapsto \sigma_{i, i+1}(i i+1)$. Going right, if $i<j$ map $\sigma_{i j} \mapsto(j-1 j-2 \ldots i) \gamma_{j-1}(i i+1 \ldots j)$ and if $i>j$ use $\sigma_{i j} \mapsto(j j+1 \ldots i) \gamma_{j}(i i-1 \ldots j+1)$.

The Burau Representation of $P \vee B_{n}$ acts on R^{n} := $\mathbb{Z}\left[t^{ \pm 1}\right]^{n}=R\left\langle v_{1}, \ldots, v_{n}\right\rangle$ by

$$
\sigma_{i j} v_{k}=v_{k}+\delta_{k j}(t-1)\left(v_{j}-v_{i}\right)
$$

$\delta /: \delta_{i_{-}, j}:=\mathbf{I f}[i=j, \mathbf{1}, 0] ; \quad \omega \varepsilon \beta /$ code
$\mathbf{B}_{i, j}\left[\xi_{-}\right]:=\xi / . \mathbf{v}_{k} \rightarrow \mathbf{v}_{k}+\delta_{k, j}(\mathrm{t}-\mathbf{1})\left(\mathbf{v}_{j}-\mathbf{v}_{i}\right) / /$ Expand Werner

$\left\{v_{1}, v_{1}-t v_{1}+t v_{2}, v_{3}\right\}$
bas3// $B_{1,2} / / B_{1,3} / / B_{2,3}$
$\left\{v_{1}, v_{1}-t v_{1}+t v_{2}, v_{1}-t v_{1}+t v_{2}-t^{2} v_{2}+t^{2} v_{3}\right\}$
bas3// $\mathrm{B}_{2,3} / / \mathrm{B}_{1,3} / / \mathrm{B}_{1,2}$
$\left\{v_{1}, v_{1}-t v_{1}+t v_{2}, v_{1}-t v_{1}+t v_{2}-t^{2} v_{2}+t^{2} v_{3}\right\}$
S_{n} acts on R^{n} by permuting the v_{i} so the Burau representation extends to $v B_{n}$ and restricts to B_{n}. With this, γ_{i} maps $v_{i} \mapsto v_{i+1}, v_{i+1} \mapsto t v_{i}+(1-t) v_{i+1}$, and otherwise $v_{k} \mapsto v_{k}$. Burau

$\left\{v_{1}, v_{1}-t v_{1}+t v_{2}, v_{3}\right\}$
bas3 // $B_{1,2} / / B_{1,3} / / B_{2,3}$
$\left\{v_{1}, v_{1}-t v_{1}+t v_{2}, v_{1}-t v_{1}+t v_{2}-t^{2} v_{2}+t^{2} v_{3}\right\}$
bas3 // $B_{2,3} / / B_{1,3} / / B_{1,2}$
$\left\{v_{1}, v_{1}-t v_{1}+t v_{2}, v_{1}-t v_{1}+t v_{2}-t^{2} v_{2}+t^{2} v_{3}\right\}$

Geography view:

so x is γ_{2}.

Identity view:

At x strand 1 crosses strand 3 , so x is σ_{13}.
The Gold Standard is set by the "Г-calculus" Alexander formulas ($\omega \varepsilon \beta / \mathrm{mac}$). An S-component tangle T has

ω	a	b	S
a	α	β	θ
b	γ	δ	ϵ
S	ϕ	ψ	Ξ

\hline c \& \gamma+\frac{\alpha \delta}{1-\beta} \& \epsilon+\frac{\delta \theta}{1-\beta}

S \& \phi+\frac{\alpha \psi}{1-\beta} \& \Xi+\frac{\psi \theta}{1-\beta}\end{array}\right)\)
The Gassner Representation of $P \vee B_{n}$ acts on $V=$ $R^{n}:=\mathbb{Z}\left[t_{1}^{ \pm 1}, \ldots, t_{n}^{ \pm 1}\right]^{n}=R\left\langle v_{1}, \ldots, v_{n}\right\rangle$ by

$$
\sigma_{i j} v_{k}=v_{k}+\delta_{k j}\left(t_{i}-1\right)\left(v_{j}-v_{i}\right) .
$$

$\mathbf{G}_{i_{-}, j_{-}}\left[\xi_{-}\right]:=\varepsilon_{1} / \mathbf{v}_{k_{-}}: \Rightarrow \mathbf{v}_{k}+\delta_{k, j}\left(t_{i}-1\right)\left(\mathbf{v}_{j}-\mathbf{v}_{i}\right) / /$ Expand (bas3 // $G_{1,2} / / G_{1,3} / / G_{2,3}$) == (bas3// $G_{2,3} / / G_{1,3} / / G_{1,2}$) $\begin{gathered}\text { deserves to } \\ \text { be more }\end{gathered}$ True be more
S_{n} acts on R^{n} by permuting the v_{i} and the t_{i}, so the Gassner representation extends to $v B_{n}$ and then restricts to B_{n} as a \mathbb{Z}-linear ∞-dimensional representation. It then descends to $P B_{n}$ as a finiterank R-linear representation, with lengthy non-local formulas. Geographers: Gassner is an obscure partial extension of Burau. Identiters: Burau is a trivial silly reduction of Gassner.
The Turbo-Gassner Representation. With the same R and $V, T G$ acts on $V \oplus\left(R^{n} \otimes V\right) \oplus\left(\mathcal{S}^{2} V \otimes V^{*}\right)=$ $R\left\langle v_{k}, v_{l k}, u_{i} u_{j} w_{k}\right\rangle$ by
$\mathbf{T G}_{i_{-}, j_{-}}\left[\varepsilon_{-}\right]:=\varepsilon / .\{$
$\mathbf{v}_{k_{-}} \rightarrow \mathbf{v}_{k}+\delta_{k, j}\left(\left(\mathbf{t}_{i}-\mathbf{1}\right)\left(\mathbf{v}_{j}-\mathbf{v}_{i}\right)+\mathbf{v}_{i, j}-\mathbf{v}_{i, i}\right)+$

$$
\delta_{k, i}\left(u_{j}-u_{i}\right) u_{i} w_{j}
$$

$$
\mathbf{v}_{L_{-}, k_{-}} ; \mathbf{v}_{l, k}+\left(\mathbf{t}_{i}-\mathbf{1}\right)
$$

$\left(\delta_{k, j}\left(v_{l, j}-v_{l, i}\right)+\left(\delta_{l, i}-\delta_{l, j} t_{i}^{-1} t_{j}\right)\right.$
$\left.\left(u_{k}+\delta_{k, j}\left(t_{i}-1\right)\left(u_{j}-u_{i}\right)\right) u_{i} w_{j}\right)$,
$u_{k_{-}}: \rightarrow u_{k}+\delta_{k, j}\left(t_{i}-1\right)\left(u_{j}-u_{i}\right)$,
$\left.\mathbf{w}_{k_{-}}: \rightarrow \mathbf{w}_{k}+\left(\delta_{k, j}-\delta_{k, i}\right)\left(\mathrm{t}_{i}^{-1}-1\right) \mathbf{w}_{j}\right\} / /$ Expand
Gassner motifs
Adjoint-Gassner
bas3 $=\left\{v_{1}, v_{2}, v_{3}, v_{1,1}, v_{1,2}, v_{1,3}, v_{2,1}, v_{2,2}, v_{2,3}, v_{3,1}\right.$,
$v_{3,2}, v_{3,3}, u_{1}^{2} w_{1}, u_{1}^{2} w_{2}, u_{1}^{2} w_{3}, u_{1} u_{2} w_{1}, u_{1} u_{2} w_{2}, u_{1} u_{2} w_{3}$,
$u_{1} u_{3} w_{1}, u_{1} u_{3} w_{2}, u_{1} u_{3} w_{3}, u_{2}^{2} w_{1}, u_{2}^{2} w_{2}, u_{2}^{2} w_{3}, u_{2} u_{3} w_{1}$,
$\left.u_{2} u_{3} w_{2}, u_{2} u_{3} w_{3}, u_{3}^{2} w_{1}, u_{3}^{2} w_{2}, u_{3}^{2} w_{3}\right\}$;
(bas3 // $\mathrm{TG}_{1,2} / / \mathrm{TG}_{1,3} / / \mathrm{TG}_{2,3}$) $==\left(\right.$ bas3 // $\mathrm{TG}_{2,3} / / \mathrm{TG}_{1,3} / / \mathrm{TG}_{1,2}$) True Like Gassner, $T G$ is also a representation of $P B_{n}$. I have no idea where it belongs!

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Toronto-1912/

Abstract. I will explain how the computation of compositions of maps of a certain natural class, from one polynomial ring into another, naturally leads to a certain composition operation of quadratics and to Feynman diagrams. I will also explain, with very little detail, how this is used in the construction of some very well-behaved poly-time computable knot polynomials.
The PBW Principle Lots of algebras are isomorphic as vector spaces to polynomial algebras. So we want to understand arbitrary linear maps between polynomial algebras.

Gentle Agreement. Everything converges!

Convention. For a finite set A, let $z_{A}:=\left\{z_{i}\right\}_{i \in A}$ and let $\zeta_{A}:=\left\{z_{i}^{*}=\zeta_{i} i_{i \in A} . \quad(y, b, a, x)^{*}=(\eta, \beta, \alpha, \xi)\right.$
The Generating Series $\mathcal{G}: \operatorname{Hom}\left(\mathbb{Q}\left[z_{A}\right] \rightarrow \mathbb{Q}\left[z_{B}\right]\right) \rightarrow \mathbb{Q} \llbracket \zeta_{A}, z_{B} \rrbracket$. Claim. $L \in \operatorname{Hom}\left(\mathbb{Q}\left[z_{A}\right] \rightarrow \mathbb{Q}\left[z_{B}\right]\right) \underset{\mathcal{G}}{\underset{\sim}{\mathbb{Q}}} \mathbb{Q}\left[z_{B}\right] \llbracket \zeta_{A} \| \ni \mathcal{L}$ via

$$
\begin{gathered}
\mathcal{G}(L):=\sum_{n \in \mathbb{N}^{A}} \frac{\zeta_{A}^{n}}{n!} L\left(z_{A}^{n}\right)=L\left(\mathbb{e}^{\sum a \in A} \zeta_{a} z_{a}\right)=\mathcal{L}=\text { greek } \mathcal{L}_{\text {latin }}, \\
\mathcal{G}^{-1}(\mathcal{L})(p)=\left(\left.p\right|_{z_{a} \rightarrow \partial_{\zeta a}} \mathcal{L}\right)_{\zeta_{\zeta_{a}}=0} \text { for } p \in \mathbb{Q}\left[z_{A}\right] .
\end{gathered}
$$

Claim. If $L \in \operatorname{Hom}\left(\mathbb{Q}\left[z_{A}\right] \rightarrow \mathbb{Q}\left[z_{B}\right]\right), M \in \operatorname{Hom}\left(\mathbb{Q}\left[z_{B}\right] \rightarrow\right.$ $\mathbb{Q}\left[z_{C}\right]$, then $\mathcal{G}(L / / M)=\left(\left.\mathcal{G}(L)\right|_{z_{b} \rightarrow \partial_{\delta_{b}}} \mathcal{G}(M)\right)_{\tilde{\zeta}_{b}=0}$.

2. The standard commutative product $m_{k}^{i j}$ of polynomials is given by $z_{i}, z_{j} \rightarrow z_{k}$. Hence $\mathcal{G}\left(m_{k}^{i j}\right)=$ $m_{k}^{i j}\left(\mathbb{e}^{\zeta_{i} i_{i}+\zeta_{j} z_{j}}\right)=\mathbb{e}^{\left(\zeta_{i}+\zeta_{j}\right) z_{k}}$.

3. The standard co-commutative coproduct $\Delta_{j k}^{i}$ of polynomials is given by $z_{i} \rightarrow z_{j}+z_{k}$. Hence $\mathcal{G}\left(\Delta_{j k}^{i}\right)=$ $\Delta_{j k}^{i}\left(\mathbb{e}^{\xi_{i} z_{i}}\right)=\mathbb{e}^{\zeta_{i}\left(Z_{j}+z_{k}\right)}$.

Heisenberg Algebras. Let $\mathbb{H}=\langle x, y\rangle /[x, y]=\hbar$ (with \hbar a scalar), let $\mathbb{O}_{i}: \mathbb{Q}\left[x_{i}, y_{i}\right] \rightarrow \mathbb{H}_{i}$ is the " x before y " PBW ordering map and let $h m_{k}^{i j}$ be the composition

$$
\mathbb{Q}\left[x_{i}, y_{i}, x_{j}, y_{j}\right] \xrightarrow{\bigcirc_{i} \otimes \mathcal{O}_{j}} \mathbb{H}_{i} \otimes \mathbb{H}_{j} \xrightarrow{m_{k}^{i j}} \mathbb{H}_{k} \xrightarrow{\bigcirc_{k}^{-1}} \mathbb{Q}\left[x_{k}, y_{k}\right] .
$$

Then $\mathcal{G}\left(h m_{k}^{i j}\right)=\mathbb{e}^{\Lambda_{\hbar}}$, where $\Lambda_{\hbar}=-\hbar \eta_{i} \xi_{j}+\left(\xi_{i}+\xi_{j}\right) x_{k}+\left(\eta_{i}+\eta_{j}\right) y_{k}$. Proof 1. Recall the "Weyl form of the CCR" $\mathbb{e}^{\eta y} \mathbb{C}^{\xi x}=$ $\mathbb{e}^{-\hbar \eta \xi} \mathbb{E}^{\xi} x_{\mathbb{C}} \mathbb{e}^{\eta y}$, and compute

$$
\begin{aligned}
& \mathcal{G}\left(h m_{k}^{i j}\right)=\mathbb{e}^{\xi_{i} x_{i}+\eta_{i} y_{i}+\xi_{j} x_{j}+\eta_{j} y_{j}} / / \mathbb{O}_{i} \otimes \mathbb{O}_{j} / / m_{k}^{i j} / / \mathbb{O}_{k}^{-1} \\
& =\mathbb{e}^{\xi_{i} x_{i}} \mathbb{C}^{\eta_{i} y_{i}} \mathbb{e}^{\xi_{j} x_{j}} \mathbb{C}^{\eta_{j} y_{j}} / / m_{k}^{i j} / / \mathbb{O}_{k}^{-1}=\mathbb{e}^{\xi_{i} x_{k}} \mathbb{C}_{i y_{i} y_{k}}^{\mathbb{E}^{\xi_{j} x_{k}} \mathbb{C}^{\eta_{j} y_{k}} / / \mathbb{O}_{k}^{-1}} \\
& \quad=\mathbb{e}^{-\hbar \eta_{i} \xi_{j}} \mathbb{C}^{\left(\xi_{i}+\xi_{j}\right) x_{k}} \mathbb{C}^{\left(\eta_{i}+\eta_{j}\right) y_{k}} / / \mathbb{O}_{k}^{-1}=\mathbb{C}^{\Lambda_{\hbar}} .
\end{aligned}
$$

Proof 2. We compute in a faithful 3D representation ρ of \mathbb{H} :

$$
\begin{aligned}
& \left\{\hat{x}=\left(\begin{array}{lll}
\theta & 1 & \theta \\
0 & \theta & \theta \\
0 & \theta & \theta
\end{array}\right), \hat{y}=\left(\begin{array}{lll}
0 & 0 & \theta \\
0 & \theta & \hbar \\
0 & \theta & \theta
\end{array}\right), \hat{c}=\left(\begin{array}{lll}
0 & \theta & 1 \\
0 & \theta & \theta \\
0 & \theta & \theta
\end{array}\right)\right\} ; \\
& \{\hat{x} \cdot \hat{y}-\hat{y} \cdot \hat{x}==\hbar \hat{c}, \hat{x} \cdot \hat{c}==\hat{c} \cdot \hat{x}, \hat{y} \cdot \hat{c}==\hat{c} \cdot \hat{y}\} \\
& \text { \{True, True, True\} } \\
& \Lambda=-\hbar \eta_{i} \xi_{j} c_{k}+\left(\xi_{i}+\xi_{j}\right) x_{k}+\left(\eta_{i}+\eta_{j}\right) y_{k} ; \\
& \text { Simplifyewith }[\{\mathbb{E}=\text { MatrixExp }\} \text {, } \\
& \mathbb{E}\left[\hat{\mathbf{x}} \xi_{\mathrm{i}}\right] \cdot \mathbb{E}\left[\hat{\boldsymbol{y}} \eta_{\mathrm{i}}\right] \cdot \mathbb{E}\left[\hat{\mathbf{x}} \xi_{j}\right] \cdot \mathbb{E}\left[\hat{\boldsymbol{y}} \eta_{j}\right]== \\
& \left.\mathbb{E}\left[\hat{x} \partial_{x_{k}} \Lambda\right] \cdot \mathbb{E}\left[\hat{y} \partial_{y_{k}} \Lambda\right] \cdot \mathbb{E}\left[\hat{c} \partial_{c_{k}} \Lambda\right]\right] \\
& \text { True }
\end{aligned}
$$

A Real DoPeGDO Example (DoPeGDO:=Docile Perturbed Gaussian Differential Operators). Let $s l_{2+}^{\epsilon}:=L\langle y, b, a, x\rangle$ subject to $[a, x]=x,[b, y]=-\epsilon y,[a, b]=0,[a, y]=-y,[b, x]=\epsilon x$, and $[x, y]=\epsilon a+b$. So $t:=\epsilon a-b$ is central and if $\exists \epsilon^{-1}$, $s l_{2+}^{\epsilon} \cong s l_{2} \oplus\langle t\rangle$. Let $C U:=\mathcal{U}\left(s l_{2+}^{\epsilon}\right)$, and let $c m_{k}^{i j}$ be the composition below, where $\mathbb{O}_{i}: \mathbb{Q}\left[y_{i}, b_{i}, a_{i}, x_{i}\right] \rightarrow C U_{i}$ be the PBW ordering map in the order ybax:

Claim. Let
(all brawn and no brains)

$$
\begin{array}{r}
\Lambda=\left(\eta_{i}+\frac{e^{-\alpha_{i}-\epsilon \beta_{i}} \eta_{j}}{1+\epsilon \eta_{j} \xi_{i}}\right) y_{k}+\left(\beta_{i}+\beta_{j}+\frac{\log \left(1+\epsilon \eta_{j} \xi_{i}\right)}{\epsilon}\right) b_{k}+ \\
\quad\left(\alpha_{i}+\alpha_{j}+\log \left(1+\epsilon \eta_{j} \xi_{i}\right)\right) a_{k}+\left(\frac{e^{-\alpha_{j}-\epsilon \beta_{j}} \xi_{i}}{1+\epsilon \eta_{j} \xi_{i}}+\xi_{j}\right) x_{k}
\end{array}
$$

Then $\mathbb{e}^{\eta y_{i}+\beta_{i} b_{i}+\alpha_{i} a_{i}+\xi_{i} x_{i}+\eta_{j} y_{j}+\beta_{j} b_{j}+\alpha_{j} a_{j}+\xi_{j} x_{j}} / / \mathbb{O}_{i, j} / / / c m_{k}^{i j}=\mathbb{e}^{\Lambda} / / \mathbb{O}_{k}$, and hence $\mathcal{G}\left(c m_{k}^{i j}\right)=\mathbb{e}^{\Lambda}$.
Proof. We compute in a faithful 2D representation ρ of $C U$:
$\left\{\hat{y}=\left(\begin{array}{ll}\theta & 0 \\ \epsilon & \theta\end{array}\right), \hat{b}=\left(\begin{array}{cc}\theta & 0 \\ \theta & -\epsilon\end{array}\right), \hat{a}=\left(\begin{array}{ll}1 & \theta \\ \theta & \theta\end{array}\right), \hat{x}=\left(\begin{array}{ll}\theta & 1 \\ \theta & \theta\end{array}\right)\right\} ; \quad(\omega \varepsilon \beta / \mathrm{sl} 2)$

$$
\begin{aligned}
& \{\hat{a} \cdot \hat{x}-\hat{x} \cdot \hat{a}=\hat{x}, \hat{a} \cdot \hat{y}-\hat{y} \cdot \hat{a}=-\hat{y}, \hat{b} \cdot \hat{y}-\hat{y} \cdot \hat{b}=-\epsilon \hat{y}, \\
& \hat{b} \cdot \hat{x}-\hat{x} \cdot \hat{b}=\epsilon \hat{x}, \hat{x} \cdot \hat{y}-\hat{y} \cdot \hat{x}=\hat{b}+\epsilon \hat{a}\}
\end{aligned}
$$

$$
\text { \{True, True, True, True, True\} }
$$

$$
\text { Simplify@With }[\{\mathbb{E}=\text { MatrixExp }\} \text {, }
$$

$$
\mathbb{E}\left[\eta_{i} \hat{y}\right] \cdot \mathbb{E}\left[\beta_{i} \hat{\emptyset}\right] \cdot \mathbb{E}\left[\alpha_{i} \hat{a}\right] \cdot \mathbb{E}\left[\xi_{i} \hat{x}\right] \cdot \mathbb{E}\left[\eta_{j} \hat{y}\right] \cdot \mathbb{E}\left[\beta_{j} \hat{\hat{c}}\right] .
$$

$$
\mathbb{E}\left[\alpha_{j} \hat{a}\right] \cdot \mathbb{E}\left[\xi_{j} \hat{x}\right]==\mathbb{E}\left[\hat{y} \partial_{y_{k} \Lambda} \Lambda\right] \cdot \mathbb{E}\left[\hat{b} \partial_{b_{k} \Lambda} \Lambda\right] \cdot \mathbb{E}\left[\hat{a} \partial_{a_{k}} \Lambda\right] .
$$

$$
\left.\mathbb{E}\left[a_{x_{x_{k}}} \Lambda\right]\right]
$$

True
Series $[\Lambda,\{\epsilon, 0,2\}]$
$\left(a_{k}\left(\alpha_{i}+\alpha_{j}\right)+y_{k}\left(\eta_{i}+e^{-\alpha_{i}} \eta_{j}\right)+\right.$
$\left.\mathrm{b}_{\mathrm{k}}\left(\beta_{\mathrm{i}}+\beta_{\mathrm{j}}+\eta_{\mathrm{j}} \xi_{\mathrm{i}}\right)+\mathrm{x}_{\mathrm{k}}\left(\mathrm{e}^{-\alpha_{j}} \xi_{\mathrm{i}}+\xi_{\mathrm{j}}\right)\right)+$
$\left(a_{k} \eta_{j} \xi_{i}-\frac{1}{2} b_{k} \eta_{j}^{2} \varepsilon_{i}^{2}-e^{-\alpha_{i}} y_{k} \eta_{j}\left(\beta_{i}+\eta_{j} \xi_{i}\right)-\right.$

$$
\left.e^{-\alpha_{j}} \mathbf{x}_{k} \xi_{i}\left(\beta_{j}+\eta_{j} \xi_{i}\right)\right) \in+
$$

$\left(-\frac{1}{2} a_{k} \eta_{j}^{2} \xi_{i}^{2}+\frac{1}{3} b_{k} \eta_{j}^{3} \xi_{i}^{3}+\frac{1}{2} e^{-\alpha_{i}} y_{k} \eta_{j}\left(\beta_{i}^{2}+2 \beta_{i} \eta_{j} \xi_{i}+2 \eta_{j}^{2} \xi_{i}^{2}\right)+\right.$ $\left.\frac{1}{2} e^{-\alpha_{j}} x_{k} \xi_{i}\left(\beta_{j}^{2}+2 \beta_{j} \eta_{j} \xi_{i}+2 \eta_{j}^{2} \xi_{1}^{2}\right)\right) \epsilon^{2}+O[\epsilon]^{3}$
Note 1. If the lower half of the alphabet (a, b, α, β) is regarded as constants, then $\Lambda=C+Q+\sum_{k \geq 1} \epsilon^{k} P^{(k)}$ is a docile perturbed Gaussian relative to the upper half of the alphabet $(x, y, \xi, \eta): C$ is a scalar, Q is a quadratic, and $\operatorname{deg} P^{(k)} \leq 2 k+2$.
Note 2. $\mathrm{wt}(x, y, \xi, \eta ; a, b, \alpha, \beta ; \epsilon)=(1,1,1,1 ; 2,0,0,2 ;-2)$.
Quadratic Casimirs. If $t \in \mathfrak{g} \otimes \mathfrak{g}$ is the quadratic Casimir of a semi-simple Lie algebra \mathfrak{g}, then \mathbb{C}^{t}, regarded by PBW as an element of $\mathcal{S}^{\otimes 2}=\operatorname{Hom}\left(\mathcal{S}(\mathfrak{g})^{\otimes 0} \rightarrow \mathcal{S}(\mathfrak{g})^{\otimes 2}\right)$, has a latin-latin dominant Gaussian factor. Likewise for R-matrices.
(Baby) DoPeGDO := The category with objects finite sets ${ }^{\dagger 1}$ and $\operatorname{mor}(A \rightarrow B)=\{\mathcal{L}=\omega \exp (Q+P)\} \subset \mathbb{Q} \llbracket \zeta_{A}, z_{B}, \epsilon \rrbracket$,
where: • ω is a scalar. ${ }^{\dagger 2} \bullet Q$ is a "small" ϵ-free quadratic in $\zeta_{A} \cup z_{B}{ }^{\dagger{ }^{\dagger}} \bullet P$ is a "docile perturbation": $P=\sum_{k>1} \epsilon^{k} P^{(k)}$, where $\operatorname{deg} P^{(k)} \leq 2 k+2 .{ }^{\dagger 4} \bullet$ Compositions: ${ }^{\dagger 6} \mathcal{L} / / \mathcal{M}:=\left(\left.\mathcal{L}\right|_{z_{i} \rightarrow \partial_{\xi_{i}}} \mathcal{M}\right)_{\xi_{i}=0}$.

So What? If V is a representation, then $V^{\otimes n}$ explodes as a function of n, while in DoPeGDO up to a fixed power of ϵ, the ranks of $\operatorname{mor}(A \rightarrow B)$ grow polynomially as a function of $|A|$ and $|B|$.
Compositions. In $\operatorname{mor}(A \rightarrow B)$,

$$
Q=\sum_{i \in A, j \in B} E_{i j} \zeta_{i} z_{j}+\frac{1}{2} \sum_{i, j \in A} F_{i j} \zeta_{i} \zeta_{j}+\frac{1}{2} \sum_{i, j \in B} G_{i j} z_{i} z_{j}
$$

and so $\quad\left(\right.$ remember, $e^{x}=1+x+x x / 2+x x x / 6+\ldots$) (
where $\bullet E=E_{1}\left(I-F_{2} G_{1}\right)^{-1} E_{2}$.

- $F=F_{1}+E_{1} F_{2}\left(I-G_{1} F_{2}\right)^{-1} E_{1}^{T}$.
- $G=G_{2}+E_{2}^{T} G_{1}\left(I-F_{2} G_{1}\right)^{-1} E_{2}$.
- $\omega=\omega_{1} \omega_{2} \operatorname{det}\left(I-F_{2} G_{1}\right)^{-1}$.
- P is computed as the solution of a messy PDE or using "connected Feynman diagrams" (yet we're still in pure algebra!). Docility is preserved.

DoPeGDO Footnotes. Each variable has a "weight" $\in\{0,1,2\}$, and always wt $z_{i}+\mathrm{wt} \zeta_{i}=2$.
\dagger. Really, "weight-graded finite sets" $A=A_{0} \sqcup A_{1} \sqcup A_{2}$.
\dagger 2. Really, a power series in the weight- 0 variables ${ }^{\dagger 5}$.
\dagger 3. The weight of Q must be 2 , so it decomposes as $Q=$ $Q_{20}+Q_{11}$. The coefficients of Q_{20} are rational numbers while the coefficients of Q_{11} may be weight-0 power series ${ }^{\dagger 5}$.
\dagger. Setting wt $\epsilon=-2$, the weight of P is ≤ 2 (so the powers of the weight- 0 variables are not constrained $)^{\dagger 5}$.
\dagger 5. In the knot-theoretic case, all weight- 0 power series are rational functions of bounded degree in the exponentials of the weight-0 variables.
\dagger 6. There's also an obvious product $\operatorname{mor}\left(A_{1} \rightarrow B_{1}\right) \times \operatorname{mor}\left(A_{2} \rightarrow B_{2}\right) \rightarrow \operatorname{mor}\left(A_{1} \sqcup A_{2} \rightarrow B_{1} \sqcup B_{2}\right)$.

Full DoPeGDO. Compute compositions in two phases:

- A 1-1 phase over the ring of power series in the weight-0 variables, in which the weight- 2 variables are spectators.
- A (slightly modified) 2-0 phase over \mathbb{Q}, in which the weight-1 variables are spectators.

Analog. Solve
Analog. Solve
$A x=a, B(x) y=$

Questions. - Are there QFT precedents for "two-step Gaussian integration'"?

- In QFT, one saves even more by considering "one-particleirreducible" diagrams and "effective actions". Does this mean anything here?
- Understanding $\operatorname{Hom}\left(\mathbb{Q}\left[z_{A}\right] \rightarrow \mathbb{Q}\left[z_{B}\right]\right)$ seems like a good cause. Can you find other applications for the technology here?
$\left(\begin{array}{l}Q U=\mathcal{U}_{\hbar}\left(s l_{2+}^{\epsilon}\right)=A\langle y, b, a, x\rangle \llbracket \hbar \rrbracket \text { with }[a, x]=x,[b, y]=-\epsilon y,[a, b]=0, \\ {[a, y]=-y,[b, x]=\epsilon x, \text { and } x y-q y x=(1-A B) / \hbar \text {, where } q=\mathbb{e}^{\hbar \epsilon}, A=\mathbb{e}^{-\hbar \epsilon \epsilon a},} \\ \text { and } B=\mathbb{e}^{-\hbar b} \text {. Also } \Delta(y, b, a, x)=\left(y_{1}+B_{1} y_{2}, b_{1}+b_{2}, a_{1}+a_{2}, x_{1}+A_{1} x_{2}\right), \\ \left.S(y, b, a, x)=\left(-B^{-1} y,-b,-a,-A^{-1} x\right) \text {, and } R=\sum \hbar^{j+k} y^{y} b^{j} \otimes a^{j} x^{k} / j![k]\right]_{q}!\end{array}\right)$
Theorem. Everything of value regrading $U=C U$ and/or its quantization $U=Q U$ is DoPeGDO:

also Cartan's θ, the Dequantizator, and more, and all of their compositions.

Solvable Approximation. In $s l_{n}$, half is enough! Indeed $s l_{n} \oplus \mathfrak{a}_{n-1}=\mathcal{D}(\nabla, b, \delta)$. Now define $s l_{n+}^{\epsilon}:=\mathcal{D}(\nabla, b, \epsilon \delta)$. Schematically, this is $[\nabla, \nabla]=\nabla$, $[\triangle, \Delta]=\epsilon \triangle$, and $[\nabla, \triangle]=$ $\Delta+\epsilon \nabla$. The same process works for all semi-simple Lie algebras, and at $\epsilon^{k+1}=0$ always yields a solvable Lie algebra.

Conclusion. There are lots of poly-time-computable wellbehaved near-Alexander knot invariants: - They extend to tangles with appropriate multiplicative behaviour. - They have cabling and strand reversal formulas.
$\omega \varepsilon \beta / \mathrm{akt}$ The invariant for $s l_{2+}^{\epsilon} /\left(\epsilon^{2}=0\right)$ (prior art: $\omega \varepsilon \beta / \mathrm{Ov}$) attains 2,883 distinct values on the 2,978 prime knots with ≤ 12 crossings. HOMFLY-PT and Khovanov homology together attain only 2,786 distinct values.

knot diag n_{k}^{t} $\left(\rho_{1}^{\prime}\right)^{+}$ Alexander's ω^{+}genus / ribbo $\left(\rho_{2}^{\prime}\right)^{+}$$\quad$ unknotting \# / amphi	knot diag n_{k}^{t} $\left(\rho_{1}^{\prime}\right)^{+}$ Alexander's ω^{+} genus / ribbon $\left(\rho_{2}^{\prime}\right)^{+}$ unknotting \# / amphi?	knot diag n_{k}^{t} $\left(\rho_{1}^{\prime}\right)^{+}$ Alexander's ω^{+} genus / ribbon $\left(\rho_{2}^{\prime}\right)^{+}$ unknotting \# / amphi?
$\bigcirc{ }^{\text {O }}$ O ${ }_{1}^{a} \quad 1 \quad 0 / 0$	3_{1}^{a} $T-1$ T $1 / \mathbf{X}$	(8)4_{1}^{a} $3-T$ $1 / \boldsymbol{X}$ 0 $1 / \checkmark$
$\begin{array}{ll} 5_{1}^{a} T^{2}-T+1 & 2 / \mathbf{X} \\ 2 T^{3}+3 T & 2 / \mathbf{x} \\ 5 T^{7}-20 T^{6}+55 T^{5}-120 T^{4}+217 T^{3}-338 T^{2}+450 T-510 \end{array}$	$\begin{array}{ll}5 a & 5 T-3 \\ 5 T-4 & 1 / \mathbf{X} \\ -10 T^{4}+120 T^{3}-487 T^{2}+1054 T-1362 & 1 / \boldsymbol{X}\end{array}$	$\begin{array}{ll} \text { (2) } 5-2 T & 1 / V \\ T-4 & 1 / \mathbf{x} \\ & 14 T^{4}-16 T^{3}-293 T^{2}+1098 T-1598 \end{array}$
$\text { (8) } \begin{array}{ll} 6_{2}^{a}-T^{2}+3 T-3 & 2 / \mathbf{x} \\ T^{3}-4 T^{2}+4 T-4 & 1 / \mathbf{x} \\ 3 T^{8}-21 T^{7}+49 T^{6}+15 T^{5}-433 T^{4}+1543 T^{3}-3431 T^{2}+5482 T-6410 \end{array}$	$6_{3}^{a} \quad T^{2}-3 T+5$ $2 / \mathbf{X}$ 0 $1 / V$ $4 T^{8}-33 T^{7}+121 T^{6}-203 T^{5}-111 T^{4}+1499 T^{3}-4210 T^{2}+7186 T-8510$	$\begin{array}{ll} 7_{1}^{a} T^{3}-T^{2}+T-1 & 3 / \mathbf{X} \\ 3 T^{5}+5 T^{3}+6 T & 3 / \mathbf{X} \\ 7 T^{11}-28 T^{10}+77 T^{9}-168 T^{8}+322 T^{7}-560 T^{6}+891 T^{5}-1310 T^{4}+ \\ 1777 T^{3}-2238 T^{2}+2604 T-2772 \end{array}$

Abstract. This will be a very "light" talk: I will explain why about 13 years ago, in order to have a say on some problems in knot theory, I've set out to find tangle invariants with some nice compositional properties. In other talks in Sydney ($\omega \varepsilon \beta / \mathrm{talks}$) I have explained / will explain how such invariants were found though they are yet to be explored and utilized.

Vo's Thesis [Vo]. A proof of the Fox-Milnor theorem for ribbon knots using this technology (and more).

 $\mathrm{z}=\mathrm{Rm}_{12,1} \mathrm{Rm}_{27} \mathrm{Rm}_{83} \mathrm{Rm}_{4,11} \mathrm{Rp}_{16,5} \mathrm{Rp}$
$\mathrm{Do}\left[\mathbf{z = z / /} \mathrm{m}_{1 \mathrm{k}+1}, \quad\{\mathrm{k}, 2,16\}\right] ;$

Fact. Γ is better viewed as an invariant of a certain class of 2 D knotted objects in \mathbb{R}^{4} [BND, BN].
Fact. Γ is the "0-loop" part of an invariant that generalizes to " n-loops" (1 D tangles only, see further talks and future publications with van der Veen).
Speculation. Stepping stones to categorifica- $\begin{gathered}\text { M. Polyak \& T. Ohtsuki } \\ \text { @ Heian Shrine, Kyoto }\end{gathered}$ tion?

Ask me about geography vs. identity!
[BN] D. Bar-Natan, Balloons and Hoops and their Universal References. Finite Type Invariant, BF Theory, and an Ultimate Alexander Invariant, ω $\varepsilon \beta / \mathrm{KBH}$, arXiv:1308.1721.
[BND] D. Bar-Natan and Z. Dancso, Finite Type Invariants of W-Knotted Objects I: w-Knots and the Alexander Polynomial, Alg. and Geom. Top. 16-2 (2016) 1063-1133, arXiv:1405.1956, $\omega \varepsilon \beta / \mathrm{WKO} 1$.
[BNS] D. Bar-Natan and S. Selmani, Meta-Monoids, Meta-Bicrossed Products, and the Alexander Polynomial, J. of Knot Theory and its Ramifications 22-10 (2013), arXiv:1302.5689.
[GST] R. E. Gompf, M. Scharlemann, and A. Thompson, Fibered Knots and Potential Counterexamples to the Property $2 R$ and Slice-Ribbon Conjectures, Geom. and Top. 14 (2010) 2305-2347, arXiv:1103.1601.
[Vo] H. Vo, Alexander Invariants of Tangles via Expansions, University of Toronto Ph.D. thesis, $\omega \varepsilon \beta / \mathrm{Vo}$.

For long knots, ω is Alexander, and that's the fastest Alexander algorithm I know! Dunfield: 1000-crossing fast.

"God created the knots, all else in
topology is the work of mortals."
Leopold Kronecker (modified)
www.katlas.org
The Krivet Jtlas

Proof of the Tangle Characterization of Ribbon Knots

Theorem. A knot K is ribbon iff there exists a tangle T whose τ closure is the untangle and whose κ closure is K.

Proof. The backward \Longleftarrow implication is easy:

For the forward implication, follow the following 5 steps:

Step I: In-situ cosmetics.
At end: D is a tree of chord-and-arc polygons.

Step 2: Near-situ cosmetics.
At end: D is tree-band-sum of n unknotted disks.

Step 3: Slides.
At end: D is a linear-band-sum of n unknotted disks.

Step 4: Exposure!
The green domain is contractible - so it can be shrank, moved at will (with the blue membrane following along), and expanded back again.
At end: D has ($\mathrm{n}-1$) exposed bridges which when turned, make D a union of n unknotted disks.

Step 5: Pulling bottom handles avoiding the obstacles.
At end: Theorem is proven.

Abstract. I'll explain what "everything around" means: classical and quantum $m, \Delta, S, t r, R, C$, and θ, as well as P, Φ, J, \mathbb{D}, and more, and all of their compositions. What DoPeGDO means: the category of Docile Perturbed Gaussian Differential Operators.
And what $s l_{2+}^{\epsilon}$ means: a solvable approximation of the semisimple Lie algebra $s l_{2}$.

DoPeGDO := The category with objects finite sets ${ }^{\dagger 2}$ and $\operatorname{mor}(A \rightarrow B)$:

$$
\{\mathcal{F}=\omega \exp (Q+P)\} \subset \mathbb{Q} \llbracket \zeta_{A}, z_{B}, \epsilon \rrbracket
$$

Where: • ω is a scalar. ${ }^{\dagger 3} \bullet Q$ is a "small" ϵ-free quadratic in $\zeta_{A} \cup z_{B} .^{\dagger 4} \bullet P$ is a "docile perturbation": $P=\sum_{k \geq 1} \epsilon^{k} P^{(k)}$, where $\operatorname{deg} P^{(k)} \leq 2 k+2$. $^{\dagger 5}$ - Compositions: ${ }^{\dagger 6}$
$\mathcal{F} / / \mathcal{G}=\mathcal{G} \circ \mathcal{F}:=\left(\left.\mathcal{G}\right|_{\xi_{i} \rightarrow \partial_{z_{i}}} \mathcal{F}\right)_{z_{i}=0}=\left(\left.\mathcal{F}\right|_{z_{i} \rightarrow \partial_{\xi_{i}}} \mathcal{G}\right)_{\xi_{i}=0}$ Cool! $\left(V^{*}\right)^{\otimes \Sigma} \otimes V^{\otimes S}$ explodes; the ranks of quadratics and bounded-degree polynomials grow slowly! ${ }^{\dagger 7}$ Representation theory is over-rated! Cool! How often do you see a computational toolbox so successful?

Our Algebras. Let $s l_{2+}^{\epsilon}:=L\langle y, b, a, x\rangle$ subject to $[a, x]=x$, Compositions (1). In mor $(A \rightarrow B), Q=\sum_{i \in A, j, \in B} E_{i j} \zeta_{i z}+\frac{1}{2} \sum_{i, j \in A} F_{i j} \zeta_{i j} \zeta_{j}+\frac{1}{i_{i, j, k}} \sum_{i j} G_{i j} z_{i} z_{j}$ $[b, y]=-\epsilon y,[a, b]=0,[a, y]=-y,[b, x]=\epsilon x$, and $[x, y]=$ $\epsilon a+b$. So $t:=\epsilon a-b$ is central and if $\exists \epsilon^{-1}, s l_{2+}^{\epsilon} /\langle t\rangle \cong s l_{2}$. oef/oa U is either $C U=\mathcal{U}\left(s l_{2+}^{\epsilon}\right) \llbracket \hbar \rrbracket$ or $Q U=\mathcal{U}_{\hbar}\left(s l_{2+}^{\epsilon}\right)=$ $A\langle y, b, a, x\rangle \llbracket \hbar \rrbracket$ with $[a, x]=x,[b, y]=-\epsilon y,[a, b]=0,[a, y]=$ $-y,[b, x]=\epsilon x$, and $x y-q y x=(1-A B) / \hbar$, where $q=\mathbb{e}^{\hbar \epsilon}$, $A=\mathbb{e}^{-\hbar \epsilon a}$, and $B=\mathbb{e}^{-\hbar b}$. Set also $T=A^{-1} B=\mathbb{e}^{\hbar t}$.
The Quantum Leap. Also decree that in $Q U$,
$\Delta(y, b, a, x)=\left(y_{1}+B_{1} y_{2}, b_{1}+b_{2}, a_{1}+a_{2}, x_{1}+A_{1} x_{2}\right)$,

$$
S(y, b, a, x)=\left(-B^{-1} y,-b,-a,-A^{-1} x\right),
$$

and $R=\sum \hbar^{j+k} y^{k} b^{j} \otimes a^{j} x^{k} / j![k]_{q}!$.
Mid-Talk Debts. • What is this good for in quantum algebra? - In knot theory?

- How does the "inclusion" $\mathcal{D}: \operatorname{Hom}\left(U^{\otimes \Sigma} \rightarrow U^{\otimes S}\right) \leadsto$ DoPeGDO work?
- Proofs that everything around $s l_{2+}^{\epsilon}$ really is DoPeGDO.
- Relations with prior art.
- The rest of the "compositions" story.

Theorem ([BG], conjectured [MM], مo 28 Melvin, elucidated [Ro1]). Let $J_{d}(K)$ be 3 (23) Morton, the coloured Jones polynomial of K, in the d-dimensional representation of $s l_{2}$. Writing

$$
\left.\frac{\left(q^{1 / 2}-q^{-1 / 2}\right) J_{d}(K)}{q^{d / 2}-q^{-d / 2}}\right|_{q=e^{\hbar}}=\sum_{j, m \geq 0} a_{j m}(K) d^{j} \hbar^{m},
$$

"below diagonal" coefficients vanish, $a_{j m}(K)=\uparrow m$ 0 if $j>m$, and "on diagonal" coefficients give the inverse of the Alexander polynomial: $\left(\sum_{m=0}^{\infty} a_{m m}(K) \hbar^{m}\right) \cdot \omega(K)\left(e^{\hbar}\right)=1$.

"Above diagonal" we have Rozansky's Theorem [Ro3, (1.2)]:

$$
J_{d}(K)(q)=\frac{q^{d}-q^{-d}}{\left(q-q^{-1}\right) \omega(K)\left(q^{d}\right)}\left(1+\sum_{k=1}^{\infty} \frac{(q-1)^{k} \rho_{k}(K)\left(q^{d}\right)}{\omega^{2 k}(K)\left(q^{d}\right)}\right) .
$$

Where $\bullet E=E_{1}\left(I-F_{2} G_{1}\right)^{-1} E_{2}$.

- ${ }^{5} F=F_{1}+E_{1} F_{2}\left(I-G_{1} F_{2}\right)^{-1} E_{1}^{T}$. $G=G_{2}+E_{2}^{T} G_{1}\left(I-F_{2} G_{1}\right)^{-1} E_{2}$. $\omega=\omega_{1} \omega_{2} \operatorname{det}\left(I-F_{2} G_{1}\right)^{-1}$.

P is computed using "connected Feyn-
man diagrams" or as the solution of a messy
PDE (yet we're still in algebra!).
DoPeGDO Footnotes. $\dagger 1$. Each variable has a "weight" $\in\{0,1,2\}$, and always wt $z_{i}+\mathrm{wt} \zeta_{i}=2$.
†2. Really, "weight-graded finite sets" $A=A_{0} \sqcup A_{1} \sqcup A_{2}$.
$\dagger 3$. Really, a power series in the weight-0 variables ${ }^{\dagger 9}$.

4. The weight of Q must be 2 , so it decomposes as $Q=Q_{20}+Q_{11}$. The coefficients of Q_{20} are rational numbers while the coefficients of Q_{11} may be weight- 0 power series ${ }^{\dagger 9}$.
+5. Setting wt $\epsilon=-2$, the weight of P is ≤ 2 (so the powers of the weight-0 variables are not constrained ${ }^{\dagger 9}$).
5. There's also an obvious product
$\operatorname{mor}\left(A_{1} \rightarrow B_{1}\right) \times \operatorname{mor}\left(A_{2} \rightarrow B_{2}\right) \rightarrow \operatorname{mor}\left(A_{1} \sqcup A_{2} \rightarrow B_{1} \sqcup B_{2}\right)$.
$\dagger 7$. That is, if the weight-0 variables are ignored. Otherwise more care is needed yet the conclusion remains.
6. $\operatorname{Hom}\left(U^{\otimes \Sigma} \rightarrow U^{\otimes S}\right) \leadsto \operatorname{mor}\left(\left\{\eta_{i}, \beta_{i}, \tau_{i}, \alpha_{i}, \xi_{i}\right\}_{i \in \Sigma} \rightarrow\left\{y_{i}, b_{i}, t_{i}, a_{i}, x_{i}\right\}_{i \in S}\right)$, where $\operatorname{wt}\left(\eta_{i}, \xi_{i}, y_{i}, x_{i}\right)=1$ and $\operatorname{wt}\left(\beta_{i}, \tau_{i}, \alpha_{i} ; b_{i}, t_{i}, a_{i}\right)=(2,2,0 ; 0,0,2)$.
$\dagger 9$. For tangle invariants the wt- 0 power series are always rational functions in the exponentials of the wt-0 variables (for knots: just one variable), with degrees bounded linearly by the crossing number.
$\mathcal{D}: \operatorname{Hom}\left(U^{\otimes \Sigma} \rightarrow U^{\otimes S}\right) \rightarrow \mathbb{Q} \llbracket \eta_{\Sigma}, \beta_{\Sigma}, \alpha_{\Sigma}, \xi_{\Sigma}, y_{S}, b_{S}, a_{S}, x_{S} \rrbracket$. The PBW theorem for $C U$ (always in the ybax order), or its quantum analog for $Q U$, say that if $U=C U$ or $Q U$ then $U^{\otimes S}$ is isomorphic as a vector space to $\mathbb{Q}\left[y_{i}, b_{i}, a_{i}, x_{i}\right]_{i \in S} \llbracket \hbar \rrbracket$; so it is enough to understand $\operatorname{Hom}\left(\mathbb{Q}\left[z_{A}\right] \rightarrow \mathbb{Q}\left[z_{B}\right]\right)$ for finite sets A and B.
Claim. $F \in \operatorname{Hom}\left(\mathbb{Q}\left[z_{A}\right] \rightarrow \mathbb{Q}\left[z_{B}\right]\right) \underset{\mathcal{D}}{\sim} \mathbb{Q}\left[z_{B}\right] \llbracket \zeta_{A} \rrbracket \ni \mathcal{F}$ via

$$
\begin{gathered}
\mathcal{D}(F):=\sum_{n \in \mathbb{N}^{A}} \frac{\zeta_{A}^{n}}{n!} F\left(z_{A}^{n}\right)=F\left(\mathbb{e}^{\sum_{a \in A} \zeta_{a} z_{a}}\right)=\mathcal{F}, \\
\mathcal{D}^{-1}(\mathcal{F})(p)=\left(\left.p\right|_{z_{a} \rightarrow \partial_{\zeta a}} \mathcal{F}\right)_{\zeta_{a}=0} \quad \text { for } p \in \mathbb{Q}\left[z_{A}\right] .
\end{gathered}
$$

Claim. Assuming convergence, if $F \in \operatorname{Hom}\left(\mathbb{Q}\left[z_{A}\right] \rightarrow \mathbb{Q}\left[z_{B}\right]\right)$, $G \in \operatorname{Hom}\left(\mathbb{Q}\left[z_{B}\right] \rightarrow \mathbb{Q}\left[z_{C}\right]\right), \mathcal{F}=\mathcal{D}(F)$, and $\mathcal{G}=\mathcal{D}(G)$, then

$$
\mathcal{D}(F / / G)=\left(\left.\mathcal{F}\right|_{z_{i} \rightarrow \partial_{\zeta_{i}}} \mathcal{G}\right)_{\zeta_{i}=0}
$$

And so the title of the talk finally makes sense!
Example. $\mathcal{D}(i d: U \rightarrow U)=\mathbb{e}^{\eta y+\beta b+\alpha a+\xi x}$.
Example. Let $c \Delta_{j k}^{i}: C U^{\otimes\{i\}} \rightarrow C U^{\otimes\{j, k\}}$ be the standard coproduct, given by $c \Delta_{j k}^{i}\left(y_{i}, b_{i}, a_{i}, x_{i}\right)=\left(y_{j}+y_{k}, b_{j}+b_{k}, a_{j}+a_{k}, x_{j}+\right.$ x_{k}). Then

$$
\begin{aligned}
& \mathcal{D}\left(c \Delta_{j k}^{i}\right)=c \Delta_{j k}^{i}\left(\mathbb{C}^{\eta_{i} y_{i}+\beta_{i} b_{i}+\alpha_{i} a_{i}+\xi_{i} x_{i}}\right) \\
&=\mathbb{e}^{\eta_{i}\left(y_{j}+y_{k}\right)+\beta_{i}\left(b_{j}+b_{k}\right)+\alpha_{i}\left(a_{j}+a_{k}\right)+\xi_{i}\left(x_{j}+x_{k}\right)}
\end{aligned}
$$

Example. The standard commutative product $m_{k}^{i j}$ of polynomials is given by $z_{i}, z_{j} \rightarrow z_{k}$. Hence $\mathcal{D}\left(m_{k}^{i j}\right)=$ $m_{k}^{i j}\left(\mathbb{C}^{\zeta_{i} z_{i}+\zeta_{j} z_{j}}\right)=\mathbb{e}^{\left(\zeta_{i}+\zeta_{j}\right) z_{k}}$.

A real DoPeGDO Example. Let $c m_{k}^{i j}: C U_{i} \otimes C U_{j} \rightarrow C U_{k}$ be "classical multiplication" for $s l_{2+}^{\epsilon}$, and let $\mathbb{O}_{i}: \mathbb{Q}\left[y_{i}, b_{i}, a_{i}, x_{i}\right] \rightarrow$ $C U_{i}$ be the PBW ordering map.

Claim. Let (all brawn and no brains)

$$
\begin{array}{r}
\Lambda=\left(\eta_{i}+\frac{e^{-\alpha_{i}-\epsilon \beta_{i}} \eta_{j}}{1+\epsilon \eta_{j} \xi_{i}}\right) y_{k}+\left(\beta_{i}+\beta_{j}+\frac{\log \left(1+\epsilon \eta_{j} \xi_{i}\right)}{\epsilon}\right) b_{k}+ \\
\quad\left(\alpha_{i}+\alpha_{j}+\log \left(1+\epsilon \eta_{j} \xi_{i}\right)\right) a_{k}+\left(\frac{e^{-\alpha_{j}-\epsilon \beta_{j}} \xi_{i}}{1+\epsilon \eta_{j} \xi_{i}}+\xi_{j}\right) x_{k}
\end{array}
$$

Then $\mathbb{e}^{\eta_{i} y_{i}+\beta_{i} b_{i}+\alpha_{i} a_{i}+\xi_{i} x_{i}+\eta_{j} y_{j}+\beta_{j} b_{j}+\alpha_{j} a_{j}+\xi_{j} x_{j}} / / \mathbb{O}_{i, j} / / \mathrm{cm}_{k}^{i j}=\mathbb{e}^{\Lambda} / / \mathbb{O}_{k}$, and hence $\mathcal{D}\left(c m_{k}^{i j}\right)=\mathbb{e}^{\Lambda}$ and $c m_{k}^{i j}$ is DoPeGDO.
Proof. We compute in a faithful 2D representation $z \mapsto \hat{z}$ of $C U$: ($\omega \varepsilon \beta / \mathrm{cm}$)

```
HL[\mp@subsup{\varepsilon}{-}{\prime}]:= Style[\varepsilon, Background -> If[TrueQ@ &, }\square,\square]]
{\hat{y}=(\begin{array}{ll}{0}&{0}\\{\epsilon}&{0}\end{array}),\hat{b}=(\begin{array}{cc}{0}&{0}\\{0}&{-\epsilon}\end{array}),\hat{a}=(\begin{array}{ll}{1}&{0}\\{0}&{0}\end{array}),\hat{x}=(\begin{array}{ll}{0}&{1}\\{0}&{0}\end{array})};
HL /@{a..\hat{x}-\hat{x}.\hat{a}==\hat{x},\hat{a}.\hat{y}-\hat{y}.\hat{a}==-\hat{y},\hat{b}.\hat{y}-\hat{y}.\hat{b}==-\epsilon\hat{y},
    b}.\hat{x}-\hat{x}.\hat{b}==\epsilon\hat{x},\hat{x}\cdot\hat{y}-\hat{y}.\hat{x}==\hat{b}+\epsilon\hat{a}
{True, True, True, True, True}
HL@Simplify@With[{\mathbb{E}=\mathrm{ MatrixExp },}
    \mathbb{E}[\mp@subsup{\eta}{i}{}\hat{y}],\mathbb{E}[\mp@subsup{\beta}{i}{}\hat{b}],\mathbb{E}[\mp@subsup{\alpha}{i}{}\hat{a}],\mathbb{E}[\mp@subsup{\xi}{i}{}\hat{x}],\mathbb{E}[\mp@subsup{\eta}{j}{}\hat{y}],\mathbb{E}[\mp@subsup{\beta}{j}{}\hat{b}].
        \mathbb{E}[\mp@subsup{\alpha}{j}{}\hat{a}],\mathbb{E}[\mp@subsup{\xi}{j}{}\hat{x}]==\mathbb{E}[\hat{y}\mp@subsup{\partial}{\mp@subsup{y}{k}{}}{}\Lambda],\mathbb{E}[\hat{b}\mp@subsup{\partial}{\mp@subsup{b}{k}{}}{}\Lambda].\mathbb{E}[\hat{a}\mp@subsup{\partial}{\mp@subsup{a}{k}{}}{}\Lambda].
        \mathbb{E}[\hat{x}}\mp@subsup{\partial}{\mp@subsup{x}{k}{}}{}\Lambda]
```

True
Series [$\Lambda,\{\in, 0,1\}$]

```
\(\left(a_{k}\left(\alpha_{i}+\alpha_{j}\right)+y_{k}\left(\eta_{i}+e^{-\alpha_{i}} \eta_{j}\right)+\right.\)
    \(\left.\mathbf{b}_{\mathrm{k}}\left(\beta_{\mathrm{i}}+\beta_{\mathrm{j}}+\eta_{\mathrm{j}} \xi_{i}\right)+\mathbf{x}_{\mathrm{k}}\left(\mathbb{e}^{-\alpha_{\mathbf{j}}} \xi_{i}+\xi_{\mathrm{j}}\right)\right)+\)
\(\left(a_{k} \eta_{j} \xi_{i}-\frac{1}{2} b_{k} \eta_{j}^{2} \xi_{i}^{2}-e^{-\alpha_{i}} y_{k} \eta_{j}\left(\beta_{i}+\eta_{j} \xi_{i}\right)-\right.\)
    \(\left.e^{-\alpha_{j}} \mathrm{x}_{\mathrm{k}} \xi_{\mathrm{i}}\left(\beta_{\mathrm{j}}+\eta_{\mathrm{j}} \xi_{\mathrm{i}}\right)\right) \epsilon+0[\epsilon]^{2}\)
```

(Shame, but this technique fails for $Q U$).
Claim. In $Q U, R$ is DoPeGDO.
Proof. Recall that with $q=\mathbb{e}^{\hbar \epsilon}$,

$$
R=\sum \hbar^{j+k} y^{k} b^{j} \otimes a^{j} x^{k} / j![k]_{q}!=\mathbb{O}\left(\mathbb{C}^{\hbar b_{1} a_{2}} \mathbb{e}_{q}^{\hbar y_{1} x_{2}}\right)
$$

Now expand $\mathbb{E}_{q}^{\hbar y_{1} x_{2}}$ in powers of ϵ using:
Faddeev's Formula (In as much as we can tell, first appeared without proof in Faddeev [Fa], rediscovered and proven in Quesne [Qu], and again with easier proof, in Zagier [Za$]$). With $[n]_{q}:=\frac{q^{n}-1}{q-1}$, with $[n]_{q}!:=[1]_{q}[2]_{q} \cdots[n]_{q}$ and with $\mathbb{C}_{q}^{x}:=$ $\sum_{n \geq 0} \frac{x^{n}}{[n] q!}$, we have

$$
\log \mathbb{C}_{q}^{x}=\sum_{k \geq 1} \frac{(1-q)^{k} x^{k}}{k\left(1-q^{k}\right)}=x+\frac{(1-q)^{2} x^{2}}{2\left(1-q^{2}\right)}+\ldots
$$

Proof. We have that $\mathbb{E}_{q}^{x}=\frac{\mathbb{e}_{q}^{q x}-\mathbb{e}_{q}^{x}}{q x-x}$ ("the q-derivative of \mathbb{E}_{q}^{x} is itself'), and hence $\mathbb{E}_{q}^{q x}=(1+(1-q) x) \mathbb{E}_{q}^{x}$, and

$$
\log \mathbb{C}_{q}^{q x}=\log (1+(1-q) x)+\log \mathbb{C}_{q}^{x} .
$$

Writing $\log \mathbb{E}_{q}^{x}=\sum_{k \geq 1} a_{k} x^{k}$ and comparing powers of x, we get $q^{k} a_{k}=-(1-q)^{k} / k+a_{k}$, or $a_{k}=\frac{(1-q)^{k}}{k\left(1-q^{k}\right)}$.
Compositions (2). Recall that with all indices i running in some set B,
so in general we wish to understand

$$
[F: \mathcal{E}]_{B}:=\mathbb{e}^{\frac{1}{2} \sum_{i, j \in B} F_{i j} \partial_{z_{i}} \partial_{z_{j}}} \mathcal{E} \quad \text { and } \quad\langle F: \mathcal{E}\rangle_{B}:=\left.[F: \mathcal{E}]_{B}\right|_{z_{B} \rightarrow 0}
$$

where \mathcal{E} is a docile perturbed Gaussian. The following lemma allows us to restrict to the case where \mathcal{E} has no $B-B$ quadratic part:
Lemma 1. With convergences left to the reader,
$\left\langle F: \mathcal{E} \mathbb{e}^{\frac{1}{2} \sum_{i, j \in B} G_{i j} z_{i} z_{j}}\right\rangle_{B}=\operatorname{det}(1-G F)^{-1 / 2}\left\langle F(1-G F)^{-1}: \mathcal{E}\right\rangle_{B}$.
The next lemma dispatches the case where \mathcal{E} has a B-linear part:
Lemma 2. $\left\langle F: \mathcal{E} \mathbb{e}^{\sum_{i \in B} y_{i} z_{i}}\right\rangle_{B}=\mathbb{e}^{\frac{1}{2} \sum_{i, j \in B} F_{i j} y_{i} y_{j}}\left\langle F:\left.\mathcal{E}\right|_{z_{B} \rightarrow z_{B}+F y_{B}}\right\rangle_{B}$. Finally, we deal with the docile perturbation case:
Lemma 3. With an extra variable $\lambda, Z_{\lambda}:=\log \left[\lambda F: \mathbb{C}^{P}\right]_{B}$ satisfies and is determined by the following PDE / IVP:

$$
Z_{0}=P \quad \text { and } \quad \partial_{\lambda} Z_{\lambda}=\frac{1}{2} \sum_{i, j \in B} F_{i j}\left(\partial_{z_{i}} \partial_{z_{j}} Z_{\lambda}+\left(\partial_{z_{i}} Z_{\lambda}\right)\left(\partial_{z_{j}} Z_{\lambda}\right)\right)
$$

Complexity to ϵ^{k}, for an n-xing width w knot (by [LT], $w \in O(\sqrt{n}))$, is $O\left(n^{2} w^{2 k+2} \log n\right)=O\left(n^{k+3} \log n\right)$ integer operations.

A Partial To Do List.

- Understand tr and links.
- Implement Φ, J. Determine the appropriate wt-0 ground ring.
- Implement the "dequantizators".
- Understand denominators and get rid of them.
- Implement zipping at the log-level.
- Clean the program and make it efficient.
- Run it for all small knots and links, at $k=3,4$.
- Understand the centre and figure out how to read the output.
- Is the "+" really necessary in $s l_{2+}^{\epsilon}$? Why?
- Extend to sl_{3} and beyond.
- Describe a genus bound and a Seifert formula.
- Obtain "Gauss-Gassner formulas" ($\omega \varepsilon \beta / \mathrm{NCSU}$).
- Relate with the representation theory dogma, with Melvin-Morton-Rozansky and with Rozansky-Overbay.
- Understand the braid group representations that arise.
- Relate with finite-type (Vassiliev) invariants.
- Find a topological interpretation/foundation. The Garoufalidis - Rozansky "loop expansion" [GR]?
- Figure out the action of the Cartan automorphism.
- Understand "the subspace of classical knots / tangles".
- Disprove the ribbon-slice conjecture!
- Figure out the action of the Weyl group.
- Use to study "Ševera quantization".
- Do everything at the "arrow diagram" level of finite-type invariants of (rotational) virtual tangles.
- Find "internal" proofs of consistency.
- What else can you do with the "solvable approximations"?
- And with the "Gaussian compositions" technology?

Warning. Some implementation details match earlier versions of the theory.

The Zipping Theorem. If P has a finite ζ-degree and \tilde{q} is the inverse matrix of $1-q:\left(\delta_{j}^{i}-q_{j}^{i}\right) \tilde{q}_{k}^{j}=\delta_{k}^{i}$, then

$$
\begin{aligned}
&\left\langle P\left(z_{i}, \zeta^{j}\right) \mathbb{e}^{c+\eta^{i} z_{i}+y_{j} \zeta^{j}+q_{j}^{i} z_{i} \zeta^{j}}\right\rangle \\
&=|\tilde{q}| \mathbb{e}^{c+\eta^{i} \tilde{q}_{i}^{k} y_{k}}\left\langle P\left(\tilde{q}_{i}^{k}\left(z_{k}+y_{k}\right), \zeta^{j}+\eta^{i} \tilde{q}_{i}^{j}\right)\right\rangle .
\end{aligned}
$$

The "Speedy" Engine

$\omega \varepsilon \beta /$ engine

Internal Utilities

Canonical Form:
$\operatorname{CCF}\left[\varepsilon_{-}\right]:=$
PP CCF @ ExpandDenominator@ ExpandNumerator@ PP $_{\text {Together }}$ @Together $\left[\mathrm{PP}_{\text {Exp }}\right.$ [

Expand $\left.\left.[\delta] / / \cdot \mathbb{e}^{x}-\mathbb{e}^{y}-\rightarrow \mathbb{e}^{x+y} / \cdot \mathbb{e}^{x}-: \rightarrow \mathbb{e}^{C C F[x]}\right]\right]$;
CF [$\varepsilon_{-} L$ ist] := CF /@ \mathcal{E};
CF[sd_SeriesData] := MapAt[CF, sd, 3];
$\mathrm{CF}\left[\varepsilon_{-}\right]:=\mathrm{PP}_{\mathrm{CF}} @$ Module[
$\left\{v s=\operatorname{Cases}\left[\mathcal{E},(y|b| t|a| x|\eta| \beta|\tau| \alpha \mid \xi)_{-}, \infty\right] \cup\right.$
$\{y, b, t, a, x, \eta, \beta, \tau, \alpha, \xi\}\}$,
Total[CoefficientRules [Expand[δ], vs] /.
$\left(p s_{-} \rightarrow c_{-}\right): \rightarrow C C F[c]$ (Times @@ vs ${ }^{p s}$)]
];
$\mathrm{CF}\left[\mathcal{E}_{-} \mathbb{E}\right]:=\mathrm{CF} / @ \varepsilon$;
$\mathrm{CF}\left[\mathbb{E}_{s p+\ldots}\left[8 S_{-\ldots}\right]\right]:=\mathrm{CF} / @ \mathbb{E}_{s p}[\delta S] ;$
The Kronecker δ :
$\mathrm{K} \delta /: K \delta_{i_{-}, j_{-}}:=\operatorname{If}[i===j, 1,0] ;$
Equality, multiplication, and degree-adjustment of
perturbed Gaussians; $\mathbb{E}[L, Q, P]$ stands for $\mathbb{e}^{L+Q} P$:
$\mathbb{E} /: \mathbb{E}\left[L 1_{-}, Q 1_{-}, P 1_{-}\right] \equiv \mathbb{E}\left[L 2_{-}, Q 2_{-}, P 2_{-}\right]:=$
CF [L1 =: L2] ^CF[Q1 == Q2] ^CF[Normal[P1 - P2] = 0];
$\mathbb{E} /: \mathbb{E}\left[L 1_{-}, Q 1_{-}, P 1_{-}\right] \times \mathbb{E}\left[L 2_{-}, Q 2_{-}, P 2_{-}\right]:=$
$\mathbb{E}[L 1+L 2, Q 1+Q 2, P 1 * P 2] ;$
$\mathbb{E}\left[L_{-}, Q_{-}, P_{-}\right]_{\$ k_{-}}:=\mathbb{E}[L, Q$, Series [Normal@P, $\left.\{\in, 0, \$ k\}]\right] ;$

Zip and Bind

Variables and their duals:

```
{t*, b* , y*, a*, x* , z* } = {\tau, \beta, \eta,\alpha, \xi, \zeta};
```



```
(u_i )* := (u*)
```

Upper to lower and lower to Upper:

```
U21 = \(\left\{\mathbf{B}_{i_{-}^{-}}^{p_{-}}: \rightarrow \mathbb{e}^{-p \hbar \gamma \mathbf{b}_{i}}, \mathbf{B}^{p_{-} \cdot}: \rightarrow \mathbb{e}^{-p \hbar \gamma \mathbf{b}}, \mathbf{T}_{i_{-}^{-}}^{p^{\cdot}}: \rightarrow \mathbb{e}^{p \hbar \mathrm{t}_{i}}\right.\),
    \(\left.\mathrm{T}^{p_{-}}: \rightarrow \mathbb{e}^{p \hbar t}, \mathcal{F}_{i_{-}^{-}}^{p^{-}}: \rightarrow \mathbb{e}^{p \gamma \alpha_{i}}, \mathcal{F}^{p_{-}}: \rightarrow \mathbb{e}^{p \gamma \alpha}\right\} ;\)
\(12 U=\left\{\mathbb{e}^{c_{-} \cdot b_{i_{-}}+d_{-} \cdot}: \rightarrow B_{i}^{-c /(\hbar \gamma)} \mathbb{e}^{d}, \mathbb{e}^{c_{-} \cdot b+d_{-}}: \rightarrow B^{-c /(\hbar \gamma)} \mathbb{e}^{d}\right.\),
    \(\mathbb{e}^{c_{-} \cdot \mathrm{t}_{i_{-}}+d_{-} \cdot}: \rightarrow \mathrm{T}_{i}^{c / \hbar} \mathbb{e}^{d}, \mathbb{e}^{c_{-} \cdot \mathrm{t}_{+} d_{-} \cdot}: \rightarrow \mathrm{T}^{c / \hbar} \mathbb{e}^{d}\),
    \(\mathbb{e}^{c_{-} \cdot \alpha_{i_{-}}+d_{-}}: \rightarrow \mathcal{F}_{i}^{c / \gamma} \mathbb{e}^{d}, \mathbb{e}^{c_{-} \cdot \alpha+d_{-} \cdot}: \rightarrow \mathcal{A}^{c / \gamma} \mathbb{e}^{d}\),
    \(\left.\mathbb{e}^{\mathcal{E}}: \rightarrow \mathbb{e}^{\text {Expand@ }}\right\} ;\)
```

Derivatives in the presence of exponentiated variables:

```
\(\mathrm{D}_{\mathrm{b}}\left[f_{-}\right]:=\partial_{\mathrm{b}} f-\hbar \gamma \mathrm{B} \partial_{\mathrm{B}} f ; \mathrm{D}_{\mathrm{b}_{i_{-}}}\left[f_{-}\right]:=\partial_{\mathrm{b}_{i}} f-\hbar \gamma \mathrm{B}_{i} \partial_{\mathrm{B}_{i}} f ;\)
\(\mathrm{D}_{\mathrm{t}}\left[f_{-}\right]:=\partial_{\mathrm{t}} f+\hbar \mathrm{T} \partial_{\mathrm{T}} f ; \mathrm{D}_{\mathrm{t}_{i}}\left[f_{-}\right]:=\partial_{\mathrm{t}_{i}} f+\hbar \mathrm{T}_{i} \partial_{\mathrm{T}_{i}} f ;\)
\(\mathrm{D}_{\alpha}\left[f_{-}\right]:=\partial_{\alpha} f+\gamma \mathcal{H} \partial_{\mathscr{H}} f ; \mathrm{D}_{\alpha_{i}}\left[f_{-}\right]:=\partial_{\alpha_{i}} f+\gamma \mathcal{H}_{i} \partial_{\mathscr{A}_{i}} f ;\)
\(\mathrm{D}_{v_{-}}\left[f_{-}\right]:=\partial_{v} f ; \mathrm{D}_{\left\{\nu_{-}, 0\right\}}\left[f_{-}\right]:=f ; \mathrm{D}_{\mathfrak{j}}\left[f_{-}\right]:=f\);
\(\mathbf{D}_{\left\{v_{-}, n_{-} \text {Integer }\right\}}\left[f_{-}\right]:=\mathbf{D}_{v}\left[\mathbf{D}_{\{v, n-1\}}[f]\right] ;\)
\(\mathbf{D}_{\left\{L_{-} L i s t, l s_{-}\right\}}\left[f_{-}\right]:=\mathbf{D}_{\{L s\}}\left[\mathbf{D}_{l}[f]\right] ;\)
```

Finite Zips:

```
collect[sd_SeriesData, S_] :=
    MapAt[collect[#, s] &, sd, 3];
collect[\mp@subsup{\varepsilon}{-}{\prime},\mp@subsup{\zeta}{-}{\prime}] := PP
Zip}\mp@subsup{p}{{}{\prime}[\mp@subsup{P}{-}{\prime}]:=P
Zip
Zip
```



```
        \zeta* 
```

QZip implements the "Q-level zips" on $\mathbb{E}(L, Q, P)=\mathbb{e}^{L+Q} P(\epsilon)$. Such zips regard the L variables as scalars.

```
QZip \(_{\text {Ss_List }}\) @E \(\left[L_{-}, Q_{-}, P_{-}\right]:=\)
    \(\mathrm{PP}_{\mathrm{Qzi}} @\) Module \([\{\zeta, \mathrm{z}, \mathrm{zs}, \mathrm{c}, \mathrm{ys}, \eta \mathrm{s}, \mathrm{qt}\), zrule, \(\varsigma r u l e\), out \(\}\),
    zs = Table[ \(\left.\varsigma^{*},\{\zeta, \zeta \varsigma\}\right] ;\)
    \(c=C F[Q /\). Alternatives @@ ( \(\zeta s \mathrm{U} z \mathrm{~s}\) ) \(\rightarrow 0\) ];
    \(y s=\) CF@Table \(\left[\partial_{\zeta}(Q /\right.\). Alternatives @@ \(z s \rightarrow 0)\),
            \{̧, ss\}];
    \(\eta s=\) CF@Table \(\left[\partial_{z}(Q /\right.\). Alternatives @@ \(\left.\zeta s \rightarrow 0),\{z, z s\}\right]\);
    qt \(=\) CF@Inverse@Table \(\left[K \delta_{z, \xi^{*}}-\partial_{z, \zeta} Q,\left\{\zeta, \zeta_{s}\right\},\{z, z s\}\right] ;\)
    zrule \(=\) Thread \([z s \rightarrow\) CF[qt. (zs +ys)]];
    ૬rule \(=\) Thread \([\varsigma s \rightarrow \zeta s+\eta s . q t]\);
    CF /@ \(\mathbb{E}[L, c+\eta s . q t . y s\),
        Det [qt] Zip \(_{5 s}[P /\). (zrule UŞrule)] ] ];
```

LZip implements the "L-level zips" on $\mathbb{E}(L, Q, P)=P e^{L+Q}$. Such zips regard all of Pe^{Q} as a single" P ". Here the z 's are b and α and the ζ s are β and a.

```
LZip
    PP
        Zrule, \zetarule, Q1, EEQ, EQ},
        zs = Table[\mp@subsup{\zeta}{}{*},{\zeta,\zetas}];
        Zs=zs/.{b B B,t T T, 人->\mathcal{F}};
        c=L/. Alternatives@@ (\xis Uzs) ->0/.
            Alternatives @@ Zs }->\mathrm{ 1;
        ys = Table[\partial\rho(L /. Alternatives @@ zs }->0),{\zeta,\zetas}]
        \etas=Table[\mp@subsup{\partial}{z}{\prime}(L/. Alternatives @@ \zetas }->0),{z,zs}]
        lt = Inverse@Table[K 
        zrule = Thread[zs ->lt.(zs + ys)];
        Zrule = Join[zrule,
            zrule /.
            r_Rule :}->((U=r\llbracket1\rrbracket/.{b->B,t->T,\alpha->\mathcal{A}})
                (U /. U2l /. r //. 12U))];
    \zetarule = Thread[ }\zetas->\zetas+\etas.lt]
    Q1 = Q /. (Zrule\ Srule);
    EEQ[ps___] :=
        EEQ[ps] =
            PP""EEQ"@ (CF[ [e-Q1 D
```

 \{Alternatives @@ \(z s \rightarrow 0\), Alternatives @@ \(\mathrm{Zs} \rightarrow \mathbf{1}\}\));
 CF@E [c + \(\eta \mathrm{s} .1 \mathrm{lt} . \mathrm{ys}\),
 Q1 /. \{Alternatives @ \(\mathrm{zs} \rightarrow 0\), Alternatives @ \(\mathrm{Zs} \rightarrow \mathbf{1}\) \},
 Det[lt]
 (Zip \({ }_{5 s}[(E Q\) @ zs\()(P / .(Z r u l e \mathrm{U}\) Srule) \()] /\).
 Derivative[ps___][EQ][__] : \(\rightarrow\) EEQ[ps] /.
 \(E Q \rightarrow\) 1)]];
    ```
\(\mathrm{B}_{\text {f }}\left[L_{-}, R_{-}\right]:=L R ;\)
\(\mathrm{B}_{\left\{\mathrm{is}_{-}\right\}}\left[L_{-} \mathbb{E}, R_{-} \mathbb{E}\right]:=\mathrm{PP}_{\mathrm{B}} @ \operatorname{Module}[\{n\}\),
        Times [
            L/. Table[(v:b|B|t|T|a|x|y) \(\mathrm{i}_{\mathrm{i}} \mathrm{v}_{\mathrm{nei}}\),
            \{i, \{is\}\}],
        R/. Table[ \(\left.(v: \beta|\tau| \alpha|\mathcal{F}| \xi \mid \eta)_{i} \rightarrow \mathbf{v}_{\text {nei }},\{i,\{i s\}\}\right]\)
```



```
        QZip Joineetable \(\left.\left[\left\{\varepsilon_{\text {nei }}, y_{\text {nei }_{i}}\right\},\{i,\{i s\}\}\right]\right]\);
\(\mathrm{B}_{i S_{---}}\left[L_{-}, R_{-}\right]:=\mathrm{B}_{\{i s\}}[L, R]\);
```

\mathbb{E} morphisms with domain and range.

```
\(\mathrm{B}_{\text {is- }} L i s t\left[\mathbb{E}_{d 1_{-} \rightarrow r 1_{-}}\left[L 1_{-}, Q 1_{-}, P 1_{-}\right], \mathbb{E}_{d 2_{-} \rightarrow r 2_{-}}\left[L 2_{-}, Q_{2}, P 2_{-}\right]\right]:=\)
    \(\left.\mathbb{E}_{(d 1 U C o m p l e m e n t}[d 2, i s]\right) \rightarrow(r 2 U C o m p l e m e n t[r 1, i s])\) @@
        \(B_{i s}[\mathbb{E}[L 1, Q 1, P 1], \mathbb{E}[L 2, Q 2, P 2]] ;\)
\(\mathbb{E}_{d 1_{-} \rightarrow r 1_{-}}\left[L 1_{-}, Q 1_{-}, P 1_{-}\right] / / \mathbb{E}_{d 2_{-} \rightarrow r 2_{-}}\left[L 2_{2}, Q 2_{-}, P 2_{-}\right]:=\)
    \(\mathrm{B}_{\mathrm{r} 1 \mathrm{n}_{d 2}}\left[\mathbb{E}_{d 1 \rightarrow r 1}[L 1, Q 1, P 1], \mathbb{E}_{d 2 \rightarrow r 2}[L 2, \mathrm{Q} 2, P 2]\right]\);
\(\mathbb{E}_{d 1_{-} \rightarrow r 1_{-}}\left[L 1_{-}, Q 1_{-}, P 1_{-}\right] \equiv \mathbb{E}_{d 2_{-} \rightarrow r 2_{-}}\left[L 2_{-}, Q 2_{-}, P 2_{-}\right] \wedge:=\)
        \((d 1=d 2) \wedge(r 1=r 2) \wedge(\mathbb{E}[L 1, Q 1, P 1] \equiv \mathbb{E}[L 2, Q 2, P 2]) ;\)
\(\mathbb{E}_{d 1_{-} \rightarrow r 1_{-}}\left[L 1_{-}, Q 1_{-}, P 1_{-}\right] \mathbb{E}_{d 2_{-} \rightarrow r 2_{-}}\left[L 2_{-}, Q 2_{-}, P 2_{-}\right] \wedge:=\)
    \(\mathbb{E}_{(d 1 U d 2) \rightarrow\left(r 1 U r^{2}\right)}\) @ ( \(\left.\mathbb{E}[L 1, Q 1, P 1] \times \mathbb{E}[L 2, Q 2, P 2]\right) ;\)
\(\mathbb{E}_{d r_{-}}\left[L_{-}, Q_{-}, P_{-}\right]_{\text {\&k }_{-}}:=\mathbb{E}_{d r} @ @ \mathbb{E}[L, Q, P]_{\$_{k}} ;\)
\(\left.\mathbb{E}_{-}\left[\mathcal{E}_{-}{ }^{-}\right]\left[i_{-}\right]:=\{\mathcal{E}\} \llbracket i\right] ;\)
\(\mathbb{E}[\Lambda]\)
\(\mathbb{E}_{d r_{-}}\left[\Lambda_{-}\right]:=\)
    CF@Module[ \(\{L, \Lambda \theta=\operatorname{Limit}[\Lambda, \in \rightarrow 0]\}\),
        \(\left.\mathbb{E}_{d r}\left[\mathrm{~L}=\Lambda \theta / \cdot(\eta|\mathrm{y}| \xi \mid \mathrm{x})_{-} \rightarrow \theta, \Lambda \theta-\mathrm{L}, \mathbb{e}^{\Lambda-\Lambda \theta}\right]_{\text {\$k }} / .12 \mathrm{U}\right]\)
```


Exponentials as needed.

Task. Define $\operatorname{Exp}_{m, i, k}[P]$ to compute $e^{\mathbb{Q}(P)}$ to ϵ^{k} in the using the $m_{i, i \rightarrow i}$ multiplication, where P is an ϵ-dependent near-docile element, giving the answer in \mathbb{E}-form.
Methodology. If $P_{0}:=P_{\epsilon=0}$ and $e^{\lambda \mathbb{O}(P)}=\mathbb{O}\left(e^{\lambda P_{0}} F(\lambda)\right)$, then
$F(\lambda=0)=1$ and we have:
$\mathbb{O}\left(e^{\lambda P_{0}}\left(P_{0} F(\lambda)+\partial_{\lambda} F\right)\right)=\mathbb{O}\left(\partial_{\lambda} e^{\lambda P_{0}} F(\lambda)\right)=$

$$
\partial_{\lambda} \mathbb{O}\left(e^{\lambda P_{0}} F(\lambda)\right)=\partial_{\lambda} e^{\lambda \mathbb{O}(P)}=\mathbb{e}^{\lambda \mathbb{O}(P)} \mathbb{O}(P)=\mathbb{O}\left(e^{\lambda P_{0}} F(\lambda)\right) \mathbb{O}(P)
$$

This is a linear ODE for F. Setting inductively $F_{k}=F_{k-1}+\epsilon^{k} \varphi$ we find that $F_{0}=1$ and solve for φ.
(* Bug: The first line is valid only if $\mathbb{O}\left(e^{P_{\theta}}\right)=e^{0\left(P_{\theta}\right)}$. *
$\operatorname{Exp}_{m_{-}, i_{-}, \theta}\left[P_{-}\right]:=$Module[$\{L Q=$ Normal@ $P / . \epsilon \rightarrow 0\}$,
$\left.\mathbb{E}\left[\mathrm{LQ} / .(\mathrm{x} \mid \mathrm{y})_{i} \rightarrow 0, \mathrm{LQ} / .(\mathrm{b}|\mathrm{a}| \mathrm{t})_{i} \rightarrow 0,1\right]\right] ;$
$\operatorname{Exp}_{m_{-}, i_{-}, k_{-}}\left[P_{-}\right]:=\operatorname{Block}[\{\$ \mathrm{k}=k\}$,
Module [\{P0, $\lambda, \varphi, \varphi s, F, j$, rhs, eqn, pows, ate, at $\lambda\}$, P0 = Normal@ $\mathrm{P} / . \epsilon \rightarrow \boldsymbol{0}$;
$F=$ Normal@Last@Exp ${ }_{m, i, k-1}[\lambda P]$;
While[
rhs =
$m_{i, j \rightarrow i}$ [
$\mathbb{E}_{\{ \} \rightarrow\{i\}}\left[\lambda \mathrm{P} 0 / \cdot(\mathrm{x} \mid \mathrm{y})_{i} \rightarrow 0, \lambda \mathrm{P} 0 / \cdot(\mathrm{b}|\mathrm{a}| \mathrm{t})_{i} \rightarrow \boldsymbol{0}\right.$,
$\left.\mathrm{F}]_{k} \mathbf{S} \sigma_{i \rightarrow j} @ \mathbb{E}_{\{ \} \rightarrow\{i\}}[\mathbf{\theta}, \boldsymbol{\theta}, \mathrm{P}]_{k}\right] / /$ Last // Normal;
eqn $=C F\left[\left(\partial_{\lambda} F\right)+P \theta F-r h s\right]$;
eqn $=!=0$, (*do*)
pows = First /@CoefficientRules [eqn, $\left.\left\{\mathbf{y}_{i}, \mathbf{b}_{i}, \mathbf{a}_{i}, \mathbf{x}_{i}\right\}\right]$; $F+=\operatorname{Sum}\left[\epsilon^{k} \varphi_{j s}[\lambda]\right.$ Times @@ $\left\{\mathbf{y}_{i}, \mathbf{b}_{i}, \mathrm{a}_{i}, \mathbf{x}_{i}\right\}^{\text {js }}$,
\{js, pows\}];
rhs =
$m_{i, j \rightarrow i}$ [
$\mathbb{E}_{\{ \} \rightarrow\{i\}}\left[\lambda \mathrm{P} \theta / \cdot(\mathrm{x} \mid \mathrm{y})_{i} \rightarrow 0, \lambda \mathrm{P} \theta / .(\mathrm{b}|\mathrm{a}| \mathrm{t})_{i} \rightarrow 0\right.$,
$\mathrm{F}_{k} \mathrm{SO}_{i \rightarrow j}$ @E $\left.\mathbb{E}_{\{ \} \rightarrow\{i\}}[\mathbf{0}, \boldsymbol{0}, \mathrm{P}]_{k}\right] / /$ Last // Normal;
eqn $=C F\left[\left(\partial_{\lambda} F\right)+P \theta F-r h s\right]$;
$\varphi \mathrm{S}=\operatorname{Table}\left[\varphi_{\mathrm{js}}[\lambda],\{j \mathrm{j}\right.$, pows $\left.\}\right] ;$
at0 $=\operatorname{Table}\left[\varphi_{\text {js }}[0]==0,\{j \mathrm{j}\right.$, pows $\left.\}\right] ;$
at $\lambda=(\#==0) \& / @$
(pows /. CoefficientRules [eqn, $\left.\left\{\mathbf{y}_{i}, \mathbf{b}_{i}, \mathrm{a}_{i}, \mathrm{x}_{i}\right\}\right]$);
$F=F /$. DSolve[And@@ (at0 Uat λ), $\varphi s, \lambda] \llbracket 1 \rrbracket$
];
$\mathbb{E}_{\{ \} \rightarrow\{i\}}\left[\mathrm{P} \theta / \cdot(\mathrm{x} \mid \mathrm{y})_{i} \rightarrow 0, \mathrm{P} \theta / \cdot(\mathrm{b}|\mathrm{a}| \mathrm{t})_{i} \rightarrow 0\right.$, $\left.\left.\left.F+0[\epsilon]^{k+1} / . \lambda \rightarrow 1\right]\right]\right]$
"Define" Code

Video and more: http://www.math.toronto.edu/~drorbn/Talks/CRM-1907, http://www.math.toronto.edu/~drorbn/Talks/UCLA-191101.

Define[lhs = rhs, ...] defines the lhs to be rhs, except that rhs is computed only once for each value of $\$ k$. Fancy Mathematica not for the faint of heart. Most readers should ignore.
SetAttributes[Define, HoldAll];
Define[def_, defs__] := (Define[def]; Define[defs];); Define[op_is $\left.=\varepsilon_{-}\right]$:=
Module[\{SD, ii, jj, kk, isp, nis, nisp, sis\},
Block[\{i, j, k\}, ReleaseHold[Hold[
 $\left.o p_{\text {nis, } \$ \mathrm{k}}\right]$];
$\mathrm{SD}\left[o p_{\text {isp }}, o p_{\{i s\}, \$ k}\right]$; SD $\left[o p_{\text {sis___ }}, o p_{\{\text {sis }\}}\right]$;
] /. \{SD \rightarrow SetDelayed,
isp \rightarrow \{is\} /. $\left\{i \rightarrow i_{-}, j \rightarrow j_{-}, k \rightarrow k_{-}\right\}$, nis \rightarrow \{is\} /. $\{i \rightarrow i i, j \rightarrow j j, k \rightarrow k k\}$, nisp \rightarrow \{is\} /. \{i \rightarrow ii_, $\left.j \rightarrow j j_{-}, k \rightarrow k k_{-}\right\}$ \}]]]

The Objects

$\omega \varepsilon \beta /$ objects
Symmetric Algebra Objects
$\mathbf{s m}_{i_{-}, j_{-} \rightarrow k_{-}}:=$

```
    \(\mathbb{E}_{\{i, j\} \rightarrow\{k\}}\left[\mathbf{b}_{k}\left(\beta_{i}+\beta_{j}\right)+\mathbf{t}_{k}\left(\tau_{i}+\tau_{j}\right)+\mathbf{a}_{k}\left(\alpha_{i}+\alpha_{j}\right)+\right.\)
        \(\left.\mathbf{y}_{k}\left(\eta_{i}+\eta_{j}\right)+\mathbf{x}_{k}\left(\xi_{i}+\xi_{j}\right)\right] ;\)
\(\mathbf{S} \Delta_{i_{-} \rightarrow j_{-}, k_{-}}:=\)
    \(\mathbb{E}_{\{i\} \rightarrow\{j, k\}}\left[\beta_{i}\left(\mathbf{b}_{j}+\mathbf{b}_{k}\right)+\tau_{i}\left(\mathbf{t}_{j}+\mathbf{t}_{k}\right)+\alpha_{i}\left(\mathbf{a}_{j}+\mathbf{a}_{k}\right)+\right.\)
        \(\left.\eta_{i}\left(\mathbf{y}_{j}+\mathbf{y}_{k}\right)+\xi_{i}\left(\mathbf{x}_{j}+\mathbf{x}_{k}\right)\right] ;\)
\(\mathbf{s S _ { i - }}:=\mathbb{E}_{\{i\} \rightarrow\{i\}}\left[-\beta_{i} \mathbf{b}_{i}-\tau_{i} \mathbf{t}_{i}-\alpha_{i} \mathbf{a}_{i}-\eta_{i} \mathbf{y}_{i}-\boldsymbol{\xi}_{i} \mathbf{x}_{i}\right] ;\)
\(\mathbf{s} \boldsymbol{\epsilon}_{i_{-}}:=\mathbb{E}_{\{ \} \rightarrow\{i\}}[\mathbf{0}] ;\)
\(\mathbf{s} \eta_{i_{-}}:=\mathbb{E}_{\{i\} \rightarrow\{ \}}[0] ;\)
\(\mathbf{S} \sigma_{i_{-} \rightarrow j_{-}}:=\mathbb{E}_{\{i\} \rightarrow\{j\}}\left[\beta_{i} \mathbf{b}_{j}+\tau_{i} \mathbf{t}_{j}+\alpha_{i} \mathbf{a}_{j}+\eta_{i} \mathbf{y}_{j}+\xi_{i} \mathbf{x}_{j}\right] ;\)
\(\mathbf{s} \Upsilon_{i_{-} \rightarrow j_{-}, k_{-}, L_{-}, m_{-}}:=\mathbb{E}_{\{i\} \rightarrow\{j, k, L, m\}}\left[\beta_{i} \mathbf{b}_{k}+\tau_{i} \mathbf{t}_{k}+\alpha_{i} \mathbf{a}_{l}+\eta_{i} \mathbf{y}_{j}+\boldsymbol{\xi}_{i} \mathbf{x}_{m}\right] ;\)
```


The CU Definitions

$$
\begin{aligned}
& c \Lambda=\left(\eta_{i}+\frac{e^{-\gamma \alpha_{i}-\epsilon \beta_{i}} \eta_{j}}{1+\gamma \epsilon \eta_{j} \xi_{i}}\right) \mathbf{y}_{k}+\left(\beta_{i}+\beta_{j}+\frac{\log \left[1+\gamma \epsilon \eta_{j} \xi_{i}\right]}{\epsilon}\right) \mathbf{b}_{k}+ \\
& \left(\alpha_{i}+\alpha_{j}+\frac{\log \left[1+\gamma \in \eta_{j} \xi_{i}\right]}{\gamma}\right) a_{k}+\left(\frac{e^{-\gamma \alpha_{j}-\epsilon \beta_{j}} \xi_{i}}{1+\gamma \epsilon \eta_{j} \xi_{i}}+\xi_{j}\right) x_{k} ; \\
& \text { Define }\left[\mathrm{cm}_{\mathrm{i}, \mathrm{j} \rightarrow \mathrm{k}}=\mathbb{E}_{\{\mathrm{i}, \mathrm{j}\} \rightarrow\{\mathrm{k}\}}[\mathrm{c} \Lambda]\right] \\
& \text { Define }\left[\mathbf{c} \sigma_{i \rightarrow j}=\mathbf{s} \sigma_{i, j} / . \tau_{i} \rightarrow 0, \mathbf{c} \epsilon_{i}=\mathbf{s} \epsilon_{i}, \mathbf{c} \eta_{i}=\mathbf{s} \eta_{i}\right. \text {, } \\
& \mathbf{C} \Delta_{i \rightarrow j}, k=S \Delta_{i \rightarrow j}, k, \\
& \left.\mathbf{c S} \mathbf{S}_{\mathbf{i}}=\mathbf{s S _ { i }} / / \mathbf{s} \Upsilon_{i \rightarrow 1,2,3,4} / / \mathrm{cm}_{4,3 \rightarrow \mathrm{i}} / / \mathrm{cm}_{\mathrm{i}, 2 \rightarrow \mathrm{i}} / / \mathrm{cm}_{\mathrm{i}, 1 \rightarrow \mathrm{i}}\right] \text {; }
\end{aligned}
$$

Booting Up QU
Define $\left[a \sigma_{i \rightarrow j}=\mathbb{E}_{\{i\} \rightarrow\{j\}}\left[a_{j} \alpha_{i}+x_{j} \xi_{i}\right]\right.$,
$\left.b \sigma_{i \rightarrow j}=\mathbb{E}_{\{i\} \rightarrow\{j\}}\left[b_{j} \beta_{i}+y_{j} \eta_{i}\right]\right]$
Define $\left[\mathrm{am}_{\mathrm{i}, \mathrm{j} \rightarrow \mathrm{k}}=\mathbb{E}_{\{\mathrm{i}, \mathrm{j}\} \rightarrow\{\mathrm{k}\}}\left[\left(\alpha_{\mathrm{i}}+\alpha_{\mathrm{j}}\right) \mathrm{a}_{\mathrm{k}}+\left(\mathcal{B}_{\mathrm{j}}^{-1} \xi_{\mathrm{i}}+\xi_{\mathrm{j}}\right) \mathrm{x}_{\mathrm{k}}\right]\right.$,
$\left.\mathrm{bm}_{\mathrm{i}, \mathrm{j} \rightarrow \mathrm{k}}=\mathbb{E}_{\{\mathrm{i}, \mathrm{j}\} \rightarrow\{\mathrm{k}\}}\left[\left(\beta_{\mathrm{i}}+\beta_{\mathrm{j}}\right) \mathrm{b}_{\mathrm{k}}+\left(\eta_{\mathrm{i}}+\mathbb{e}^{-\epsilon \beta_{\mathrm{i}}} \eta_{\mathrm{j}}\right) \mathbf{y}_{\mathrm{k}}\right]\right]$
$\operatorname{Define}\left[R_{i, j}=\mathbb{E}_{\{ \} \rightarrow\{i, j\}}\left[\hbar a_{j} b_{i}+\sum_{k=1}^{\$ k+1} \frac{\left(1-e^{\gamma \in \hbar}\right)^{k}\left(\hbar y_{i} x_{j}\right)^{k}}{k\left(1-e^{k \gamma \in \hbar}\right)}\right]\right.$,
$\bar{R}_{i, j}=C F @ \mathbb{E}_{\{ \} \rightarrow\{i, j\}}\left[-\hbar a_{j} b_{i},-\hbar x_{j} y_{i} / B_{i}\right.$,
$1+\mathbf{I f}\left[\$ k=0,0,\left(\bar{R}_{\{i, j\}, \$ k-1}\right)_{\$ k}[3]-\right.$ $\left(\left(\left(\bar{R}_{\{i, j\}, \theta)}\right)_{\$ k} R_{1,2}\left(\bar{R}_{\{3,4\}, \$ k-1}\right)_{\$ k}\right) / /\left(b m_{i, 1 \rightarrow i} a m_{j, 2 \rightarrow j}\right) / /\right.$
$\left.\left.\left.\left(b m_{i, 3 \rightarrow i} a m_{j, 4 \rightarrow j}\right)\right)[3]\right]\right]$,
$P_{i, j}=\mathbb{E}_{\{i, j\} \rightarrow\{ \}}\left[\beta_{i} \alpha_{j} / \hbar, \eta_{i} \xi_{j} / \hbar\right.$,
$1+\operatorname{If}\left[\$ k=0,0,\left(P_{\{i, j\}, \$ k-1}\right)_{\$ k}[3]-\right.$
$\left.\left.\left.\left(R_{1,2} / /\left(\left(P_{\{1, j\}, 0}\right)_{\$ k}\left(P_{\{i, 2\}, \$ k-1}\right)_{\$ k}\right)\right)[3]\right]\right]\right]$

Define[aS ${ }_{i}=\left(a \sigma_{i \rightarrow 2} \bar{R}_{1, i}\right) / / P_{1,2}$,

$$
\overline{a S}_{i}=\mathbb{E}_{\{i\} \rightarrow\{i\}}\left[-a_{i} \alpha_{i},-x_{i} \mathscr{H}_{i} \xi_{i},\right.
$$

$$
1+\operatorname{If}\left[\$ \mathrm{k}=0,0, \quad\left(\overline{\mathrm{aS}}_{\{\mathrm{i}\}}\right\}, \$ \mathrm{k}-1\right)_{\$ k}[3]-
$$

$$
\left.\left.\left.\left(\left(\overline{\mathrm{as}}_{\{\mathrm{i}\}, 0}\right)_{\$ \mathrm{k}} / / \mathrm{aS}_{\mathrm{i}} / /\left(\overline{\mathrm{as}}_{\{\mathrm{i}\}, \$ \mathrm{k}-1}\right)_{\$ \mathrm{k}}\right)[3]\right]\right]\right]
$$

```
Define[bS i = b\mp@subsup{\sigma}{i->1}{}\mp@subsup{R}{i,2}{\prime}// a\mp@subsup{S}{2}{}// P1,2,
    bS
```



```
    b\Delta (i->j,k
```

The Drinfel'd double:


```
Define [
    \(\mathrm{dm}_{\mathrm{i}, \mathrm{j} \rightarrow \mathrm{k}}=\)
    \(\left(\left(\mathrm{s} \Upsilon_{\mathrm{i} \rightarrow 4,4,1,1} / / \mathrm{a} \Delta_{1 \rightarrow 1,2} / / \mathrm{a} \Delta_{2 \rightarrow 2,3} / / \overline{\mathrm{aS}}_{3}\right)\right.\)
        \(\left.\left(s \Upsilon_{j \rightarrow-1,-1,-4,-4} / / b \Delta_{-1 \rightarrow-1,-2} / / b \Delta_{-2 \rightarrow-2,-3}\right)\right) / /\)
        \(\left.\left(P_{-1,3} P_{-3,1} \mathrm{am}_{2,-4 \rightarrow k} \mathrm{bm}_{4,-2 \rightarrow k}\right)\right]\)
```

```
Define \(\left[d \sigma_{i \rightarrow j}=a \sigma_{i \rightarrow j} b \sigma_{i \rightarrow j}\right.\),
    \(\mathbf{d} \epsilon_{i}=\mathbf{s} \epsilon_{i}, \mathbf{d} \eta_{i}=\mathbf{s} \eta_{i}\),
    \(d S_{i}=s Y_{i \rightarrow 1,1,2,2} / /\left(\overline{b S}_{1} \mathrm{aS}_{2}\right) / / \mathrm{dm}_{2,1 \rightarrow \mathrm{i}}\),
    \(\overline{d S_{i}}=s Y_{i \rightarrow 1,1,2,2} / /\left(b S_{1} \overline{\mathrm{aS}}_{2}\right) / / \mathrm{dm}_{2,1 \rightarrow i}\),
\(\left.d \Delta_{i \rightarrow j, k}=\left(b \Delta_{i \rightarrow 3,1} a \Delta_{i \rightarrow 2,4}\right) / /\left(d m_{3,4 \rightarrow k} d m_{1,2 \rightarrow j}\right)\right]\)
Define \(\left[C_{i}=\mathbb{E}_{\{ \} \rightarrow\{i\}}\left[0,0, B_{i}^{1 / 2} \mathbb{e}^{-\hbar \in a_{i} / 2}\right]_{\$ k}\right.\),
    \(\bar{C}_{i}=\mathbb{E}_{\{ \} \rightarrow\{i\}}\left[0,0, B_{i}^{-1 / 2} e^{\hbar \epsilon a_{i} / 2}\right]_{\$ k}\),
    Kink \(_{i}=\left(\mathrm{R}_{1,3} \overline{\mathrm{C}}_{2}\right) / / \mathrm{dm}_{1,2 \rightarrow 1} / / \mathrm{dm}_{1,3 \rightarrow i}\),
    \(\left.\overline{\text { Kink }}_{i}=\left(\bar{R}_{1,3} C_{2}\right) / / \mathrm{dm}_{1,2 \rightarrow 1} / / \mathrm{dm}_{1,3 \rightarrow i}\right]\)
```

Note. $t==\epsilon \mathrm{a}-\gamma \mathrm{b}$ and $b==-t / \gamma+\epsilon \mathrm{a} / \gamma$.

Define $\left[b 2 t_{i}=\mathbb{E}_{\{i\} \rightarrow\{i\}}\left[\alpha_{i} a_{i}+\beta_{i}\left(\epsilon a_{i}-t_{i}\right) / \gamma+\xi_{i} \mathbf{x}_{i}+\eta_{i} \mathbf{y}_{i}\right]\right.$,
$\left.t 2 b_{i}=\mathbb{E}_{\{i\} \rightarrow\{i\}}\left[\alpha_{i} a_{i}+\tau_{i}\left(\epsilon a_{i}-\gamma b_{i}\right)+\xi_{i} \mathbf{x}_{i}+\eta_{i} \mathbf{y}_{i}\right]\right]$

The Knot Tensors

```
Define[kR i,j = R i,j // (b2t i b2t j) /. t ti|j t t,
```



```
    km
        b2t k /. { th l t, T
    kCi}=\mp@subsup{C}{i}{\prime}//b2\mp@subsup{t}{i}{}/. T Ti T T,
```



```
    kKinki}=\mp@subsup{K}{ink}{i
    \mp@subsup{\overline{kKink}}{i}{}=\mp@subsup{\overline{Kink}}{i}{}//b2\mp@subsup{t}{i}{\prime}/.{\mp@subsup{t}{i}{}->t,}\mp@subsup{\textrm{T}}{\textrm{i}}{\prime}->\textrm{T}}
```

Some of the Atoms.
$\omega \varepsilon \beta /$ atoms
With $\mathcal{A}_{i}:=\mathbb{C}^{\alpha_{i}}$ and $B_{i}=\mathbb{e}^{-b_{i}}$,

```
PP_:= Identity; $k = 1; \hbar = \gamma=1;
Column[
    (#) (& = ToExpression[#];
            Normal@Simplify[\varepsilon\llbracket1\rrbracket + &\llbracket2\rrbracket + Log@&\llbracket3\])) & /@
    {"dmi,j->k", "d\mp@subsup{\Delta}{i->j,k}{}", "dS i", " (Ri,j", "P(i,j"}]
```

Video and more: http://www.math.toronto.edu/~drorbn/Talks/CRM-1907, http://www.math.toronto.edu/~drorbn/Talks/UCLA-191101.

```
\(\mathrm{dm}_{\mathrm{i}, \mathbf{j} \rightarrow \mathrm{k}} \rightarrow \mathbf{a}_{\mathrm{k}}\left(\alpha_{\mathbf{i}}+\alpha_{\mathbf{j}}\right)+\mathbf{b}_{\mathrm{k}}\left(\beta_{\mathbf{i}}+\beta_{\mathbf{j}}\right)+\mathbf{y}_{\mathrm{k}} \eta_{\mathbf{i}}+\frac{\mathbf{y}_{\mathbf{k}} \eta_{\mathbf{j}}}{\mathscr{A}_{\mathbf{i}}}+\frac{\mathbf{x}_{\mathbf{k}} \xi_{\mathbf{i}}}{\mathcal{A}_{\mathbf{j}}}+\eta_{\mathbf{j}} \xi_{\mathbf{i}}-\)
```



```
        \(\mathcal{F}_{\mathbf{i}} \xi_{\mathrm{i}}\left(\mathbf{x}_{\mathrm{k}}\left(-4 \beta_{\mathbf{j}}+2\left(1-3 \mathrm{~B}_{\mathrm{k}}\right) \eta_{\mathrm{j}} \xi_{\mathrm{i}}\right)+\right.\)
            \(\left.\left.\mathcal{F}_{\mathrm{j}} \eta_{\mathrm{j}}\left(4 \mathrm{a}_{\mathrm{k}} \mathrm{B}_{\mathrm{k}}+\left(1-4 \mathrm{~B}_{\mathrm{k}}+3 \mathrm{~B}_{\mathrm{k}}^{2}\right) \eta_{\mathrm{j}} \xi_{\mathrm{i}}\right)\right)\right)+\mathrm{x}_{\mathrm{k}} \xi_{\mathrm{j}}\)
\(\mathrm{d} \triangle_{i \rightarrow j, k} \rightarrow \mathrm{a}_{\mathrm{j}} \alpha_{\mathrm{i}}+\mathrm{a}_{\mathrm{k}} \alpha_{\mathrm{i}}+\mathrm{b}_{\mathrm{j}} \beta_{\mathrm{i}}+\mathrm{b}_{\mathrm{k}} \beta_{\mathrm{i}}+\mathrm{y}_{\mathrm{j}} \eta_{\mathrm{i}}+\mathrm{B}_{\mathrm{j}} \mathrm{y}_{\mathrm{k}} \eta_{\mathrm{i}}+\)
    \(\mathbf{x}_{\mathbf{j}} \xi_{\mathbf{i}}+\mathbf{x}_{\mathrm{k}} \xi_{\mathrm{i}}+\frac{1}{2} \in\left(\mathrm{~B}_{\mathrm{j}} \mathrm{y}_{\mathrm{j}} \mathrm{y}_{\mathrm{k}} \eta_{\mathrm{i}}^{2}+\mathbf{x}_{\mathrm{k}} \xi_{\mathrm{i}}\left(-2 \mathrm{a}_{\mathrm{j}}+\mathbf{x}_{\mathrm{j}} \xi_{\mathrm{i}}\right)\right)\)
\(d S_{i} \rightarrow-a_{i} \alpha_{i}-b_{i} \beta_{i}-\frac{\mathcal{A}_{\mathbf{i}}\left(y_{i} \eta_{i}+\left(-\eta_{i}+B_{i}\left(x_{i}+\eta_{\mathbf{i}}\right)\right) \xi_{\mathbf{i}}\right)}{B_{i}}-\)
    \(\frac{1}{4 \mathrm{~B}_{\mathrm{i}}^{2}} \in \mathcal{A}_{\mathrm{i}}\left(\mathcal{A}_{\mathrm{i}} \eta_{\mathrm{i}}^{2}\left(2 \mathrm{y}_{\mathrm{i}}^{2}-6 \mathrm{y}_{\mathrm{i}} \xi_{\mathrm{i}}+3 \xi_{\mathrm{i}}^{2}\right)+\mathrm{B}_{\mathrm{i}}^{2} \xi_{\mathrm{i}}\left(4 \mathrm{a}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}+2 \mathrm{x}_{\mathrm{i}}^{2} \mathcal{A}_{\mathrm{i}} \xi_{\mathrm{i}}+\right.\right.\)
        \(\left.2 x_{i}\left(2 \beta_{i}+\mathcal{A}_{\mathbf{i}} \eta_{i} \xi_{i}\right)+\eta_{i}\left(-4+4 \beta_{i}+\mathcal{A}_{i} \eta_{i} \xi_{i}\right)\right)+\)
            \(2 \mathrm{~B}_{\mathrm{i}} \eta_{\mathrm{i}}\left(\mathbf{y}_{\mathbf{i}}\left(-2+2 \beta_{\mathbf{i}}+2 \mathbf{x}_{\mathbf{i}} \mathcal{A}_{\mathbf{i}} \xi_{\mathbf{i}}+\mathcal{A}_{\mathbf{i}} \eta_{\mathbf{i}} \xi_{\mathbf{i}}\right)-\right.\)
        \(\left.\left.\xi_{i}\left(-2+2 a_{i}+2 \beta_{i}+3 x_{i} \mathcal{F}_{\mathbf{i}} \xi_{\mathbf{i}}+2 \mathcal{F}_{\mathbf{i}} \eta_{\mathbf{i}} \xi_{i}\right)\right)\right)\)
\(R_{i, j} \rightarrow a_{j} b_{i}+x_{j} y_{i}-\frac{1}{4} \in x_{j}^{2} y_{i}^{2}\)
\(P_{i, j} \rightarrow \alpha_{j} \beta_{i}+\eta_{i} \xi_{j}+\frac{1}{4} \in \eta_{i}^{2} \xi_{j}^{2}\)
```


A Quantum Algebra Example.

$\omega \varepsilon \beta / q a$ Proto-Proposition ${ }^{\dagger 0}$ (with Jesse Frohlich and Roland van der Veen, near [Ma, Proposition 1.7.3]). Let H be a finite dimensional Hopf algebra and let $U=H^{* c o p} \otimes H$ be its Drinfel'd double, with R-matrix $R \in H^{*} \otimes H \subset U \otimes U$. Write $R^{\dagger 1}=\sum \rho_{a} \otimes r_{a}$, and let $\langle\cdot \mid \cdot\rangle: H^{*} \otimes H \rightarrow \mathbb{F}$ be the duality pairing. Then the functional $\int \in U^{*}$ defined by

$$
\int \phi \otimes x:=\sum\left\langle\phi \rho_{a}^{\dagger 2} \mid x r_{a}^{\dagger 3}\right\rangle
$$

is a right ${ }^{\dagger 4}$ integral in U^{*}. (Meaning $\Delta_{j k}^{i} / / \int_{j}=\int_{i} / / \epsilon_{k}$ in $\operatorname{Hom}\left(U^{\otimes i\}} \rightarrow U^{\otimes\{k\rangle}\right)$).
$\dagger 0 \mathrm{~A}$ "proto-proposition" is something that will become a proposition once you figure out the correct statement. $\dagger 1$ Or did we want it to be $R / / S_{1}^{2}$? Or $R / / S_{2}^{2}$? $\dagger 2$ Or is it $\rho_{a} \phi ? \dagger 3$ Or is it $r_{a} x$? $\dagger 4$ Or maybe "left"?
inp $=\mathbb{E}_{\{ \} \rightarrow\{1\}}\left[3 a_{1} b_{1}, 5 \mathrm{x}_{1} \mathrm{y}_{1}, 1\right] / / \mathrm{dm}_{\mathrm{i}, 1 \rightarrow \mathrm{i}} ;$
Table[
HL@TrueQ[
(inp // (s $\left.\left.\Upsilon_{i \rightarrow 1,1,2,2} R R\right) / / B M / / A M / / P_{1,2}\right) d \epsilon_{j} \equiv$
(inp // $\left.\left.\Delta \Delta / /\left(s \Upsilon_{i \rightarrow 1,1,2,2} R R\right) / / B M / / A M / / P_{1,2}\right)\right]$,
$\left\{\Delta \Delta,\left\{d \Delta_{i \rightarrow i}, j, d \Delta_{i \rightarrow j, i}\right\}\right\},\left\{A M,\left\{\mathrm{dm}_{2,4 \rightarrow 2}, \mathrm{dm}_{4,2 \rightarrow 2}\right\}\right\}$,
$\left\{B M,\left\{\mathrm{dm}_{1,3 \rightarrow 1}, \mathrm{dm}_{3,1 \rightarrow 1}\right\}\right\}$,
$\left\{R R,\left\{R_{3,4}, R_{3,4} / / d S_{3} / / d S_{3}, R_{3,4} / / d S_{4} / / d S_{4}\right\}\right\}$
] // MatrixForm
$\left(\begin{array}{ll}\binom{\text { False False False }}{\text { False False False }} & \binom{\text { False False True }}{\text { False False False }} \\ \left(\begin{array}{lll}\text { False False False } \\ \text { False } & \text { False } & \text { True }\end{array}\right) & \binom{\text { False False False }}{\text { False False False }}\end{array}\right)$

$\mathbb{E}_{\{ \} \rightarrow\{1\}}\left[0,0, \frac{B}{1-B+B^{2}}+\right.$
$\frac{B\left(-B+2 B^{2}+2 B^{4}+a\left(-1+B-B^{3}+B^{4}\right)-2 x y-B^{3}(3+2 x y)\right) \in}{\left(1-B+B^{2}\right)^{3}}+$
$\frac{1}{2\left(1-B+B^{2}\right)^{5}}$
$B\left(4 B^{8}+a^{2}\left(1-B+B^{2}\right)^{2}\left(1+B-6 B^{2}+B^{3}+B^{4}\right)+6 B^{5} x^{2} y^{2}+\right.$
$2 x y(-2+3 x y)-B^{7}(11+4 x y)-2 B^{2}\left(1+6 x^{2} y^{2}\right)-$
$2 B^{4}\left(1-2 x y+6 x^{2} y^{2}\right)+B\left(1+8 x y+6 x^{2} y^{2}\right)+$
$B^{6}\left(6+8 x y+6 x^{2} y^{2}\right)+B^{3}\left(4+4 x y+30 x^{2} y^{2}\right)+$ $2 a\left(1-B+B^{2}\right)\left(2 B^{6}+2 x y+8 B^{3}(1+x y)-5 B^{2}(1+2 x y)-\right.$ $\left.\left.\left.2 B^{5}(1+2 x y)-B^{4}(7+2 x y)+B(2+4 x y)\right)\right) \epsilon^{2}+O[\epsilon]^{3}\right]$

References.

[BG] D. Bar-Natan and S. Garoufalidis, On the Melvin-MortonRozansky conjecture, Invent. Math. 125 (1996) 103-133.
[BV] D. Bar-Natan and R. van der Veen, A Polynomial Time Knot Polynomial, arXiv:1708.04853.
[Fa] L. Faddeev, Modular Double of a Quantum Group, arXiv: math/9912078.
[GR] S. Garoufalidis and L. Rozansky, The Loop Expansion of the Kontsevich Integral, the Null-Move, and S-Equivalence, arXiv:math.GT/0003187.
[LT] R. J. Lipton and R. E. Tarjan, A Separator Theorem for Planar Graphs, SIAM J. Appl. Math. 36-2 (1979) 177-189.
[Ma] S. Majid, Foundations of Quantum Group Theory, Cambridge University Press, 1995.
[MM] P. M. Melvin and H. R. Morton, The coloured Jones function, Commun. Math. Phys. 169 (1995) 501-520.
[Ov] A. Overbay, Perturbative Expansion of the Colored Jones Polynomial, University of North Carolina PhD thesis, $\omega \varepsilon \beta / \mathrm{Ov}$.
[Qu] C. Quesne, Jackson's q-Exponential as the Exponential of a Series, arXiv:math-ph/0305003.
[Ro1] L. Rozansky, A contribution of the trivial flat connection to the Jones polynomial and Witten's invariant of 3d manifolds, I, Comm. Math. Phys. 175-2 (1996) 275-296, arXiv: hep-th/9401061.
[Ro2] L. Rozansky, The Universal R-Matrix, Burau Representation and the Melvin-Morton Expansion of the Colored Jones Polynomial, Adv. Math. 134-1 (1998) 1-31, arXiv:qalg/9604005.
[Ro3] L. Rozansky, A Universal U(1)-RCC Invariant of Links and Rationality Conjecture, arXiv:math/0201139.
[Za] D. Zagier, The Dilogarithm Function, in Cartier, Moussa, Julia, and Vanhove (eds) Frontiers in Number Theory, Physics, and Geometry II. Springer, Berlin, Heidelberg, and $\omega \varepsilon \beta / \mathrm{Za}$.

Video and more: http://www.math.toronto.edu/~drorbn/Talks/CRM-1907, http://www.math.toronto.edu/~drorbn/Talks/UCLA-191101.

KiW 43 Abstract ($\omega \varepsilon \beta /$ kiw). Whether or not you like the formulas on this page, they describe the strongest truly computable knot invariant we know.
Observations. - Separates the Rolfsen table; does better than

Khovanov plus HOMFLY-PT on knots with up to 12 crossings (not tested beyond). - The degrees are bounded by the genus! - ρ_{1} vanishes for amphichiral knots. - Has a chance of detecting non-ribbonness ($\omega \varepsilon \beta / \mathrm{akt}$)!

| knot n_{k}^{l} Alexander's ω^{+}genus / ribbon
 diag
 $\left(\rho_{1}^{\prime}\right)^{+}$$\quad$ unknotting \# / amphi? | knot n_{k}^{l} Alexander's $\omega^{+}$$\quad$ genus / ribbon | knot n_{k}^{l} Alexander's $\omega^{+}$$\quad$ genus / ribbon \quad unknotting \# / amphi? |
| :---: | :---: | :---: |
| $\bigcirc$$0_{1}^{a}$ 1
 0
 $0 / \checkmark$
 $0 / \checkmark$ | $\because$$3_{1}^{a}$ $T-1$
 T $1 / \mathbf{x}$

 $1 / \mathbf{x}$
 | 4_{1}^{a} $3-T$ $1 / \boldsymbol{X}$
 0 $1 / \checkmark$
 $T^{4}-3 T^{3}-15 T^{2}+74 T-110$ |
| $5_{1}^{a} T^{2}-T+1$ $2 / \mathbf{X}$
 $2 T^{3}+3 T$ $2 / \boldsymbol{X}$
 $5 T^{7}-20 T^{6}+55 T^{5}-120 T^{4}+217 T^{3}-338 T^{2}+450 T-510$ | 8 (8) $5_{2}^{a} \quad 2 T-3$ $1 / \mathbf{X}$
 $5 T-4$ $1 / \mathbf{X}$
 $-10 T^{4}+120 T^{3}-487 T^{2}+1054 T-1362$ | $\begin{array}{ll} \hline 6{ }_{1}^{a} 5-2 T & 1 / V \\ T-4 & 1 / \boldsymbol{x} \\ & 14 T^{4}-16 T^{3}-293 T^{2}+1098 T-1598 \end{array}$ |
| $6_{2}^{a}-T^{2}+3 T-3$ $2 / \boldsymbol{X}$
 $T^{3}-4 T^{2}+4 T-4$ $1 / \boldsymbol{X}$
 $3 T^{8}-21 T^{7}+49 T^{6}+15 T^{5}-433 T^{4}+1543 T^{3}-3431 T^{2}+5482 T-6410$ | 6_{3}^{a} $T^{2}-3 T+5$
 0 $2 / \mathbf{X}$
 $4 T^{8}-33 T^{7}+121 T^{6}-203 T^{5}-111 T^{4}+1499 T^{3}-4210 T^{2}+7186 T-8510$ | $7_{1}^{a} T^{3}-T^{2}+T-1$ $3 / \mathbf{X}$
 $3 T^{5}+5 T^{3}+6 T$ $3 / \boldsymbol{X}$
 $7 T^{11}-28 T^{10}+77 T^{9}-168 T^{8}+322 T^{7}-560 T^{6}+891 T^{5}-1310 T^{4}+1777 T^{3}-$
 $2238 T^{2}+2604 T-2772$ |
| | $\begin{array}{ll} & 7_{3}^{a} 2 T^{2}-3 T+3 \\ -9 T^{3}+8 T^{2}-16 T+12 & 2 / \boldsymbol{X} \\ -2 / \mathbf{x} \\ -18 T^{8}+208 T^{7}-917 T^{6}+2666 T^{5}-6049 T^{4}+11283 T^{3}-17671 T^{2}+23356 T-25736 \\ \hline \end{array}$ | |
| $\begin{array}{cc} 7_{5}^{a} \quad 2 T^{2}-4 T+5 & 2 / \mathbf{X} \\ 9 T^{3}-16 T^{2}+29 T-28 & 2 / \mathbf{X} \\ -18 T^{8}+264 T^{7}-1548 T^{6}+5680 T^{5}-15107 T^{4}+31152 T^{3}-51476 T^{2}+ \\ 69252 T-76414 \end{array}$ | $\int_{6} 7_{6}^{a}-T^{2}+5 T-7 \quad 1 / \mathbf{X}$ | $7 T_{7}^{a} T^{2}-5 T+9$ $2 / \mathbf{X}$
 $8-3 T$ $1 / \boldsymbol{X}$
 $4 T^{8}-55 T^{7}+310 T^{6}-805 T^{5}+86 T^{4}+6349 T^{3}-22686 T^{2}+43610 T-53622$ |
| $\begin{array}{ll} \hline 8 \quad 7-3 T & 1 / \mathbf{X} \\ 8 T-16 & 1 / \mathbf{x} \\ & 42 T^{4}+215 T^{3}-2542 T^{2}+7562 T-10542 \end{array}$ | $\begin{array}{ll} 8_{2}^{a}-T^{3}+3 T^{2}-3 T+3 & 3 / \mathbf{x} \\ 2 T^{5}-8 T^{4}+10 T^{3}-12 T^{2}+13 T-12 & 2 / \mathbf{x} \\ 5 T^{12}-39 T^{11}+119 T^{10}-139 T^{9}-249 T^{8}+1660 T^{7}-4959 T^{6}+11131 T^{5}- \\ 20813 T^{4}+33595 T^{3}-47521 T^{2}+58988 T-63556 \end{array}$ | 8 $1 / \mathbf{8}$
 0 $9-4 T$
 $2 / \checkmark$
 |
| $\begin{array}{\|rrl} \hline(8) & 8_{4}^{a}-2 T^{2}+5 T-5 & 2 / \boldsymbol{x} \\ 3 T^{3}-8 T^{2}+6 T-4 & 2 / \boldsymbol{x} \\ 54 T^{8}-344 T^{7}+865 T^{6}-650 T^{5}-2723 T^{4}+12243 T^{3}-28461 T^{2}+45792 T-53540 \end{array}$ | $8_{5}^{a}-T^{3}+3 T^{2}-4 T+5$ $3 / \mathbf{X}$
 $-2 T^{5}+8 T^{4}-13 T^{3}+20 T^{2}-22 T+24$ $2 / \mathbf{X}$
 $5 T^{12}-39 T^{11}+128 T^{10}-182 T^{9}-274 T^{8}+2476 T^{7}-8642 T^{6}+21517 T^{5}-$
 $42924 T^{4}+71719 T^{3}-102448 T^{2}+126480 T-135628$ | $\begin{array}{cc} 8_{6}^{a}-2 T^{2}+6 T-7 & 2 / \mathbf{X} \\ 5 T^{3}-20 T^{2}+28 T-32 & 2 / \mathbf{X} \\ 38 T^{8}-216 T^{7}+112 T^{6}+2880 T^{5}-14787 T^{4}+42444 T^{3}-85415 T^{2}+ \\ 128406 T-146916 \end{array}$ |
| $\begin{array}{ll} 8_{7}^{a} T^{3}-3 T^{2}+5 T-5 & 3 / \mathbf{x} \\ -T^{5}+4 T^{4}-10 T^{3}+12 T^{2}-13 T+12 & 1 / \boldsymbol{x} \\ 8 T^{12}-75 T^{11}+343 T^{10}-979 T^{9}+1821 T^{8}-1782 T^{7}-1623 T^{6}+12083 T^{5}- \\ 33001 T^{4}+64599 T^{3}-101194 T^{2}+131404 T-143216 \end{array}$ | $\begin{array}{lc} 8 & 8 / \mathbf{8} \\ 8 & 2 T^{2}-6 T+9 \\ -T^{3}+4 T^{2}-12 T+16 & 2 / \mathbf{x} \\ 62 T^{8}-504 T^{7}+1736 T^{6}-2408 T^{5}-3717 T^{4}+26492 T^{3}-68493 T^{2}+ \\ \hline \end{array}$ | $8 a$
 0 $-T^{3}+3 T^{2}-5 T+7$
 0 $1 / V$
 $9 T^{12}-87 T^{11}+417 T^{10}-1305 T^{9}+2858 T^{8}-4134 T^{7}+2114 T^{6}+8285 T^{5}-$
 $31925 T^{4}+69235 T^{3}-112773 T^{2}+148508 T-162396$ |
| $\begin{aligned} & 8_{10}^{a} \quad T^{3}-3 T^{2}+6 T-7 \\ & -T^{5}+4 T^{4}-11 T^{3}+16 T^{2}-21 T+20 \\ & \hline \mathbf{x} \\ & 8 T^{12}-75 T^{11}+362 T^{10}-1122 T^{9}+2306 T^{8}-2540 T^{7}-2198 T^{6}+18817 T^{5}- \\ & 54380 T^{4}+110103 T^{3}-175694 T^{2}+230080 T-251346 \end{aligned}$ | $\begin{array}{lr} 811-2 T^{2}+7 T-9 & 2 / \mathbf{X} \\ 5 T^{3}-24 T^{2}+39 T-44 & 1 / \mathbf{X} \\ 38 T^{8}-264 T^{7}+301 T^{6}+3514 T^{5}-21716 T^{4}+68785 T^{3}-146898 T^{2}+ \\ 227828 T-263172 \end{array}$ | 8_{12}^{a} $T^{2}-7 T+13$
 0 $2 / X$
 $4 T^{8}-77 T^{7}+583 T^{6}-1991 T^{5}+987 T^{4}+17311 T^{3}-71802 T^{2}+147914 T-185846$ |
| 8)$8_{13}^{a} 2 T^{2}-7 T+11$ $2 / \boldsymbol{X}$
 $-T^{3}+4 T^{2}-14 T+20$ $1 / \boldsymbol{x}$
 $62 T^{8}-592 T^{7}+2351 T^{6}-3918 T^{5}-4235 T^{4}+40079 T^{3}-111533 T^{2}+$
 $191500 T-227432$ | $8 a$ $2 / \boldsymbol{X}$
 $5 T^{3}-28 T^{2}+57 T-68$ $1 / \boldsymbol{x}$
 $38 T^{8}-312 T^{7}+444 T^{6}+5096 T^{5}-34777 T^{4}+116368 T^{3}-255750 T^{2}+$
 4 | $8 a$ $3 T^{2}-8 T+11$
 15 $2 / \boldsymbol{X}$
 $21 T^{3}-64 T^{2}+120 T-140$ $2 / \boldsymbol{X}$
 $-123 T^{8}+2128 T^{7}-15241 T^{6}+66120 T^{5}-199999 T^{4}+451912 T^{3}-$ |
| $8_{16}^{a} \quad T^{3}-4 T^{2}+8 T-9$ $3 / \boldsymbol{X}$
 $T^{5}-6 T^{4}+17 T^{3}-28 T^{2}+35 T-36$ $2 / \boldsymbol{X}$
 $8 T^{12}-100 T^{11}+598 T^{10}-2205 T^{9}+5292 T^{8}-7164 T^{7}-2380 T^{6}+43100 T^{5}-$
 $137314 T^{4}+291750 T^{3}-478742 T^{2}+636488 T-698666$ | | $8_{18}^{a} \quad-T^{3}+5 T^{2}-10 T+13$ $3 / \mathbf{X}$
 0 $2 / \checkmark$
 $9 T^{12}-145 T^{11}+1075 T^{10}-4842 T^{9}+14504 T^{8}-28560 T^{7}+27957 T^{6}+$
 $35195 T^{5}-225204 T^{4}+573797 T^{3}-1021641 T^{2}+1411484 T-1567262$ |
| $\begin{array}{lr} 8_{19}^{n} T^{3}-T^{2}+1 & 3 / \mathbf{X} \\ -3 T^{5}-4 T^{2}-3 T & 3 / \mathbf{x} \\ 7 T^{11}-19 T^{10}+6 T^{9}+48 T^{8}-52 T^{7}-91 T^{6}+211 T^{5}+16 T^{4}-431 T^{3}+289 T^{2}+ \\ 536 T-1060 \end{array}$ | 80 $T^{2}-2 T+3$
 $4 T-4$ $2 / \boldsymbol{V}$
 $4 T^{8}-22 T^{7}+66 T^{6}-124 T^{5}+52 T^{4}+478 T^{3}-1652 T^{2}+3014 T-3640$ | |

Video and more: http://www.math.toronto.edu/~drorbn/Talks/CRM-1907, http://www.math.toronto.edu/~drorbn/Talks/UCLA-191101.

Abstract. A major part of "quantum topology" is the defini- The (fake) moduli of Lie algetion and computation of various knot invariants by carrying out bras on V, a quadratic variety in computations in quantum groups. Traditionally these computa- $\left(V^{*}\right)^{\otimes 2} \otimes V$ is on the right. We cations are carried out "in a representation", but this is very slow: re about $s l_{17}^{k}:=s l_{17}^{\epsilon} /\left(\epsilon^{k+1}=0\right)$.
 one has to use tensor powers of these representations, and the Solvable Approximation. In $g l_{n}$, half is enough! Indeed $g l_{n} \oplus$ dimensions of powers grow exponentially fast.
In my talk, I will describe a direct method for carrying out such computations without having to choose a representation and explain why in many ways the results are better and faster. The two key points we use are a technique for composing infinite-order "perturbed Gaussian" differential operators, and the little-known fact that every semi-simple Lie algebra can be approximated by solvable Lie algebras, where computations are easier.
KiW 43 Abstract ($\omega \varepsilon \beta /$ kiw). Whether or not you like the formulas on this page, they describe the strongest truly computable knot invariant we know.
(experimental analysis @ $\omega \varepsilon \beta /$ kiw) Knotted Candies $\omega \varepsilon \beta / \mathrm{kc}$

PBW Bases. The U 's we care about always have "Poincaré-Birkhoff-Witt" bases; there is some finite set $B=\{y, x, \ldots\}$ of 'generators" and isomorphisms $\mathbb{O}_{y, x, \ldots}: \hat{\mathcal{S}}(B) \rightarrow U$ defined by "ordering monomials" to some fixed y, x, \ldots order. The quantum group portfolio now becomes a "symmetric algebra" portfolio, or a "power series" portfolio.

$$
\begin{array}{|lc|}
\hline \begin{array}{c}
\text { Operations are Objects. } \\
B^{*}:=\left\{z_{i}^{*}=\zeta_{i}: z_{i} \in B\right\},
\end{array} & f \in \operatorname{Hom}_{\mathbb{Q}}\left(S(B) \rightarrow S\left(B^{\prime}\right)\right) \\
\left\langle z_{i}^{m}, \zeta_{i}^{n}\right\rangle=\delta_{m n} n!, & \| \\
\left\langle\prod z_{i}^{m_{i}}, \prod \zeta_{i}^{n_{i}}\right\rangle=\prod \delta_{m_{i} n_{i}} n_{i}!, & S(B)^{*} \otimes S\left(B^{\prime}\right) \\
\text { in general, for } f \in \mathcal{S}\left(z_{i}\right) \text { and } g \in \mathcal{S}\left(\zeta_{i}\right), & S\left(B^{*}\right) \otimes S\left(B^{\prime}\right) \\
\langle f, g\rangle=\left.f\left(\partial_{\zeta_{i}}\right) g\right|_{\zeta_{i}=0}=\left.g\left(\partial_{z_{i}}\right) f\right|_{z_{i}=0} . & \| \\
\text { The Composition Law. If } & S\left(B^{*} \sqcup B^{\prime}\right) \\
\text { II }
\end{array}
$$

$C, ~, C$ The Yang-Baxter Technique. Given an al$a_{n}=\mathcal{D}(\nabla, b, \delta):$

Now define $g l_{n}^{\epsilon}:=\mathcal{D}(\nabla, b, \epsilon \delta)$. Schematically, this is $[\nabla, \nabla]=\nabla$, $[\triangle, \triangle]=\epsilon \Delta$, and $[\nabla, \triangle]=\Delta+\epsilon \nabla$. The same process works for all semi-simple Lie algebras, and at $\epsilon^{k+1}=0$ always yields a solvable Lie algebra.
$C U$ and $Q U$. Starting from $s l_{2}$, get $C U_{\epsilon}=\langle y, a, x, t\rangle /([t,-]=$ $0,[a, y]=-y,[a, x]=x,[x, y]=2 \epsilon a-t)$. Quantize using standard tools (I'm sorry) and get $Q U_{\epsilon}=\langle y, a, x, t\rangle /([t,-]=$ $\left.0,[a, y]=-y,[a, x]=x, x y-\mathbb{e}^{\hbar \epsilon} y x=\left(1-T \mathbb{e}^{-2 \hbar \epsilon a}\right) / \hbar\right)$.
 gebra U (typically $\hat{\mathcal{U}}(\mathrm{g})$ or $\hat{\mathcal{U}}_{q}(\mathrm{~g})$) and elements

1 form

$$
\begin{gathered}
R=\sum a_{i} \otimes b_{i} \in U \otimes U \quad \text { and } \quad C \in U, \\
\mathrm{rm} \\
Z=\sum_{i, j, k} C a_{i} b_{j} a_{k} C^{2} b_{i} a_{j} b_{k} C .
\end{gathered}
$$

Problem. Extract information from Z.
The Dogma. Use representation theory. In principle finite, but slow.

A Knot Theory Portfolio.

- Has operations $\sqcup, m_{k}^{i j}, \Delta_{j k}^{i}, S_{i}$.
- All tangloids are generated by $R^{ \pm 1}$ and $C^{ \pm 1}$ (so "easy" to produce invariants).
- Makes some knot properties ("genus", "ribbon") become "definable".

A "Quantum Group" Portfolio consists of a vector space U

3. The "archetypal coproduct $\Delta_{j k}^{i}: \mathcal{S}\left(z_{i}\right) \rightarrow \mathcal{S}\left(z_{j}, z_{k}\right)$ ", given by $z_{i} \rightarrow z_{j}+z_{k}$ or $\Delta z=z \otimes 1+1 \otimes z$, has $\tilde{\Delta}=\mathbb{e}^{\left(z_{j}+z_{k}\right) \zeta_{i}}$.
4. R-matrices tend to have terms of the form $\mathbb{E}_{q}^{\hbar y_{1} x_{2}} \in \mathcal{U}_{q} \otimes \mathcal{U}_{q}$. The "baby R-matrix" is $\tilde{R}=\mathbb{e}^{\hbar y x} \in \mathcal{S}(y, x)$.
5. The "Weyl form of the canonical commutation relations" states that if $[y, x]=t I$ then $\mathbb{e}^{\xi x} \mathbb{e}^{\eta y}=\mathbb{e}^{\eta y} \mathbb{C}^{\xi x} \mathbb{e}^{-\eta \xi t}$. So with $S W_{x y} \int \mathcal{S}(y, x) \xrightarrow[\mathcal{O}_{y x}]{\stackrel{O_{x y}}{\longrightarrow}} \mathcal{U}(y, x)$ we have $\widetilde{S W}_{x y}=\mathbb{e}^{\eta y+\xi x-\eta \xi t}$.

The Real Thing. In the algebra $Q U_{\epsilon}$, over $\mathbb{Q} \llbracket \hbar \rrbracket$ using the yaxt Real Zipping is a minor mess, and is done in two phases: order, $T=\mathbb{e}^{\hbar t}, \bar{T}=T^{-1}, \mathcal{A}=\mathbb{e}^{\alpha}$, and $\overline{\mathcal{A}}=\mathcal{A}^{-1}$, we have

| | τa-phase | ξy-phase | | |
| :---: | :--- | :---: | :--- | :--- |
| ζ-like variables | τ | a | ξ | y |
| z-like variables | t | α | x | η |

in $\mathcal{S}\left(B_{i}, B_{j}\right)$, and in $\mathcal{S}\left(B_{1}^{*}, B_{2}^{*}, B\right)$ we have

$$
\tilde{m}=\mathbb{e}^{\left(\alpha_{1}+\alpha_{2}\right) a+\eta_{2} \xi_{1}(1-T) / \hbar+\left(\xi_{1} \overline{\mathcal{A}}_{2}+\xi_{2}\right) x+\left(\eta_{1}+\eta_{2} \overline{\mathcal{A}}_{1}\right) y}\left(1+\epsilon \lambda+O\left(\epsilon^{2}\right)\right),
$$

where $\lambda=2 a \eta_{2} \xi_{1} T+\eta_{2}^{2} \xi_{1}^{2}\left(3 T^{2}-4 T+1\right) / 4 \hbar-\eta_{2} \xi_{1}^{2}(3 T-1) x \overline{\mathcal{A}}_{2} / 2$ $-\eta_{2}^{2} \xi_{1}(3 T-1) y \overline{\mathcal{A}}_{1} / 2+\eta_{2} \xi_{1} x y \hbar \overline{\mathcal{A}}_{1} \overline{\mathcal{A}}_{2}$.
Finally,
$\tilde{\Delta}=\mathbb{e}^{\tau\left(t_{1}+t_{1}\right)+\eta\left(y_{1}+T_{1} y_{2}\right)+\alpha\left(a_{1}+a_{2}\right)+\xi\left(x_{1}+x_{2}\right)}(1+O(\epsilon)) \in \mathcal{S}\left(B^{*}, B_{1}, B_{2}\right)$, and $\tilde{S}=\mathbb{e}^{-\tau t-\alpha a-\eta \xi(1-\bar{T}) \mathcal{A} / \hbar-\bar{T} \eta y \mathcal{A}-\xi x \mathcal{A}}(1+O(\epsilon)) \in \mathcal{S}\left(B^{*}, B\right)$.

The Zipping Issue. (between unbound and bound lies half-zipped).
 Zipping. If $P\left(\zeta^{j}, z_{i}\right)$ is a polynomial, or whenever otherwise convergent, set $\left\langle P\left(\zeta^{j}, z_{i}\right)\right\rangle_{\left(\zeta^{j}\right)}=\left.P\left(\partial_{z_{j}}, z_{i}\right)\right|_{z_{i}=0}$. (E.g., if $P=$ $\sum a_{n m} \zeta^{n} z^{m}$ then $\left.\langle P\rangle_{\zeta}=\left.\sum a_{n m} \partial_{z}^{n} z^{m}\right|_{z=0}=\sum n!a_{n n}\right)$.

The Zipping / Contraction Theorem. If $P=P\left(\zeta^{j}, z_{i}\right)$ has a finite ζ-degree and the y 's and the q 's are "small" then

$$
\left\langle P \mathbb{e}^{c+\eta^{i} z_{i}+y_{j} \zeta^{j}+q_{j}^{i} z_{i} \zeta^{j}}\right\rangle_{\left(\zeta^{j}\right)}=\operatorname{det}(\tilde{q}) \mathbb{e}^{c+\eta^{i} \tilde{q}_{i}^{k} y_{k}}\left\langle P \left\lvert\, \begin{array}{c}
\zeta^{j} \rightarrow \zeta^{j}+\eta^{i} \tilde{q}_{i}^{j} \\
z_{i} \rightarrow \tilde{q}_{i}^{k}\left(z_{k}+y_{k}\right)
\end{array}\right.\right\rangle_{\left(\zeta^{j}\right)}
$$

where \tilde{q} is the inverse matrix of $1-q:\left(\delta_{j}^{i}-q_{j}^{i}\right) \tilde{q}_{k}^{j}=\delta_{k}^{i}$.
Exponential Reservoirs. The true Hilbert hotel is exp! Remove one x from an "exponential reservoir" of x 's and you are left with the same exponential reservoir:
$\mathbb{e}^{x}=\left[\ldots+\frac{x x x x x x}{120}+\ldots\right] \xrightarrow{\partial_{x}}\left[\ldots+\frac{x x x x x x}{120}+\ldots\right]=\left(\mathbb{e}^{x}\right)^{\prime}=\mathbb{e}^{x}$, and if you let each element choose left or right, you get twice the same reservoir:
$\mathbb{C}^{x} \xrightarrow{x \rightarrow x_{l}+x_{r}} \mathbb{C}^{x_{l}+x_{r}}=\mathbb{E}^{x_{l}} \mathbb{C}^{x_{r}}$.
A Graphical Proof. Glue top to bottom on the right, in all possible ways. Several scenarios occur:

1. Start at A, go through the q-machine $k \geq 0$ times, stop at B. $\operatorname{Get}\left\langle P\left(\zeta, \sum_{k \geq 0} q^{k} z\right)\right\rangle=\langle P(\zeta, \tilde{q} z)\rangle$.
2. Loop through the q-machine and swallow your own tail. Get $\exp \left(\sum q^{k} / k\right)=\exp (-\log (1-q))=\tilde{q}$.
3. ...

By the reservoir splitting principle, these scenarios contribute multiplicatively.
Implementation. $\quad\left(\mathbb{E}[Q, P]\right.$ means $\left.\mathbb{e}^{Q} P\right) \quad \omega \varepsilon \beta / Z i p$

```
Zip
    Module[{\zeta, z, zs, c, ys, \etas, qt, zrule, \zetarule},
        zs = Table[\zeta*, {\zeta, \zetas}];
        c=Q /. Alternatives @@ (\zetas Uzs) ->0;
        ys = Table[\partial\zeta (Q /. Alternatives @@ zs ->0), {\zeta, \zetas}];
        \etas=Table[\partialz (Q /. Alternatives@@ ¢s ->0), {z, zs}];
        qt = Inverse@Table[K\deltaz,\mp@subsup{\zeta}{}{*}-\mp@subsup{\partial}{z,\zeta}{}Q,{\zeta,\zetaS},{z, zs}];
        zrule = Thread[zs }->\mathrm{ qt.(zs + ys)];
        \zetarule = Thread[\zetas }->\zetas+\etas.qt]
        Simplify /@
            \mathbb{E}[c+\etas.qt.ys, Det[qt] Zip
```

Already at $\epsilon=0$ we get the best known formulas for the Alexander polynomial!
Generic Docility. A "docile perturbed Gaussian" in the variables $\left(z_{i}\right)_{i \in S}$ over the ring R is an expression of the form

$$
\mathbb{e}^{q^{i j} z_{i} z_{j}} P=\mathbb{e}^{q^{i j} z_{i} z_{j}}\left(\sum_{k \geq 0} \epsilon^{k} P_{k}\right),
$$

where all coefficients are in R and where P is a "docile series": $\operatorname{deg} P_{k} \leq 4 k$.
Our Docility. In the case of $Q U_{\epsilon}$, all invariants and operations are of the form $\mathbb{e}^{L+Q} P$, where

- L is a quadratic of the form $\sum l_{z \zeta} z \zeta$, where z runs over $\left\{t_{i}, \alpha_{i}\right\}_{i \in S}$ and ζ over $\left\{\tau_{i}, a_{i}\right\}_{i \in S}$, with integer coefficients $l_{z \zeta}$.
- Q is a quadratic of the form $\sum q_{z \zeta} z \zeta$, where z runs over $\left\{x_{i}, \eta_{i}\right\}_{i \in S}$ and ζ over $\left\{\xi_{i}, y_{i}\right\}_{i \in S}$, with coefficients $q_{z \zeta}$ in the ring R_{S} of rational functions in $\left\{T_{i}, \mathcal{A}_{i}\right\}_{i \in S}$.
- P is a docile power series in $\left\{y_{i}, a_{i}, x_{i}, \eta_{i}, \xi_{i}\right\}_{i \in S}$ with coefficients in R_{S}, and where $\operatorname{deg}\left(y_{i}, a_{i}, x_{i}, \eta_{i}, \xi_{i}\right)=(1,2,1,1,1)$.
Docililty Matters! The rank of the space of docile series to ϵ^{k} is polynomial in the number of variables $|S|$.
!!!!!
At $\epsilon^{2}=0$ we get the Rozansky-Overbay [Ro1, Ro2, Ro3, Ov] invariant, which is stronger than HOMFLY-PT polynomial and Khovanov homology taken together!
- In general, get "higher diagonals in the Melvin-MortonRozansky expansion of the coloured Jones polynomial" [MM, BNG], but why spoil something good?
[BNG] D. Bar-Natan and S. Garoufalidis, On the Melvin- References. Morton-Rozansky conjecture, Invent. Math. 125 (1996) 103-133.
[BV] D. Bar-Natan and R. van der Veen, A Polynomial Time Knot Polynomial, arXiv:1708.04853.
[Fa] L. Faddeev, Modular Double of a Quantum Group, arXiv:math/9912078.
[GR] S. Garoufalidis and L. Rozansky, The Loop Exapnsion of the Kontsevich Integral, the Null-Move, and S-Equivalence, arXiv:math.GT/0003187.
[MM] P. M. Melvin and H. R. Morton, The coloured Jones function, Commun. Math. Phys. 169 (1995) 501-520.
[Ov] A. Overbay, Perturbative Expansion of the Colored Jones Polynomial, University of North Carolina PhD thesis, $\omega \varepsilon \beta / \mathrm{Ov}$.
[Qu] C. Quesne, Jackson's q-Exponential as the Exponential of a Series, arXiv: math-ph/0305003.
Ro1] L. Rozansky, A contribution of the trivial flat connection to the Jones polynomial and Witten's invariant of 3 d manifolds, I, Comm. Math. Phys. 175-2 (1996) 275-296, arXiv:hep-th/9401061.
[Ro2] L. Rozansky, The Universal R-Matrix, Burau Representation and the Melvin-Morton Expansion of the Colored Jones Polynomial, Adv. Math. 1341 (1998) 1-31, arXiv:q-alg/9604005.
[Ro3] L. Rozansky, A Universal U(1)-RCC Invariant of Links and Rationality Conjecture, arXiv:math/0201139.
[Za] D. Zagier, The Dilogarithm Function, in Cartier, Moussa, Julia, and Vanhove (eds) Frontiers in Number Theory, Physics, and Geometry II. Springer, Berlin, Heidelberg, and $\omega \varepsilon \beta / \mathrm{Za}$.

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Ohio-1901

The Algebras H and H^{*}. Let $q=\mathbb{e}^{\hbar \epsilon \gamma}$ and set $H=$ $\langle a, x\rangle /([a, x]=\gamma x)$ with

$$
\begin{gathered}
\quad A=\mathbb{e}^{-\hbar \epsilon a}, \quad x A=q A x, \quad S_{H}(a, A, x)=\left(-a, A^{-1},-A^{-1} x\right), \\
\Delta_{H}(a, A, x)=\left(a_{1}+a_{2}, A_{1} A_{2}, x_{1}+A_{1} x_{2}\right) \\
\text { and dual } H^{*}=\langle b, y\rangle /([b, y]=-\epsilon y) \text { with } \\
B=\mathbb{e}^{-\hbar \gamma b}, \quad B y=q y B, \quad S_{H^{*}}(b, B, y)=\left(-b, B^{-1},-y B^{-1}\right), \\
\Delta_{H^{*}}(b, B, y)=\left(b_{1}+b_{2}, B_{1} B_{2}, y_{1} B_{2}+y_{2}\right) .
\end{gathered}
$$

Pairing by $(a, x)^{*}=(b, y)(\Rightarrow\langle B, A\rangle=q)$ making $\left\langle y^{l} b^{i}, a^{j} x^{k}\right\rangle=$ $\delta_{i j} \delta_{k l} j![k]_{q}$! so $R=\sum \frac{y^{k} b^{j} \otimes a^{j} x^{k}}{j![k]_{q}!}$.
The Algebra $Q U$. Using the Drinfel'd double procedure, $Q U_{\gamma, \epsilon}:=H^{* c o p} \otimes H$ with $(\phi f)(\psi g)=\left\langle\psi_{1} S^{-1} f_{3}\right\rangle\left\langle\psi_{3}, f_{1}\right\rangle\left(\phi \psi_{2}\right)\left(f_{2} g\right)$ and $\quad S(y, b, a, x)=\left(-B^{-1} y,-b,-a,-A^{-1} x\right)$,

$$
\Delta(y, b, a, x)=\left(y_{1}+y_{2} B_{1}, b_{1}+b_{2}, a_{1}+a_{2}, x_{1}+A_{1} x_{2}\right)
$$

Note also that $t:=\epsilon a-\gamma b$ is central and can replace b, and set $Q U=Q U_{\epsilon}=Q U_{1, \epsilon}$.
The 2D Lie Algebra. One may show* that if $[a, x]=\gamma x$ then $\mathbb{C}^{\xi x} \mathbb{C}^{\alpha a}=\mathbb{e}^{\alpha a} \mathbb{C}^{\mathbb{e}^{-\gamma \alpha} \xi x}$. Ergo with

$$
S W_{a x} \int \mathcal{S}(a, x) \xrightarrow[\mathbb{O}_{x a}]{\stackrel{O_{a x}}{\longrightarrow}} \mathcal{U}(a, x)
$$

we have $\widetilde{S W}_{a x}=\mathbb{C}^{\alpha a+\mathbb{C}^{-\gamma \alpha} \xi x}$.

* Indeed $x a=(a-\gamma) x$ thus $x a^{n}=(a-\gamma)^{n} x$ thus $x \mathbb{e}^{\alpha a}=\mathbb{e}^{\alpha(a-\gamma)} x=\mathbb{e}^{-\gamma \alpha} \mathbb{e}^{\alpha a} x$ thus $x^{n} \mathbb{e}^{\alpha a}=\mathbb{e}^{\alpha a}\left(\mathbb{e}^{-\gamma \alpha}\right)^{n} x^{n}$ thus $\mathbb{e}^{\xi x} \mathbb{C}^{\alpha a}=\mathbb{e}^{\alpha a} \mathbb{e}^{\mathbb{P}^{-\gamma \alpha} \xi x}$.
Faddeev's Formula (In as much as we can tell, first appeared without proof in Faddeev [Fa], rediscovered and proven in Quesne [Qu], and again with easier proof, in Zagier [Za]). With $[n]_{q}:=\frac{q^{n}-1}{q-1}$, with $[n]_{q}!:=[1]_{q}[2]_{q} \cdots[n]_{q}$ and with $\mathbb{C}_{q}^{x}:=$ $\sum_{n \geq 0} \frac{x^{n}}{[n]_{q}!}$, we have

$$
\log \mathbb{C}_{q}^{x}=\sum_{k \geq 1} \frac{(1-q)^{k} x^{k}}{k\left(1-q^{k}\right)}=x+\frac{(1-q)^{2} x^{2}}{2\left(1-q^{2}\right)}+\ldots
$$

Proof. We have that $\mathbb{E}_{q}^{x}=\frac{\mathbb{C}_{q}^{q x}-\mathbb{C}_{q}^{x}}{q x-x}$ ("the q-derivative of \mathbb{E}_{q}^{x} is itself"), and hence $\mathbb{E}_{q}^{q x}=(1+(1-q) x) \mathbb{E}_{q}^{x}$, and

$$
\log \mathbb{C}_{q}^{q x}=\log (1+(1-q) x)+\log \mathbb{C}_{q}^{x} .
$$

Writing $\log \mathbb{e}_{q}^{x}=\sum_{k \geq 1} a_{k} x^{k}$ and comparing powers of x, we get $q^{k} a_{k}=-(1-q)^{k} / k+a_{k}$, or $a_{k}=\frac{(1-q)^{k}}{k\left(1-q^{k}\right)}$.
A Full Implementation.
Utilities
CF[sd_SeriesData] := MapAt[CF, sd, 3];
CF $\left[\varepsilon_{-}\right]:=$ExpandDenominator@ExpandNumerator@Together [
Expand $\left.[\mathcal{E}] / / \cdot \mathbb{e}^{x}-\mathbb{e}^{y}-\rightarrow \mathbb{e}^{x+y} / \cdot \mathbb{e}^{x}-: \mathbb{e}^{C F[x]}\right]$;
$\mathrm{K} \delta /: \mathrm{K} \delta_{i_{-}, j_{-}}:=\operatorname{If}[i===j, 1,0] ;$
$\mathbb{E} /: \mathbb{E}\left[L 1_{-}, Q 1_{-}, P 1_{-}\right] \equiv \mathbb{E}\left[L 2_{-}, Q 2_{-}, P 2_{-}\right]:=$
$\mathrm{CF}[L 1=L 2] \wedge C F[Q 1=Q 2] \wedge C F[N o r m a l[P 1-P 2]=0]$;
$\mathbb{E} /: \mathbb{E}\left[L 1_{-}, Q 1_{-}, P 1_{-}\right] \mathbb{E}\left[L 2_{-}, Q 2_{-}, P 2_{-}\right]:=$
$\mathbb{E}[L 1+L 2, Q 1+Q 2, P 1 * P 2]$;
$\mathbb{E}\left[L_{-}, Q_{-}, P_{-}\right]_{\$ k_{-}}:=\mathbb{E}[L, Q$, Series [Normal@P, $\left.\{\epsilon, 0, \$ k\}]\right] ;$
Zip and Bind
$\left\{t^{*}, b^{*}, \mathbf{y}^{*}, \mathrm{a}^{*}, \mathbf{x}^{*}, \mathrm{z}^{*}\right\}=\{\tau, \beta, \eta, \alpha, \xi, \zeta\}$;
$\left\{\tau^{*}, \beta^{*}, \eta^{*}, \alpha^{*}, \xi^{*}, \zeta^{*}\right\}=\{t, b, y, a, x, z\} ;$
$\left(u_{-} i_{-}\right)^{*}:=\left(u^{*}\right)_{i}$;

```
collect[sd_SeriesData, \(\zeta_{-}\)] :=
    MapAt[collect[\#, ऽ] \& , sd, 3];
\(\operatorname{collect}\left[\varepsilon_{-}, \zeta_{-}\right]:=\operatorname{Collect}[\varepsilon, \zeta]\);
\(\operatorname{Zip}_{\{ \}}\left[P_{-}\right]:=P ; \operatorname{Zip}_{\left\{\zeta_{-}, \zeta_{-} S_{-}\right\}}\left[P_{-}\right]:=\)
    \(\left(\operatorname{collect}\left[P / / \operatorname{Zip}_{\left\{\zeta^{s}\right\}}, \zeta^{\zeta}\right] / \cdot f_{-} \cdot \zeta^{d_{-} \cdot}: \rightarrow \partial_{\left\{\zeta^{*}, d\right\}} f\right) / \cdot \zeta^{*} \rightarrow 0\)
QZip \(_{S_{s} L i s t} @ \mathbb{E}\left[L_{-}, Q_{-}, P_{-}\right]:=\)
    Module [\{ら, z, zs, c, ys, \(\eta s\), qt, zrule, \(\zeta r u l e\}\),
        zs = Table[ \(\left.\zeta^{*},\{\zeta, \zeta S\}\right]\);
        \(c=C F[Q /\). Alternatives @@ ( \(\varsigma s \cup z s) \rightarrow 0]\);
        \(y s=C F @ T a b l e\left[\partial_{\zeta}(Q /\right.\) Alternatives @@ zs \(\left.\rightarrow 0),\{\zeta, \zeta s\}\right] ;\)
        \(\eta s=C F @ T a b l e\left[\partial_{z}(Q / . A l t e r n a t i v e s\right.\) @@ \(\left.\zeta s \rightarrow 0),\{z, z s\}\right] ;\)
        qt = CF@Inverse@Table[K \(\left.\delta_{z, \zeta^{*}}-\partial_{z, \zeta} Q,\{\zeta, \zeta s\},\{z, z s\}\right] ;\)
        zrule \(=\) Thread [zs \(\rightarrow\) CF[qt. (zs +ys)]];
        ̧rule \(=\) Thread \([\zeta s \rightarrow \zeta s+\eta s . q t]\);
        CF /@ \(\mathbb{E}[L, \mathrm{c}+\eta \mathrm{s} . q \mathrm{t} . \mathrm{ys}\),
            \(\operatorname{Det}[q t] \operatorname{Zip}_{S s}[P / \cdot(z r u l e \bigcup\) Srule) \(\left.]]\right] ;\)
```



```
        \(\left.\mathrm{T}^{p_{-} \cdot} \rightarrow \mathbb{e}^{\mathrm{p} \mathrm{\hbar t}}, \mathscr{H}_{i_{-}^{-}}^{p^{-}} \rightarrow \mathbb{e}^{\mathrm{p} \mathrm{\gamma} \alpha_{i}}, \mathcal{F}^{p_{-} \cdot} \rightarrow e^{\mathrm{p} \mathrm{\gamma} \alpha}\right\} ;\)
\(\mathbf{1 2 U}=\left\{\mathbb{e}^{c_{-} \cdot b_{i_{-}}+d_{-} \cdot}: \rightarrow B_{i}^{-c /(\hbar \gamma)} \mathbb{e}^{d}, \mathbb{e}^{c_{-} \cdot b+d_{-} \cdot}: \rightarrow B^{-c /(\hbar \gamma)} \mathbb{e}^{d}\right.\),
        \(\mathbb{e}^{c_{-} \cdot t_{i_{-}}+d_{-} \cdot}: \rightarrow \mathbf{T}_{i}^{c / \hbar} \mathbb{e}^{d}, \mathbb{e}^{c_{-} \cdot t^{+} d_{-}}: \rightarrow \mathbf{T}^{c / \hbar} e^{d}\),
        \(\mathbb{e}^{c_{-} \cdot \alpha_{i_{-}}+d_{-}}: \rightarrow \mathscr{H}_{i}^{c / \gamma} \mathbb{e}^{d}, \mathbb{e}^{c_{-} \cdot \alpha_{+} d_{-}}: \rightarrow \mathcal{H}^{c / \gamma} \mathbb{e}^{d}\),
        \(\left.\mathbb{e}^{\delta}-: \rightarrow \mathbb{e}^{\text {Expande } \delta}\right\} ;\)
\(\operatorname{LZip}_{\text {ss_L }_{-} L i s t} @ \mathbb{E}\left[L_{-}, Q_{-}, P_{-}\right]:=\)
    Module[\{ら, z, zs, c, ys, \(\eta s, 1 t\), zrule, L1, L2, Q1, Q2\},
        zs = Table[ \(\left.\zeta^{*},\{\zeta, \zeta S\}\right]\);
        \(\mathrm{c}=L /\). Alternatives @@ ( \(\varsigma s \cup z s) \rightarrow 0\);
        \(y s=\operatorname{Table}\left[\partial_{\zeta}(L /\right.\). Alternatives @@ zs \(\left.\rightarrow 0),\{\zeta, \zeta s\}\right] ;\)
        \(\eta s=\) Table \(\left[\partial_{z}(L /\right.\). Alternatives @@ \(\left.\zeta s \rightarrow 0),\{z, z s\}\right]\);
        lt = Inverse@Table[K \(\left.\delta_{z, \zeta^{*}}-\partial_{z, \zeta} L,\{\zeta, \zeta S\},\{z, z s\}\right] ;\)
        zrule \(=\) Thread [zs \(\rightarrow\) lt. \((z s+y s)]\);
        \(\mathrm{L} 2=(\mathrm{L} 1=\mathrm{c}+\eta \mathrm{s} . \mathrm{zs} /\). zrule) /. Alternatives @@ zs \(\rightarrow 0\);
        Q2 = (Q1 = Q /. U2l /. zrule) /. Alternatives @@ zs \(\rightarrow 0\);
        CF /@ \(\mathbb{E}\left[L 2, Q 2, \operatorname{Det}[1 t] e^{-L 2-Q 2}\right.\)
            \(\operatorname{Zip}_{5 s}\left[e^{\mathrm{L1+Q1}}(P / . \mathrm{U} 21 /\right.\). zrule \(\left.\left.\left.)\right]\right] / / .12 \mathrm{U}\right]\);
\(\mathrm{B}_{\{ \}}\left[L_{-}, R_{-}\right]:=L R\);
\(\mathrm{B}_{\left\{i s_{-}\right\}}\left[L_{-} \mathbb{E}, R_{-} \mathbb{E}\right]:=\operatorname{Module}[\{n\}\), Times \([\)
            \(L / . \operatorname{Table}\left[(v: b|B| t|T| a|x| y)_{i} \rightarrow \mathbf{v}_{\text {nei }},\{i,\{i s\}\}\right]\),
            \(R / . \operatorname{Table}\left[(v: \beta|\tau| \alpha|\mathcal{F}| \xi \mid \eta)_{i} \rightarrow \mathbf{v}_{\text {nei }},\{i,\{i s\}\}\right]\)
            ] // LZip Join@@Table \(\left.\left.^{\text {[ }} \beta_{n @ i}, \tau_{n @ i}, a_{n @ i}\right\},\{i,\{i s\}\}\right] / /\)
        QZip \(_{\text {Join@@Table }}\left[\left\{\xi_{\text {n@i }}, y_{\text {n@i }}\right\},\{i,\{i s\}\}\right]\) ];
\(\mathbf{B}_{i s_{-}}\left[L_{-}, R_{-}\right]:=B_{\{i s\}}[L, R]\);
```

\mathbb{E} morphisms with domain and range.
$\mathbf{B}_{i s_{-} L i s t}\left[\mathbb{E}_{d 1_{-} \rightarrow r 1_{-}}\left[L 1_{-}, Q 1_{-}, P 1_{-}\right], \mathbb{E}_{d 2_{-} \rightarrow r 2_{-}}\left[L 2_{-}, Q 2_{-}, P 2_{-}\right]\right]:=$
$\mathbb{E}(d 1$ UComplement $[d 2, i s]) \rightarrow(r 2 U C o m p l e m e n t[r 1, i s])$ @@
$\mathbf{B}_{i s}[\mathbb{E}[L 1, Q 1, P 1], \mathbb{E}[L 2, Q 2, P 2]] ;$
$\mathbb{E}_{d 1_{-} \rightarrow r 1_{-}\left[L 1_{-}, Q 1_{-}, P 1_{-}\right] / / \mathbb{E}_{d 2_{-} \rightarrow r 2_{-}}\left[L 2_{-}, Q 2_{-}, P 2_{-}\right]:=}$
$\mathrm{B}_{r 11 \cap^{d 2}}\left[\mathbb{E}_{d 1 \rightarrow r 1}[L 1, Q 1, P 1], \mathbb{E}_{d 2 \rightarrow r 2}[L 2, Q 2, P 2]\right] ;$
$\mathbb{E}_{d 1_{-} \rightarrow r 1_{-}}\left[L 1_{-}, Q 1_{-}, P 1_{-}\right] \equiv \mathbb{E}_{d 2_{-} \rightarrow r 2_{-}}\left[L 2_{-}, Q 2_{-}, P 2_{-}\right] \wedge:=$
$(d 1==d 2) \wedge(r 1==r 2) \wedge(\mathbb{E}[L 1, Q 1, P 1] \equiv \mathbb{E}[L 2, Q 2, P 2]) ;$
$\mathbb{E}_{d 1_{-} \rightarrow r 1_{-}}\left[L 1_{-}, Q 1_{-}, P 1_{-}\right] \mathbb{E}_{d 2_{-} \rightarrow r 2_{-}}\left[L 2_{-}, Q 2_{-}, P 2_{-}\right]^{\wedge}:=$
$\mathbb{E}\left(d_{1} U^{d 2}\right) \rightarrow\left(r 1 \cup{ }^{2} 2\right) @(\mathbb{E}[L 1, Q 1, P 1] \mathbb{E}[L 2, Q 2, P 2]) ;$
$\mathbb{E}_{d_{-} \rightarrow r_{-}}\left[L_{-}, Q_{-}, P_{-}\right]_{\$_{-}}:=\mathbb{E}_{d \rightarrow r} @ @ \mathbb{E}[L, Q, P]_{\$_{k}} ;$
$\mathbb{E}_{-}\left[\mathcal{E}_{---}\right]\left[i_{-}\right]:=\{\varepsilon\} \llbracket i \rrbracket ;$
"Define" code
SetAttributes [Define, HoldAll];
Define[def_, defs__] := (Define[def]; Define[defs];);

Define[op_is_= $\left.\varepsilon_{-}\right]:=$
Module[$\{S D$, ii, jj, kk, isp, nis, nisp, sis\}, Block[\{i, j, k\},

ReleaseHold [Hold[

SD [op nisp,\$k_Integer, Block [$\{\mathbf{i}, \mathrm{j}, \mathrm{k}\}, o p_{\text {isp, } \$ \mathrm{k}}=\boldsymbol{\varepsilon}$;
$o p_{\text {nis, }}^{\text {k }}$]] $]$
$\mathrm{SD}\left[o p_{\text {isp }}, O p_{\{i s\}, \$ k}\right] ; \operatorname{SD}\left[o p_{\text {sis_-_ }}, o p_{\{s i s\}}\right]$;
] /. \{SD \rightarrow SetDelayed,
isp \rightarrow \{is\} /. $\left\{i \rightarrow i_{-}, j \rightarrow j_{-}, k \rightarrow k_{-}\right\}$, nis \rightarrow \{is\} /. $\{i \rightarrow i i, j \rightarrow j j, k \rightarrow k k\}$, nisp \rightarrow \{is $\} / .\left\{i \rightarrow i i_{-}, j \rightarrow j j_{-}, k \rightarrow k k_{-}\right\}$
\}]]]
The Fundamental Tensors
Define $\left[\mathrm{am}_{i, j \rightarrow k}=\mathbb{E}_{\{i, j\} \rightarrow\{k\}}\left[\left(\alpha_{i}+\alpha_{j}\right) a_{k},\left(e^{-\gamma \alpha_{j}} \xi_{i}+\xi_{j}\right) x_{k}, 1\right]_{\$ k}\right.$,

$$
\left.\operatorname{bm}_{i, j \rightarrow k}=\mathbb{E}_{\{i, j\} \rightarrow\{k\}}\left[\left(\beta_{i}+\beta_{j}\right) b_{k},\left(\eta_{i}+\eta_{j}\right) y_{k}, e^{\left(e^{-\epsilon \beta_{i-1}}\right) \eta_{j} y_{k}}\right]_{\$ k}\right]
$$

$$
\text { Define }\left[R_{i, j}=\right.
$$

$$
\left.\mathbb{E}_{\{ \} \rightarrow\{i, j\}}\left[\hbar a_{j} b_{i}, \hbar x_{j} y_{i}, e^{\wedge}\left(\sum_{k=2}^{\$ \mathrm{k}+1} \frac{\left(1-e^{\gamma \in \hbar}\right)^{k}\left(\hbar y_{i} x_{j}\right)^{k}}{k\left(1-e^{k \gamma \in \hbar}\right)}\right)\right]_{\$ k}\right]
$$

$$
\operatorname{Define}\left[\bar{R}_{i, j}=\mathbb{E}_{\{ \} \rightarrow\{i, j\}}\left[-\hbar a_{j} b_{i},-\hbar x_{j} y_{i} / B_{i}\right.\right.
$$

$$
1+\operatorname{If}\left[\$ k=0,0,\left(\bar{R}_{\{i, j\}, \$ k-1}\right)_{\$ k}[3]-\right.
$$

$$
\left(\left(\left(\bar{R}_{\{i, j\}, \theta}\right)_{\$ k} R_{1,2}\left(\bar{R}_{\{3,4\}, \$ k-1}\right)_{\$ k}\right) / /\left(b m_{i, 1 \rightarrow i} a m_{j, 2 \rightarrow j}\right) / /\right.
$$

$$
\left.\left.\left.\left(\mathrm{bm}_{\mathrm{i}, 3 \rightarrow \mathrm{i}} \mathrm{am}_{\mathrm{j}, 4 \rightarrow \mathrm{j}}\right)\right)[3]\right]\right]
$$

$P_{i, j}=\mathbb{E}_{\{i, j\} \rightarrow\{ \}}\left[\beta_{i} \alpha_{j} / \hbar, \eta_{i} \xi_{j} / \hbar\right.$,
$1+\operatorname{If}\left[\$ k=0,0,\left(P_{\{i, j\}, \$ k-1}\right)_{\$ k}[3]-\right.$
$\left.\left.\left.\left(R_{1,2} / /\left(\left(P_{\{1, j\}, \theta}\right)_{\$ k}\left(P_{\{i, 2\}, \$ k-1}\right)_{\$ k}\right)\right)[3]\right]\right]\right]$
Define $\left[\mathrm{aS}_{j}=\bar{R}_{\mathrm{i}, \mathrm{j}} \sim \mathrm{B}_{\mathrm{i}} \sim \mathrm{P}_{\mathrm{i}, \mathrm{j}}\right.$,
$\overline{\mathrm{aS}}_{\mathrm{i}}=\mathbb{E}_{\{\mathrm{i}\} \rightarrow\{\mathrm{i}\}}\left[-\mathrm{a}_{\mathrm{i}} \alpha_{\mathrm{i}},-\mathrm{x}_{\mathrm{i}} \mathcal{A}_{\mathrm{i}} \xi_{\mathrm{i}}\right.$,
$1+\operatorname{If}\left[\$ k=0,0,\left(\overline{a s}_{\{i\}, \$ k-1}\right)_{\$ k}[3]-\right.$
$\left.\left.\left.\left(\left(\overline{\mathrm{aS}}_{\{\mathrm{i}\}, \theta}\right)_{\$ k} \sim \mathrm{~B}_{\mathrm{i}} \sim \mathrm{aS} \mathrm{S}_{\mathrm{i}} \sim \mathrm{B}_{\mathrm{i}} \sim\left(\overline{\mathrm{aS}}_{\{\mathrm{i}\}, \$ k-1}\right)_{\$ k}\right)[3]\right]\right]\right]$
Define $\left[b S_{i}=R_{i, 1} \sim B_{1} \sim a S_{1} \sim B_{1} \sim P_{i, 1}\right.$,
$\overline{b S}_{i}=R_{i, 1} \sim B_{1} \sim \overline{a S}_{1} \sim B_{1} \sim P_{i, 1}$,
$a \Delta_{i \rightarrow j, k}=\left(R_{1, j} R_{2, k}\right) / / b m_{1,2 \rightarrow 3} / / P_{3, i}$,
$\left.b \Delta_{i \rightarrow j, k}=\left(R_{j, 1} R_{k, 2}\right) / / a m_{1,2 \rightarrow 3} / / P_{i, 3}\right]$

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Ohio-1901

Do Not Turn Over Until Instructed

 and exciting and it should not be *about* rigour, yet it should *demand* rigour. You can't guess. You probably think it the dreariest. You are wrong.

Video and more at http://www.math.toronto.edu/~drorbn/Talks/MAASeaway-1810/

The Taylor Remainder Formulas. Let f be a smooth function, let $P_{n, a}(x)$ be the nth order Tayfor polynomial of f around a and evaluated at x, so with $a_{k}=f^{(k)}(a) / k!$,

$$
P_{n, a}(x):=\sum_{k=0}^{n} a_{k}(x-a)^{k},
$$

and let $R_{n, a}(x):=f(x)-P_{n, a}(x)$ be the "mistake"

Partial Derivatives Commute.
Make Fubini Smile Again!
If $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is C^{2} near $a \in \mathbb{R}^{2}$, then $f_{12}(a)=f_{21}(a)$.
Proof. Let $x \in \mathbb{R}^{2}$ be small, and let $R:=\left[a_{1}, a_{1}+x_{1}\right] \times\left[a_{2}, a_{2}+x_{2}\right]$.
$f_{12}(a) \sim \sqrt{\int f_{12}}=\stackrel{\bullet}{\square} \overbrace{}^{+}=\square f_{21} \sim f_{21}(a)$ $f_{12}(a) \sim \frac{1}{|R|} \int_{R} f_{12}=\frac{1}{|R|} \int_{a_{1}}^{a_{1}+x_{1}} d t_{1}\left(f_{1}\left(t_{1}, a_{2}+x_{2}\right)-f_{1}\left(t_{1}, a_{2}\right)\right)$
$=\frac{1}{|R|}\binom{f\left(a_{1}+x_{1}, a_{2}+x_{2}\right)-f\left(a_{1}+x_{1}, a_{2}\right)}{-f\left(a_{1}, a_{2}+x_{2}\right)+f\left(a_{1}, a_{2}\right)}$.
But the answer here is the same as in
(In particular, the Taylor expansions of \sin , \cos, exp, and of severat other lovely functions converges to these functions everywhere, no matter the odds.)
Proof of (1) (for adults; I learned it from my son Itai). The fundamental theorem of calcuhus says that if $g(a)=0$ then $g(x)=\int_{a}^{x} d x_{1} g\left(x_{1}\right)$. By design, $R_{n, a}^{(k)}(a)=0$ for $0 \leq k \leq n$. Therefore

$$
\begin{array}{r}
R_{n, a}(x)=\int_{a}^{x} d x_{1} R_{n, a}^{\prime}\left(x_{1}\right) \quad f^{a} t x^{(n+1)}(t) x_{n} x_{2} x_{1} \\
=\int_{a}^{x} d x_{1} \int_{a}^{x_{1}} d x_{2} R_{n, a}^{\prime \prime}\left(x_{2}\right) \\
=\ldots=\int_{a}^{x} d x_{1} \int_{a}^{x_{1}} d x_{2} \ldots \int_{a}^{x_{n}} d x_{n} \int_{a}^{t} d t R_{n, a}^{(n+1)}(t) \\
=\int_{a}^{x} d x_{1} \int_{a}^{x_{1}} d x_{2} \ldots \int_{a}^{x_{n}} d x_{n} \int_{a}^{t} d t f^{(n+1)}(t),
\end{array}
$$

when $x>a$, and with similar logic when $x<a$,

$$
\begin{aligned}
= & \int_{a \leq t \leq x_{n} \leq \ldots \leq x_{1} \leq x} f^{(n+1)}(t)=\int_{a}^{t} d t f^{(n+1)}(t) \int_{t \leq x_{n} \leq \ldots \leq x_{1} \leq x} 1 \\
= & \int_{a}^{t} d t \frac{f^{(n+1)}(t)}{n!} \int_{\left(x_{1}, \ldots, x_{n}\right) \in[t, x]^{n}} 1=\int_{a}^{x} d t \frac{f^{(n+1)}(t)}{n!}(x-t)^{n}
\end{aligned}
$$

de-Fubini (obfuscation in the name of simplicity). Prematurely aborting the above chain of equalities, we find that for any $1 \leq k \leq n+1$,

$$
R(x)=\int_{a}^{x} d t R^{(k)}(t) \frac{(x-t)^{k-1}}{(k-1)!}
$$

But these are easy to prove by induction using integration by parts, and there's no need to invoke Fubini.

Guido Fubini

$$
\begin{gather*}
f_{21}(a) \sim \frac{1}{|R|} \int_{R} f_{21}=\frac{1}{|R|} \int_{a_{2}}^{a_{2}+x_{2}} d t_{2}\left(f_{2}\left(a_{1}+x_{1}, t_{2}\right)-f_{2}\left(a_{1}, t_{2}\right)\right) \tag{2}\\
=\frac{1}{|R|}\binom{f\left(a_{1}+x_{1}, a_{2}+x_{2}\right)-f\left(a_{1}, a_{2}+x_{2}\right)}{-f\left(a_{1}+x_{1}, a_{2}\right)+f\left(a_{1}, a_{2}\right)}
\end{gather*}
$$

and both of these approximations get better and better as $x \rightarrow 0$.
The Mean Value Theorem for Curves (MVT4C).
If $\gamma:[a, b] \rightarrow \mathbb{R}^{2}$ is a smooth curve, then there is
some $t_{1} \in(a, b)$ for which $\gamma(b)-\gamma(a)$ and $\dot{\gamma}\left(t_{1}\right)$ are linearly dependent. If also $\gamma(a)=0$, and $\gamma=\binom{\xi}{\eta}$ and $\eta \neq 0 \neq \dot{\eta}$ on (a, b), then
$\frac{\xi(b)}{\eta(b)}=\frac{\dot{\xi}\left(t_{1}\right)}{\dot{\eta}\left(t_{1}\right)} \quad\left(\right.$ when lucky, $\left.=\frac{\ddot{\xi}\left(t_{2}\right)}{\ddot{\eta}\left(t_{2}\right)} \ldots\right)$.
$\gamma(a)$
Proof of (2). Iterate the lucky MVT4C as follows:

$$
\frac{R_{n, a}(x)}{(x-a)^{n+1}}=\frac{R_{n, a}^{\prime}\left(t_{1}\right)}{(n+1)\left(t_{1}-a\right)^{n}}=\ldots=\frac{R_{n, a}^{(n+1)}\left(t_{n+1}\right)}{(n+1)!}=\frac{f^{(n+1)}(t)}{(n+1)!} .
$$

π is Irrational following Ivan Riven, Bull.
Amer. Math. Soc. (1947) pp. 509:
Theorem: IT is irrational.
Proof: Assume $\pi=a / b$ and consider the polynomid $P(x)=\frac{x^{n}(a-b x)^{n}}{n!}$ For n quite large. Clearly
 small, hence $\quad I=\int_{0}^{\pi /} \rho(x) \sin x d x$

 ration by parts shows that $I=\binom{$ boundary }{ terms }$\pm \int p^{(2 n+1)}(x) \cos x d x$. The second firm is 0 because P is a polynomial of degne

\qquad
 2n, and the first term is an integer for cluarty $p(k)(0)$ is alwaysan integer, for $p(\pi-x)=P(x)$ hence same is true for $P^{(k)}(\pi)$ and for $\sin \&$ cos of 0 \& π are all integers. Ergo I is an integer between σ and 1 ,

Dror Bar-Natan: Talks: Matemale-1804:

Solvable Approximations of the Quantum $s l_{2}$ Portfolio
Our Main Theorem (loosely stated). Everything that matters in the quantum $s l_{2}$ portfolio can be continuously expressed in terms of docile perturbed Gaussians using solvable approximations. \bigcirc Our Main Points.

- What's the "quantum $s l_{2}$ portfolio"?
- What in it "matters" and why? (the most important question)
- What's "solvable approximation"? What's "continuously"?
- What are "docile perturbed Gaussians"?
- Why do they matter?
(2 ${ }^{\text {nd }}$ most important)
- How proven?
$\xrightarrow[\kappa]{\longrightarrow}$

Gompf, Schar-

ribbon $K \in \mathcal{T}_{1} \quad z(K) \in \mathcal{R} \subseteq \mathcal{A}_{1}$
Faster is better, leaner is meaner!

84 The Gold Standard is set by the " Γ-calculus" Alexander formulas [BNS, BN1]. An S-component tangle T has

- How implemented?
(sacred; the work of unsung heroes)
- Some context and background.
- What's next?

The quantum $s l_{2}$ Portfolio includes a classical universal enveloping algebra $C U$, its quantization $Q U$, their tensor
 powers $C U^{\otimes S}$ and $Q U^{\otimes S}$ with the "tensor operations" \otimes, their products $m_{k}^{i j}$, coproducts $\Delta_{j k}^{i}$ and antipodes S_{i}, their Cartan automophisms $C \theta: C U \rightarrow C U$ and $Q \theta: Q U \rightarrow Q U$, the "dequantizators" $A \mathbb{D}: Q U \rightarrow C U$ and $S \mathbb{D}: Q U \rightarrow C U$, and most importantly, the R-matrix R and the Drinfel'd element s. All this in any PBW basis, and change of basis maps are included.

Genus. Every knot is the boundary of an orientable "Seifert Surface" ($\omega \varepsilon \beta / \mathrm{SS}$), and the least of their genera is the "genus" of the knot.
Claim. The knots of genus ≤ 2 are precisely the images of 4-component tangles via

$\left(\zeta / / m_{12 \rightarrow 1} / / m_{13 \rightarrow 1}\right)=\left(\zeta / / m_{23 \rightarrow 2} / / m_{12 \rightarrow 1}\right)$

I

 presented as the boundary of a disk that has "ribbon singularities", but no "clasp singularities". A "slice knot" is a knot in $S^{3}=\partial B^{4}$ which is the boundary of a non-singular disk in B^{4}. Every ribbon knots is clearly slice, yet,Conjecture. Some slice knots are not ribbon.
Fox-Milnor. The Alexander polynomial of a ribbon knot is always of the form $A(t)=f(t) f(1 / t)$.
(also for slice)

The Yang-Baxter Technique. Given an al- Definition. A "docile perturbed gebra U (typically $\hat{\mathcal{U}}(\mathfrak{g})$ or $\hat{\mathcal{U}}_{q}(\mathrm{~g})$) and ele- Gaussian" in the variables $\left(z_{i}\right)_{i \in S}$ over ments

$$
\begin{gathered}
R=\sum a_{i} \otimes b_{i} \in U \otimes U \quad \text { and } \quad C \in U, \\
Z=\sum_{i, j, k} C a_{i} b_{j} a_{k} C^{2} b_{i} a_{j} b_{k} C .
\end{gathered}
$$

form
Problem. Extract information from Z.
The Dogma. Use representation theory. In principle finite, but slow.

The (fake) moduli of Lie algebras on V, a quadratic variety in $\left(V^{*}\right)^{\otimes 2} \otimes V$ is on the right. We care about $s l_{17}^{k}:=s l_{17}^{\epsilon} /\left(\epsilon^{k+1}=0\right)$.

Solvable Approximation. A quantized universal enveloping algebra (aka "quantum group") is an ∞-dimensional inverse limit.

Recomposing $g l_{n}$. Half is enough! $g l_{n} \oplus \mathfrak{a}_{n}=\mathcal{D}(\nabla, b, \delta)$:

Now define $g l_{n}^{\epsilon}:=\mathcal{D}(\nabla, b, \epsilon \delta)$. Schematically, this is $[\nabla, \nabla]=\nabla$, $[\Delta, \Delta]=\epsilon \Delta$, and $[\nabla, \Delta]=\Delta+\epsilon \nabla$. In detail, it is

$$
\left[\begin{array}{lr}
{\left[e_{i j}, e_{k l}\right]=\delta_{j k} e_{i l}-\delta_{l i} e_{k j}} & {\left[f_{i j}, f_{k l}\right]=\epsilon \delta_{j k} f_{i l}-\epsilon \delta_{l i} f_{k}} \\
{\left[e_{i j}, f_{k l}\right]=\delta_{j k}\left(\epsilon \delta_{j<k} e_{i l}+\delta_{i l}\left(h_{i}+\epsilon g_{i}\right) / 2+\delta_{i>l} f_{i l}\right)} \\
& -\delta_{l i}\left(\epsilon \delta_{k<j} e_{k j}+\delta_{k j}\left(h_{j}+\epsilon g_{j}\right) / 2+\delta_{k>j} f_{k j}\right) \\
{\left[g_{i}, e_{j k}\right]=\left(\delta_{i j}-\delta_{i k}\right) e_{j k}} & {\left[h_{i}, e_{j k}\right]=\epsilon\left(\delta_{i j}-\delta_{i k}\right) e_{j k}} \\
{\left[g_{i}, f_{j k}\right]=\left(\delta_{i j}-\delta_{i k}\right) f_{j k}} & {\left[h_{i}, f_{j k}\right]=\epsilon\left(\delta_{i j}-\delta_{i k}\right) f_{j k}}
\end{array}\right.
$$

Solvable Approximation (2). At $\epsilon=1$ and modulo $h=g$, the above is just $g l_{n}$. By rescaling at $\epsilon \neq 0, g l_{n}^{\epsilon}$ is independent of ϵ. We let $g l_{n}^{k}$ be $g l_{n}^{\epsilon}$ regarded as an algebra over $\mathbb{Q}[\epsilon] / \epsilon^{k+1}=0$. It is the " k-smidgen solvable approximation" of $g l_{n}$!
Recall that \mathfrak{g} is "solvable" if iterated commutators in it ultimately vanish: $\mathfrak{g}_{2}:=[\mathfrak{g}, \mathfrak{g}], \mathfrak{g}_{3}:=\left[\mathfrak{g}_{2}, \mathfrak{g}_{2}\right], \ldots, \mathfrak{g}_{d}=0$. Equivalently, if it is a subalgebra of some large-size ∇ algebra.
Note. This whole process makes sense for arbitrary semi-simple Lie algebras.
$\mathcal{G D O}$-Categories. Given \mathfrak{g} with basis $B=\{x, y, \ldots\}$, consider the following diagram:

$$
\begin{aligned}
& \mathbb{Q}=\hat{\boldsymbol{U}}_{(q)}\left(\bigoplus_{0} \mathfrak{g}\right) \xrightarrow{Z} \hat{\boldsymbol{U}}_{(q)}(\mathfrak{g}) \xrightarrow[m]{\stackrel{\Delta}{\longrightarrow}} \hat{\boldsymbol{U}}_{(q)}\left(\bigoplus_{2} \mathfrak{g}\right)
\end{aligned}
$$

Hence $Z, S W_{x y}, m, \Delta$, (and likewise S and θ) are morphisms in the completion of the monoidal category \mathcal{F} whose objects are finite sets B and whose morphisms are $\operatorname{mor}_{\mathcal{F}}\left(B, B^{\prime}\right):=$ $\operatorname{Hom}_{\mathbb{Q}}\left(\mathcal{S}(B) \rightarrow \mathcal{S}\left(B^{\prime}\right)\right)=\mathcal{S}\left(B^{*}, B^{\prime}\right)$ (by convention, $x^{*}=\xi$, $y^{*}=\eta$, etc.). Ergo we need to consolidate (at least parts of) said completion.
the ring R is an expression of the form

$$
\mathbb{e}^{q^{i j} z_{i} z_{j}} P=\mathbb{e}^{q^{i j} z_{i} z_{j}}\left(\sum_{k \geq 0} \epsilon^{k} P_{k}\right)
$$

where all coefficients are in R and where P is a "docile series": $\operatorname{deg} P_{k} \leq 4 k$.
Docililty Matters! The rank of the space of docile series to ϵ^{k} is polynomial in the number of variables $|S|$.
Theorem ([BNG], conjectured [MM], คO AR Melvin, elucidated [Ro1]). Let $J_{d}(K)$ be the co- 85 Morton, loured Jones polynomial of K, in the d-dimensional representation of $s l_{2}$. Writing

$$
\left.\frac{\left(q^{1 / 2}-q^{-1 / 2}\right) J_{d}(K)}{q^{d / 2}-q^{-d / 2}}\right|_{q=e^{h}}=\sum_{j, m \geq 0} a_{j m}(K) d^{j} \hbar^{m}
$$

"below diagonal" coefficients vanish, $a_{j m}(K)=\uparrow$ 0 if $j>m$, and "on diagonal" coefficients give the inverse of the Alexander polynomial: $\left(\sum_{m=0}^{\infty} a_{m m}(K) \hbar^{m}\right) \cdot \omega(K)\left(e^{\hbar}\right)=1$.

"Above diagonal" we have Rozansky's Theorem [Ro3, (1.2)]:

$$
J_{d}(K)(q)=\frac{q^{d}-q^{-d}}{\left(q-q^{-1}\right) \omega(K)\left(q^{d}\right)}\left(1+\sum_{k=1}^{\infty} \frac{(q-1)^{k} \rho_{k}(K)\left(q^{d}\right)}{\omega^{2 k}(K)\left(q^{d}\right)}\right) .
$$

Prior art. Some amazing computations by
Rozansky and Overbay in [Ro2, Ro3] and in [Ov].
Faddeev's Formula (In as much as we can tell, first appeared w/o proof in Faddeev [Fa], rediscovered and proven in
Quesne [Qu], and again with easier proof,
 and with $\mathbb{E}_{q}^{x}:=\sum_{n \geq 0} \frac{x^{n}}{[n]_{q}}$, we have

$$
\log \mathbb{E}_{q}^{x}=\sum_{k \geq 1} \frac{(1-q)^{k} x^{k}}{k\left(1-q^{k}\right)}=x+\frac{(1-q)^{2} x^{2}}{2\left(1-q^{2}\right)}+\ldots
$$

Proof. We have that $\mathbb{E}_{q}^{x}=\frac{\mathbb{e}_{q}^{q x}-\mathbb{E}_{q}^{x}}{q x-x}$ ("the q-derivative of \mathbb{E}_{q}^{x} is itself"), and hence $\mathbb{e}_{q}^{q x}=(1+(1-q) x) \mathbb{E}_{q}^{x}$, and

$$
\log \mathbb{e}_{q}^{q x}=\log (1+(1-q) x)+\log \mathbb{e}_{q}^{x} .
$$

Writing $\log \mathbb{C}_{q}^{x}=\sum_{k \geq 1} a_{k} x^{k}$ and comparing powers of x, we get $q^{k} a_{k}=-(1-q)^{k} / k+a_{k}$, or $a_{k}=\frac{(1-q)^{k}}{k\left(1-q^{k}\right)}$.

Aside. "Consolidate" means "give a finite name to an infinite object, and figure out how to sufficiently manipulate such finite names". E.g., solving $f^{\prime \prime}=-f$ we encounter and set $\sum \frac{(-1)^{k} x^{2 k}}{(2 k)!} \leadsto \cos x, \sum \frac{(-1)^{k} x^{2 k+1}}{(2 k+1)!} \leadsto \sin x$, and then $\cos ^{2} x+$ $\sin ^{2} x=1$ and $\sin (x+y)=\sin x \cos y+\cos x \sin y$.
The Composition Law. If

$$
\mathcal{S}\left(B_{0}\right) \xrightarrow{{ }^{t} f \in \mathbb{Q} \llbracket \zeta_{0} i, z_{1 j} \rrbracket} \xrightarrow{f} \mathcal{S}\left(B_{1}\right) \xrightarrow{{ }^{t} g \in \mathbb{Q} \llbracket \zeta_{1} ; z_{2 k} \mathbb{}} \xrightarrow{g} \mathcal{S}\left(B_{2}\right)
$$

then ${ }^{t}(f / / g)={ }^{t}(g \circ f)=\left(\left.g\right|_{\zeta_{1 j} \rightarrow \partial_{z_{1 j}}} f\right)_{z_{1 j}=0}$.

Examples.

1. The 1 -variable identity map $I: \mathcal{S}(z) \rightarrow \mathcal{S}(z)$ is given by ${ }^{t} I_{1}=\mathbb{e}^{z \zeta}$ and the n-variable one by ${ }^{t} I_{n}=\mathbb{e}^{z_{1} \zeta_{1}+\cdots+z_{n} \zeta_{n}}$.
2. The " $z_{i} \rightarrow z_{j}$ variable rename map $\sigma_{j}^{i}: \mathcal{S}\left(z_{i}\right) \rightarrow \mathcal{S}\left(z_{j}\right)$ becomes ${ }^{t} \sigma_{j}^{i}=\mathbb{e}^{z_{j} \zeta_{i}}$, and it's easy to rename several variables simultaneously.
3. The "archetypal multiplication map $m_{k}^{i j}: \mathcal{S}\left(z_{i}, z_{j}\right) \rightarrow \mathcal{S}\left(z_{k}\right)$ " has ${ }^{t} m=\mathbb{e}^{z_{k}\left(\zeta_{i}+\zeta_{j}\right)}$.
4. The "archetypal coproduct $\Delta_{j k}^{i}: \mathcal{S}\left(z_{i}\right) \rightarrow \mathcal{S}\left(z_{j}, z_{k}\right)$ ", given by $z_{i} \rightarrow z_{j}+z_{k}$ or $\Delta z=z \otimes 1+1 \otimes z$, has ${ }^{t} \Delta=\mathbb{e}^{\left(z_{j}+z_{k}\right) \zeta_{i}}$.
5. R-matrices tend to have terms of the form $\mathbb{E}_{q}^{\hbar y_{1} x_{2}} \in \mathcal{U}_{q} \otimes \mathcal{U}_{q}$. The "baby R-matrix" is ${ }^{t} R=\mathbb{e}^{\hbar y x} \in \mathcal{S}(y, x)$.
Proposition. If $F: \mathcal{S}(B) \rightarrow \mathcal{S}\left(B^{\prime}\right)$ is linear and "continuous", then ${ }^{t} F=\exp \left(\sum_{z_{i} \in B} \zeta_{i} z_{i}\right) / / F$.
The Heisenberg Example. The "Weyl form of the canonical commutation relations" states that if $[y, x]=t$ and t is central, then $\mathbb{e}^{\xi x} \mathbb{C}^{\eta y}=\mathbb{e}^{\eta y} \mathbb{C}^{\xi x} \mathbb{e}^{-\eta \xi t}$. Thus with

$$
S W_{x y} \subsetneq \mathcal{S}(t, y, x) \xrightarrow{\stackrel{O_{x y}}{O_{y x}}} \mathcal{U}(t, y, x)
$$

we have ${ }^{t} S W_{x y}=\mathbb{e}^{\tau t+\eta y+\xi x-\eta \xi t}$.
The Zipping Issue (between unbound and bound lies half-zipped).

Zipping. If $P\left(\zeta^{j}, z_{i}\right)$ is a polynomial, or whenever otherwise convergent, set

$$
\left\langle P\left(\zeta^{j}, z_{i}\right)\right\rangle_{\left(\zeta^{j}\right)}=\left.P\left(\partial_{z_{j}}, z_{i}\right)\right|_{z_{i}=0}
$$

(E.g., if $P=\sum a_{n m} \zeta^{n} z^{m}$ then $\langle P\rangle_{\zeta}=\sum n!a_{n n}$).

The Zipping / Contraction Theorem. If P has a finite ζ-degree and the y 's and the q 's are "small" then

$$
\left\langle P\left(z_{i}, \zeta^{j}\right) \mathbb{E}^{\eta^{i} z_{i}+y_{j} \zeta^{j}}\right\rangle_{\left(\zeta^{j}\right)}=\left\langle P\left(z_{i}+y_{i}, \zeta^{j}\right) \mathbb{E}^{\eta^{i}\left(z_{i}+y_{i}\right)}\right\rangle_{\left(\zeta^{j}\right)}
$$

(proof: replace $y_{j} \rightarrow \hbar y_{j}$ and test at $\hbar=0$ and at ∂_{\hbar}), and

$$
\begin{aligned}
\left\langle P\left(z_{i}, \zeta^{j}\right) \mathbb{e}^{c+\eta^{i} z_{i}+y_{j} \zeta^{j}+q_{j}^{i} z_{i} \zeta^{j}}\right. & \rangle_{\left(\zeta^{j}\right)} \\
& =\operatorname{det}(\tilde{q})\left\langle P\left(\tilde{q}_{i}^{k}\left(z_{k}+y_{k}\right), \zeta^{j}\right) \mathbb{e}^{c+\eta^{i} \tilde{q}_{i}^{k}\left(z_{k}+y_{k}\right)}\right\rangle_{\left(\zeta^{j}\right)}
\end{aligned}
$$

where \tilde{q} is the inverse matrix of $1-q:\left(\delta_{j}^{i}-q_{j}^{i}\right) \tilde{q}_{k}^{j}=\delta_{k}^{i}$ (proof: replace $q_{j}^{i} \rightarrow \hbar q_{j}^{i}$ and test at $\hbar=0$ and at $\left.\partial_{\hbar}\right)$.
Implementation.
$\omega \varepsilon \beta /$ ZipBindDemo
$\mathrm{K} \delta /: \mathrm{K}_{i_{-}, j_{-}}:=\operatorname{If}[i===j, \mathbf{1}, 0]$;
$\left\{z^{*}, x^{*}, y^{*}\right\}=\{\zeta, \xi, \eta\} ;\left\{\zeta^{*}, \xi^{*}, \eta^{*}\right\}=\{z, x, y\}$;
$\left(u_{-i}\right)^{*}:=\left(u^{*}\right)_{i} ;$
$\operatorname{Zip}_{\{ \}}\left[P_{-}\right]:=P$;
$\mathrm{Zip}_{\left\{\xi_{-}, \xi^{\prime} \ldots\right\}}\left[P_{-}\right]:=$
(Expand $\left[P / /\right.$ Zip $\left.\left._{\left\{\xi^{s}\right\}}\right] / \cdot f_{-} \cdot \zeta^{d_{-}-} \rightarrow \partial_{\left\{s^{*}, d\right\}} f\right) / \cdot \zeta^{*} \rightarrow 0$
$\mathrm{Zip}_{\{5\}}\left[\left(\mathrm{a} \varsigma^{6}+\zeta+3\right)\left(\mathrm{z}^{5} \mathrm{e}^{2}+7 \mathrm{z}\right)+99 \mathrm{~b}\right]$
$7+720 a+99 b$

$a^{3} b^{3}+9 a^{2} b^{2} c+18 a b c^{2}+6 c^{3}$
(* $\mathbb{E}[\mathrm{Q}, \mathrm{P}]$ means $\mathbb{e}^{\mathrm{Q}} \mathrm{P}$ *)
$\mathbb{E} /:$ Zip $_{5 s_{-} L i s t} @ \mathbb{E}\left[Q_{-}, P_{-}\right]:=$
Module[\{ $5, z, z s, c, y s, \eta s, q t, z r u l e, ~ Q 1, ~ Q 2\}$, zs = Table[$\left.5^{*},\{\zeta, \zeta s\}\right]$; $c=Q /$. Alternatives @@ ($\varsigma s \cup z s) \rightarrow 0$;
ys = Table $\left[\partial_{\zeta}(Q /\right.$. Alternatives @@ $\left.\mathrm{zs} \rightarrow 0),\{\zeta, \zeta s\}\right]$;
$\eta s=$ Table $\left[\partial_{z}(Q /\right.$. Alternatives @@ $\left.\zeta s \rightarrow 0),\{z, z s\}\right]$;
qt = Inverse@Table $\left[K \delta_{z, \zeta^{*}}-\partial_{z, \zeta} Q,\{\zeta, \zeta 5\},\{z, z s\}\right]$;
zrule $=$ Thread [zs $\rightarrow q t .(z s+y s)]$;
Q1 = c + ns.zs /. zrule;
$\mathrm{Q} 2=\mathrm{Q} 1 /$. Alternatives @ $\mathrm{zs} \rightarrow 0$;
Simplify/@ $\mathbb{E}\left[\mathrm{Q}^{2}\right.$, $\operatorname{Det}[q \mathrm{qt}] \mathbb{e}^{\mathbb{Q}^{-Q 2} \mathrm{Zip}_{s 5}}\left[\mathbb{e}^{Q 1}(\mathrm{P} /\right.$. zrule $\left.\left.\left.)\right]\right]\right]$;
$E h=\mathbb{E}\left[h \sum_{i=1}^{3} \sum_{j=1}^{3} a_{10}{ }_{i+j} x_{i} \xi_{j}, \sum_{i=1}^{3} f_{i}\left[x_{1}, x_{2}, x_{3}\right] \xi_{i}\right] ;$
$\mathrm{E} 1=\mathrm{Eh} / . \mathrm{h} \rightarrow 1$
$\mathbb{E}\left[a_{11} x_{1} \xi_{1}+a_{21} x_{2} \xi_{1}+a_{31} x_{3} \xi_{1}+a_{12} x_{1} \varepsilon_{2}+\right.$
$a_{22} x_{2} \xi_{2}+a_{32} x_{3} \xi_{2}+a_{13} x_{1} \xi_{3}+a_{23} x_{2} \xi_{3}+a_{33} x_{3} \xi_{3}$,
$\left.\xi_{1} f_{1}\left[x_{1}, x_{2}, x_{3}\right]+\xi_{2} f_{2}\left[x_{1}, x_{2}, x_{3}\right]+\xi_{3} f_{3}\left[x_{1}, x_{2}, x_{3}\right]\right]$
Short [lhs = $\operatorname{Zip}_{\left\{\xi_{1}, \xi_{2}\right\}} @ E 1$, 5]
$\mathbb{E}\left[\left(\left(a_{13}\left(\left(-1+a_{22}\right) a_{31}-a_{21} a_{32}\right)+a_{12}\left(-a_{23} a_{31}+a_{21} a_{33}\right)+\right.\right.\right.$
$\left.\left.\left(-1+a_{11}\right) \quad\left(a_{23} a_{32}-\left(-1+a_{22}\right) a_{33}\right)\right) x_{3} \xi_{3}\right) /$
$\left(-1+a_{12} a_{21}-a_{11}\left(-1+a_{22}\right)+a_{22}\right)$,
$\left.\frac{\ll 17 \gg+a_{21} \ll 1 \gg}{\left(-1+a_{12} a_{21}-a_{11}\left(-1+a_{22}\right)+a_{22}\right)^{2}}\right]$
lhs $==\operatorname{Zip}_{\left\{\xi_{1}\right\}} @ \operatorname{Zip}_{\left\{\xi_{2}\right\}} @ E 1==\operatorname{Zip}_{\left\{\xi_{2}\right\}} @ \operatorname{Zip}_{\left\{\xi_{1}\right\}} @ E 1$
True
Short [
lhs $=\operatorname{Normal}\left[\mathrm{Eh} / . \mathbb{E}\left[Q_{-}, P_{-}\right]: \rightarrow \operatorname{Series}\left[P \mathbb{e}^{Q},\{\mathrm{~h}, 0,3\}\right]\right] / /$ $\left.\operatorname{Zip}_{\left\{\xi_{1}, \xi_{2}\right\}}, 5\right]$
$h a_{13} \xi_{3} f_{1}\left[0,0, x_{3}\right]+2 h^{2} a_{11} a_{13} \xi_{3} f_{1}\left[0,0, x_{3}\right]+$
$3 h^{3} a_{11}^{2} a_{13} \xi_{3} f_{1}\left[0,0, x_{3}\right]+2 h^{3} a_{12} a_{13} a_{21} \xi_{3} f_{1}\left[0,0, x_{3}\right]+$
$h^{2} a_{13} a_{22} \xi_{3} f_{1}\left[0,0, x_{3}\right]+\ll 337 \gg+$
$\frac{1}{6} h^{3} a_{31}^{3} x_{3}^{3} \xi_{3} f_{3}^{(3,0,0)}\left[0,0, x_{3}\right]+\frac{1}{2} h^{3} a_{31}^{2} a_{32} x_{3}^{3} f_{1}^{(3,1,0)}\left[0,0, x_{3}\right]+$
$\frac{1}{6} h^{3} a_{31}^{3} x_{3}^{3} f_{2}^{(3,1,0)}\left[0,0, x_{3}\right]+\frac{1}{6} h^{3} a_{31}^{3} x_{3}^{3} f_{1}^{(4,0,0)}\left[0,0, x_{3}\right]$
rhs =
$\operatorname{Normal}\left[\operatorname{Zip}_{\left\{\xi_{1}, \xi_{2}\right\}} @ \operatorname{Eh} / . \mathbb{E}\left[Q_{-}, P_{-}\right]: \rightarrow \operatorname{Series}\left[P \mathbb{e}^{Q},\{h, 0,3\}\right]\right]$;
Simplify[lhs == rhs]
True
$\mathbb{E} /: \mathbb{E}\left[Q 1_{-}, P 1_{-}\right] \mathbb{E}\left[Q 2_{-}, P 2_{-}\right]:=\mathbb{E}[Q 1+Q 2, P 1 * P 2] ;$
$\operatorname{Bind}_{\zeta s_{-} L i s t}\left[L_{-} \mathbb{E}, R_{-} \mathbb{E}\right]:=\operatorname{Module}[\{n$, hide ζs, hidezs\},
hide $\varsigma s=$ Table $\left[\varsigma_{s} \llbracket i \rrbracket \rightarrow \zeta_{n @ i},\{i, L e n g t h @ \zeta s\}\right] ;$
hidezs $=$ Table[ऽs【i]* $\left.\rightarrow z_{n @ i},\{i, L e n g t h @ \zeta S\}\right] ;$
$\operatorname{Zip}_{\zeta s / . \operatorname{hide} \zeta_{s}}[(L / \cdot h i d e z s)(R / \cdot h i d e \zeta s)]$;
$\operatorname{Bind}_{\left\{\xi_{2}\right\}}\left[\mathbb{E}\left[\xi\left(x_{1}+x_{2}\right), 1\right], \mathbb{E}\left[\xi_{2}\left(x_{2}+x_{3}\right), 1\right]\right]$
$\mathbb{E}\left[\xi\left(x_{1}+x_{2}+x_{3}\right), 1\right]$
$\operatorname{Bind}_{\left\{\xi_{2}\right\}}\left[\mathbb{E}\left[\left(\xi_{2}+\xi_{3}\right) x_{2}, 1\right], \mathbb{E}\left[\left(\xi_{1}+\xi_{2}\right) x, 1\right]\right]$
$\mathbb{E}\left[x\left(\xi_{1}+\xi_{2}+\xi_{3}\right), 1\right]$
The 2D Lie Algebra. Clever people know* that if $[a, x]=\gamma x$ then $\mathbb{C}^{\xi x} \mathbb{C}^{\alpha a}=\mathbb{e}^{\alpha a} \mathbb{C}^{\mathbb{e}^{-\gamma a} \xi x}$. Ergo with

we have ${ }^{t} S W_{a x}=\mathbb{e}^{\alpha a+\mathbb{e}^{-\gamma \alpha} \xi x}$.

* Indeed $x a=(a-\gamma) x$ thus $x a^{n}=(a-\gamma)^{n} x$ thus $x \mathbb{e}^{\alpha a}=\mathbb{e}^{\alpha(a-\gamma)} x=\mathbb{e}^{-\gamma \alpha} \mathbb{e}^{\alpha a} x$ thus $x^{n} \mathbb{e}^{\alpha a}=\mathbb{e}^{\alpha a}\left(\mathbb{e}^{-\gamma \alpha}\right)^{n} x^{n}$ thus $\mathbb{e}^{\xi x} \mathbb{e}^{\alpha a}=\mathbb{e}^{\alpha a} \mathbb{e}^{\mathbb{e}^{-\gamma \alpha} \xi x}$.
The Real Thing. In $Q U /\left(\epsilon^{2}=0\right)$ over $\mathbb{Q} \llbracket \hbar \rrbracket$ using the yax order, $T=\mathbb{e}^{\hbar t}, \bar{T}=T^{-1}, \mathcal{A}=\mathbb{e}^{\gamma \alpha}$, and $\overline{\mathcal{A}}=\mathcal{A}^{-1}$, we have

$$
{ }^{t} R_{i j}=\mathbb{e}^{\hbar\left(y_{i} x_{j}-t_{i} a_{j} / \gamma\right)}\left(1+\epsilon \hbar\left(a_{i} a_{j} / \gamma-\gamma \hbar^{2} y_{i}^{2} x_{j}^{2} / 4\right)\right)
$$

in $\mathcal{S}\left(B_{i}, B_{j}\right)$, and in $\mathcal{S}\left(B_{1}^{*}, B_{2}^{*}, B\right)$ we have

$$
{ }^{t} m=\mathbb{e}^{\left(\alpha_{1}+\alpha_{2}\right) a+\eta_{2} \xi_{1}(1-T) / \hbar+\left(\xi_{1} \overline{\mathcal{A}}_{2}+\xi_{2}\right) x+\left(\eta_{1}+\eta_{2} \overline{\mathcal{A}}_{1}\right) y}\left(1+\epsilon \lambda_{m}\right)
$$

where $\lambda_{m}=2 a \eta_{2} \xi_{1} T+\frac{1}{4} \gamma \eta_{2}^{2} \xi_{1}^{2}\left(3 T^{2}-4 T+1\right) / \hbar-\frac{1}{2} \gamma \eta_{2} \xi_{1}^{2}(3 T-1) x \overline{\mathcal{A}}_{2}$ $-\frac{1}{2} \gamma \eta_{2}^{2} \xi_{1}(3 T-1) y \overline{\mathcal{A}}_{1}+\gamma \eta_{2} \xi_{1} x y \hbar \overline{\mathcal{A}}_{1} \overline{\mathcal{A}}_{2}$. Similar formulas delight us for ${ }^{t} \Delta$ and ${ }^{t} S$.
A generic morphism.

Implementation.


```
    Module[{s, z, zs, c, ys, \etas, qt, zrule, Q1, Q2},
    zs = Table[5*, {5, 5s}];
    c=Q /. Alternatives @@ ( Ss Uzs) }->0\mathrm{ ;
    ys = Table[\partial
    \etas=Table[\mp@subsup{\partial}{z}{\prime}(Q/. Alternatives @@ SS }->0),{z,zs}]
    qt = Inverse@Table[K\mp@subsup{\delta}{z,5}{*}-\mp@subsup{\partial}{z,\zeta}{}Q,{\zeta,\zetaS},{z, zs}];
    zrule = Thread[zs }->\textrm{qt}.(zs+ys)]
    Q2 = (Q1 = c+\etas.zs /. zrule) /. Alternatives @@zs }->0\mathrm{ ; ;
    simp/@\mathbb{E}[L,Q2, Det[qt] e eQ2 Zip
QZip
```

```
LZip
    Module[{\zeta, z, zs, c, ys, \etas, lt, zrule, L1, L2, Q1, Q2},
    zs = Table[\zeta*, {\zeta, \zetas}];
    c=L/. Alternatives@@ (\zetas Uzs) ->0;
    ys = Table[ [\partials (L/. Alternatives@@ zs ->0), {\zeta, \zetas}];
    \etas=Table[\mp@subsup{\partial}{z}{\prime}(L/, Alternatives@@ ¢S ->0),{z,zs}];
    lt = Inverse@Table[K\delta\mp@subsup{\delta}{z,5}{** - dz,5}L,{\zeta, \zetas}, {z,zs}];
    zrule = Thread[zs }->\mathrm{ lt.(zs + ys)];
    L2 = (L1 = c + \etas.zs /. zrule)/. Alternatives@@ zs }->0\mathrm{ ;
    Q2 = (Q1 = Q /. T2t /. zrule) /. Alternatives @@ zs }->0\mathrm{ ;
    simp /@
        \mathbb{E}[L2, Q2, Det[1t] e el2-Q2
                Zip
```

LZip $_{55_{-} L i s t}:=$ LZip $_{5 s, \mathrm{cF}}$;

```
Bind}\mp@subsup{}{0}{\prime}[\mp@subsup{L}{-}{\prime},\mp@subsup{R}{-}{\prime}]:=LR
```



```
    Times[
        L/. Table[(v:T|t|a|x|y)
        R/. Table[(v:\tau|\alpha|\xi|\eta) i > v vei, {i, {is}}]
        ] // LZipflatteneTable[{\mp@subsup{\tau}{n@i}{i},\mp@subsup{a}{n@i}{*}},{i,{is}}] //
```



```
Bind[\mathcal{E}\mathbb{E}] := &;
Bind[Ls , \zetas List, R_] := Bind
```


A Partial To Do List.

- Complete all "docility" arguments by identifying a "contained" docile substructure.
- Understand denominators and get rid of them.
- See if much can be gained by including P in the exponential: $\mathbb{e}^{L+Q} P \leadsto \mathbb{e}^{L+Q+P}$?
- Clean the program and make it efficient.
- Run it for all small knots and links, at $k=2,3$.
- Understand the centre and figure out how to read the output.
- Execute the Drinfel'd double procedule at \mathbb{E}-level (and thus get rid of DeclareAlgebra and all that is around it!).
- Extend to Sl_{3} and beyond.
- Do everything with Zip and Bind as the fundamentals, without ever referring back to (quantized) Lie algebras.

References.

[BN1] D. Bar-Natan, Balloons and Hoops and their Universal Finite Type Invariant, BF Theory, and an Ultimate Alexander Invariant, $\omega \varepsilon \beta / \mathrm{KBH}$, arXiv:1308.1721.
[BN2] D. Bar-Natan, Polynomial Time Knot Polynomial, research proposal for the 2017 Killam Fellowship, $\omega \varepsilon \beta / \mathrm{K} 17$.
[BNG] D. Bar-Natan and S. Garoufalidis, On the Melvin-Morton-Rozansky conjecture, Invent. Math. 125 (1996) 103-133.
[BNS] D. Bar-Natan and S. Selmani, Meta-Monoids, Meta-Bicrossed Products, and the Alexander Polynomial, J. of Knot Theory and its Ramifications 22-10 (2013), arXiv:1302.5689.
[BV] D. Bar-Natan and R. van der Veen, A Polynomial Time Knot Polynomial, Proc. Amer. Math. Soc., to appear, arXiv:1708.04853.
[Fa] L. Faddeev, Modular Double of a Quantum Group, arXiv: math/9912078.
[GR] S. Garoufalidis and L. Rozansky, The Loop Exapnsion of the Kontsevich Integral, the Null-Move, and S-Equivalence, arXiv:math.GT/0003187.
[GST] R. E. Gompf, M. Scharlemann, and A. Thompson, Fibered Knots and Potential Counterexamples to the Property $2 R$ and Slice-Ribbon Conjectures, Geom. and Top. 14 (2010) 2305-2347, arXiv:1103.1601.

The Complete Implementation. $\omega \varepsilon \beta /$ SL2Portfolio
An even fuller implementation is at $\omega \varepsilon \beta /$ FullImp.
Initialization / Utilities

```
$p = 2; $k = 1; $U = QU; $E := {$k, $p};
```



```
q}=\mp@subsup{\mp@code{e}}{}{\gamma\in\hbar}
```



```
t2T = { e e
SetAttributes[SS, HoldAll];
SS[\mp@subsup{\varepsilon}{-}{\prime},op_] := Collect[
    Normal@Series[If[$p>0, &, & /. T2t], {\hbar, 0, $p}],
    #,op];
SS[\mathcal{E}] := SS[ &, Together];
Simp[ &_, op_] := Collect[ &, _CU | _QU,op];
Simp[\mp@subsup{\varepsilon}{-}{\prime}] := Simp[&, SS[#, Expand] &];
K\delta /: K }\mp@subsup{\delta}{\mp@subsup{i}{-}{\prime},\mp@subsup{j}{-}{\prime}}{:= If[i === j, 1, 0];
c_Integerrk_Integer := c+0 [\epsilon] [ }\mp@subsup{}{~}{k+1}\mathrm{ ;
```

- Prove a genus bound and a Seifert formula.
- Obtain "Gauss-Gassner formulas" ($\omega \varepsilon \beta / \mathrm{NCSU}$).
- Relate with Melvin-Morton-Rozansky and with RozanskyOverbay.
- Understand the braid group representations that arise.
- Find a topological interpretation. The Garoufalidis-Rozansky "loop expansion" [GR]?
- Figure out the action of the Cartan automorphism.
- Disprove the ribbon-slice conjecture!
- Figure out the action of the Weyl group.
- Do everything at the "arrow diagram" level of finite-type invariants of (rotational) virtual tangles.
- What else can you do with the "solvable approximations"?
- And with the "Gaussian zip and bind" technology?
[MM] P. M. Melvin and H. R. Morton, The coloured Jones function, Commun. Math. Phys. 169 (1995) 501-520.
[Ov] A. Overbay, Perturbative Expansion of the Colored Jones Polynomial, University of North Carolina PhD thesis, $\omega \varepsilon \beta / \mathrm{Ov}$.
[Qu] C. Quesne, Jackson's q-Exponential as the Exponential of a Series, ar-Xiv:math-ph/0305003.
[Ro1] L. Rozansky, A contribution of the trivial flat connection to the Jones polynomial and Witten's invariant of 3 d manifolds, I, Comm. Math. Phys. 175-2 (1996) 275-296, arXiv:hep-th/9401061.
[Ro2] L. Rozansky, The Universal R-Matrix, Burau Representation and the Melvin-Morton Expansion of the Colored Jones Polynomial, Adv. Math. 134-1 (1998) 1-31, arXiv:q-alg/9604005.
[Ro3] L. Rozansky, A Universal U(1)-RCC Invariant of Links and Rationality Conjecture, arXiv:math/0201139.
[Vo] H. Vo, Alexander Invariants of Tangles via Expansions, University of Toronto Ph.D. thesis, in preparation.
[Za] D. Zagier, The Dilogarithm Function, in Cartier, Moussa, Julia, and Vanhove (eds) Frontiers in Number Theory, Physics, and Geometry II. Springer, Berlin, Heidelberg, and $\omega \varepsilon \beta / Z a$.

```
CF[\mp@subsup{\mathcal{E}}{-}{\prime}] := ExpandDenominator@
        ExpandNumerator@
            Together[Expand[ &] // . e e 
Unprotect[SeriesData];
SeriesData /: CF[sd_SeriesData] := MapAt[CF, sd, 3];
SeriesData /: Expand[sd_SeriesData] :=
    MapAt[Expand, sd, 3];
SeriesData /: Simplify[sd_SeriesData] :=
    MapAt[Simplify, sd, 3];
SeriesData /: Together[sd_SeriesData] :=
    MapAt[Together, sd, 3];
SeriesData /: Collect[sd_SeriesData, specs__] :=
    MapAt[Collect[#, specs] &, sd, 3];
Protect[SeriesData];
```

DeclareAlgebra

```
Unprotect [NonCommutativeMultiply];
Attributes [NonCommutativeMultiply] = \{\};
(NCM = NonCommutativeMultiply) [x_] := \(x\);
NCM [ \(\left.x_{-}, y_{-}, z_{--}\right]:=(x * * y) * * z ;\)
0 **_ \(={ }_{-}\)** \(0=0\);
(x_PLus) ** y_ := (\#**y) \& /@x;
\(x_{-}\)** (y_PLus) := (x** \#) \& /@y;
\(\mathrm{B}\left[x_{-}, x_{-}\right]=0 ; \mathrm{B}\left[x_{-}, y_{-}\right]:=x * * y-y * * x\);
\(\mathrm{B}\left[x_{-}, y_{-}, e_{-}\right]:=\mathbf{B}[x, y, e]=\mathbf{B}[x, y] ;\)
DeclareAlgebra[U_Symbol, opts__RuLe] :=
Module[ \(\{\mathrm{gp}, \mathrm{sr}, \mathrm{g}, \mathrm{cp}, \mathrm{M}, \mathrm{CE}, \mathrm{k}=0\),
    gs = Generators /. \{opts\},
    cs = Centrals /. \{opts\} /. Centrals \(\rightarrow\) \{\} \},
    (\#u = U@\#) \& /@gs;
    gp = Alternatives @@ gs; gp = gp | gp_; (* gens *)
    sr = Flatten@Table [ \(\left\{\mathrm{g} \rightarrow++\mathrm{k}, \mathrm{g}_{i_{-}} \rightarrow\right.\) \{i, k\} \}, \(\left.\{\mathrm{g}, \mathrm{gs}\}\right] ;\)
    (* sorting \(\rightarrow\) *)
    cp = Alternatives @@ cs; (* cents *)
    SetAttributes [M, HoldRest]; M[0, _] = 0;
    M[a_, \(\left.x_{-}\right]:=a x\);
    CE [ \(\left.\mathcal{E}_{-}\right]:=\operatorname{Collect}[\mathcal{E}, \quad U\), Expand] /. \$trim;
    \(U_{i_{-}}\left[\mathcal{E}_{-}\right]:=\mathcal{E} / .\left\{t: c p: \rightarrow t_{i}, u_{-} U: \rightarrow\left(\#_{i} \&\right) / @ u\right\} ;\)
    \(U_{i}[\operatorname{NCM}[]]=U @\{ \}=\mathbf{1}_{U}=U[]\);
    B[U@(x_) \(\left.i_{-}, U @\left(y_{-}\right)_{i_{-}}\right]:=U_{i} @ \mathrm{~B}[U @ x, U @ y] ;\)
    \(\mathrm{B}\left[U @\left(x_{-}\right) i_{-}, U @\left(y_{-}\right)_{j_{-}}\right] / ; i=!=j:=0\);
    B[U@y_, U@x_] := CE[-B[U@x, U@y]];
    \(x_{-} * *\left(C_{-}, \mathbf{1}_{U}\right):=C E[c x] ;\left(c_{-} . \mathbf{1}_{U}\right) * * x_{-}:=C E[c x]\);
    \(\left(a_{-} \cdot U\left[x x_{-}, x_{-}\right]\right) * *\left(b_{-} \cdot U\left[y_{-}, y y_{--}\right]\right):=\)
        If[OrderedQ \([\{x, y\} / . s r]\),
        CE@M[ab/.\$trim, U[xx, \(x, y, y y]]\),
        U@xx **
            CE@M[ab/. \$trim, U@y**U@x + B[U@x, U@y, \$E]] **
        U@yy];
    \(U @\left\{c_{-} . *(L: g p)^{n_{-}}, r_{--}\right\} /\); FreeQ \([c, \mathrm{gp}]:=\)
    CE[c U@Table[l, \(\{n\}]\) ** U@ \(\{r\}]\);
    \(U @\left\{c_{-} . * L: g p, r_{---}\right\}:=C E[c U[L] * * U @\{r\}] ;\)
    U@ \{c_, \(\left.r_{---}\right\} /\); FreeQ \([c, \mathrm{gp}]:=\mathrm{CE}[c U @\{r\}]\);
    U@\{L_PLus, \(\left.r_{--\_}\right\}:=C E[U @\{\#, r\} \& / @ L] ;\)
    \(U @\left\{L_{-}, r_{---}\right\}:=U @\{E x p a n d[L], r\}\);
    \(U\left[\varepsilon_{-} N o n C o m m u t a t i v e M u L t i p l y\right]:=U / @ \varepsilon\);
    \(\mathbb{O}_{u}\left[s p e c s \_\right.\)_ \(\left.p o l y_{-}\right]:=\)Module[\{sp, null, vs, us\},
        \(s p=\) Replace \(\left[\{s p e c s\}, L_{-} L i s t: \rightarrow L_{\text {null }},\{1\}\right] ;\)
        vs = Join @@ (First /@ sp) ;
        us = Join @@ (sp /. \(L_{-} s_{-}: \rightarrow\left(L / x_{-} i_{-}: X_{s}\right)\) );
        CE [Total [
                CoefficientRules [poly, vs] /. ( \(p_{-} \rightarrow c_{-}\)) : \(\rightarrow c\) U@ (us \(\left.{ }^{p}\right)\)
                ]] /. \(x_{\text {_null }}: \rightarrow X\);
    \(\mathbb{O}_{u}\left[\operatorname{specs}_{---}, \mathbb{E}\left[L_{-}, Q_{-}, P_{-}\right]\right]:=\)
    \(\mathbb{O}_{U}\left[\right.\) specs, \(\left.\mathbf{S S @ N o r m a l}\left[P \mathbb{e}^{L+Q}\right]\right]\);
    \(\sigma_{r s} \quad\left[c_{-} \cdot * u_{-} U\right]:=\)
        \(\left(c / \cdot(t: c p)_{j_{-}}: \rightarrow t_{j / \cdot\{r s\}}\right) U\left[\right.\) List @@ (u/. \(\left.\left.v_{-j_{-}}: \rightarrow v_{j / \cdot\{r s\}}\right)\right]\);
    \(m_{j_{-} \rightarrow k_{-}}\left[c_{-} \cdot * u_{-} U\right]:=\)
        CE[( \(\left(c / .(t: c p)_{j} \rightarrow \mathrm{t}_{k}\right)\) DeleteCases \(\left[u\right.\), _j \(\left.\left._{k}\right]\right)\) **
            \(U\) @@ Cases \(\left[u, w_{-j} \rightarrow w_{k}\right]\) ** U @@ Cases \(\left[u, L_{k}\right]\) ];
    \(U /: c_{-} * u_{-} U * v_{-} U\) := CE[cu**v];
    \(S_{i_{-}}\left[c_{-} \cdot * u_{-} U\right]\) :=
        CE[((c /. S \(\left.{ }_{i}[U, C e n t r a l s]\right)\) DeleteCases [u, _i]) **
            \(U_{i}\left[\right.\) NCM @@ Reverse@Cases [ \(u, x_{-i}: \rightarrow\) S@U@x]]];
    \(\Delta_{i_{-} \rightarrow j_{-}, k_{-}}\left[c_{-} \cdot * u_{-} U\right]:=\)
        CE[((c /. \(\Delta_{i \rightarrow j, k}[U\), Centrals]) DeleteCases [u, _i]) **
            (NCM @@ Cases [u, \(\left.x_{-i}: \rightarrow \sigma_{1 \rightarrow j, 2 \rightarrow k} @ \Delta @ U @ x\right] /\).
                NCM[] \(\rightarrow U[])] ;]\)
```

Unprotect [NonCommutativeMultiply];
Attributes [NonCommutativeMultiply] = \{\};
(NCM = NonCommutativeMultiply) [x_] := x;
NCM [$\left.x_{-}, y_{-}, z_{--}\right]:=(x * * y) * * z$;
0 **_ = _ ** $0=0$;
(x PLus) **y := (\#**y) \& /@ x
x_ ** (y_PLus) : = (x** \#) \& /@y;
$\mathrm{B}\left[x_{-}, y_{-}, e_{-}\right]:=\mathrm{B}[x, y, e]=\mathrm{B}[x, y] ;$
DeclareAlgebra[U_Symbol, opts__RuLe] :=
Module[\{gp, sr, g, cp, M, CE, k = 0,
gs = Generators /. \{opts\},
= Centrals /. \{opts\} /. Centrals \rightarrow \{\} \},
(*) =
sr = Flatten@Table [$\left.\left\{\mathrm{g} \rightarrow++\mathrm{k}, \mathrm{g}_{\mathrm{i}} \rightarrow \mathbf{~}\{\mathrm{i}, \mathrm{k}\}\right\},\{\mathrm{g}, \mathrm{gs}\}\right] ;$
(* sorting \rightarrow *)

SetAttributes [M, HoldRest]; M[0, _] = 0;
M[a_, x_] := ax;
CE[$\left.\mathcal{E}_{-}\right]:=$Collect $[\mathcal{E}, \quad U$, Expand] /. \$trim;

NCM[]] = U@ $\left\}=1_{u}=U[]\right.$

B[U@y_, U@x_] := CE[-B[U@x, U@y]];
** $\left(C, 1_{U}\right):=C E[C X] ;\left(c_{-}, 1_{U}\right)$ ** $X_{-}:=C E[C X] ;$

If[OrderedQ $[\{x, y\} / . s r]$,
CEM[ab /. \$trim, U[xx, x, y, yy]],

CE@M[ab/.\$trim, U@y** U@x + B[U@x, U@y, \$E]] ** U@yy];
U@\{c_.* (L:gp) $\left.{ }^{n_{-}}, r_{--}\right\} /$; FreeQ[c, gp] :=
CE[c U@Table[l, $\{n\}]$ ** U@ $\{r\}]$;
U@ \{c_. * L : gp, $\left.r_{-_-}\right\}$:= CE[cU[l] ** U@ $\left.\{r\}\right]$;
U@\{c_, r___\} /; FreeQ[c, gp] := CE[c U@\{r\}];
@\{LPLus, r \} := CE[U@\{\#, r\} \& /@ L]
$\{$ Expand $[l], r\}$;
$\mathbb{O}_{u}[$ specs___, poly_] := Module[\{sp, null, vs, us\},
$s p=$ Replace $\left[\{s p e c s\}, L_{-} L i s t: \rightarrow L_{\text {null }},\{1\}\right] ;$
vs = Join @@ (First /@ sp);
us = Join @@ (sp /. L_s : $\rightarrow\left(L_{\text {/ }} X_{-i}: \rightarrow X_{s}\right)$)
CE [Total [
]] /. X_null : \rightarrow X];
$\mathbb{O}_{u}\left[\right.$ specs___, $\left.\mathbb{E}\left[L_{-}, Q_{-}, P_{-}\right]\right]:=$
$\mathbb{O}_{u}\left[\right.$ specs, SS@Normal $\left.\left[P \mathbb{e}^{L+Q}\right]\right]$;
$\sigma_{r s} \quad\left[c_{-} \cdot * u_{-} U\right]:=$
$\left(c / \cdot(t: c p)_{j_{-}}: \rightarrow t_{j / \cdot\{r s\}}\right) U\left[\right.$ List @@ (u/. $\left.\left.v_{-j_{-}}: \rightarrow v_{j / \cdot\{r s\}}\right)\right] ;$
$m_{j_{-} \rightarrow k_{-}}\left[c_{-} \cdot * u_{-} U\right]$:=
CE[($\left(c / .(t: c p)_{j} \rightarrow \mathrm{t}_{k}\right)$ DeleteCases $\left[u\right.$, _ $\left.\left.\left._{j}\right|_{k}\right]\right)$ **
U @@ Cases [$\left.u, w_{-j}: \rightarrow w_{k}\right]$ ** U @@ Cases [u, _k]] ;
U /: c_.*u_U*v_U := CE[cu**v];
$S_{i_{-}}\left[c_{-} \cdot * U_{-} U\right]:=$
CE[((c /. S $\left.{ }_{i}[U, C e n t r a l s]\right)$ DeleteCases [u, _i]) **
$U_{i}\left[\right.$ NCM @@ Reverse@Cases [u, $x_{-}: \rightarrow$ S@U@x]]];
${ }_{i \rightarrow j}, k[C \cdot * u]:=$
E[((c /. $\Delta_{i \rightarrow j, k}[U$, Centrals]) DeleteCases [u, _i]) **

NCM[] \rightarrow [])];

DeclareMorphism

```
DeclareMorphism[m_, \(U_{-} \rightarrow V_{-}\), ongs_List, oncs_List: \{\}] := (
    Replace[ongs, \(\left\{\left(g_{-} \rightarrow i m g_{]}\right): \rightarrow(m[U[g]]=i m g)\right.\),
        \(\left(g_{-}: \rightarrow\right.\) img_) \(\left.\left.: \rightarrow(m[U[g]]:=i m g / . \$ t r i m)\right\},\{1\}\right] ;\)
    \(m\left[\mathbf{1}_{U}\right]=\mathbf{1}_{V}\);
    \(m\left[U\left[g_{-i}\right]\right]:=V_{i}[m[U @ g]] ;\)
    \(m\left[U\left[v s \_\_\right]\right]:=\)NCM @@ ( \(m / @ U / @\{v s\}\) ) ;
    \(m\left[\delta_{-}\right]:=\operatorname{Simp}\left[\varepsilon /\right.\) oncs /. \(\left.u_{-} U: \rightarrow m[u]\right] /\). \$trim; )
```

Meta-Operations
$\sigma_{r s} \quad\left[\mathcal{E}_{-} P L u s\right]:=\sigma_{r s} / @ \varepsilon$;
$\mathrm{m}_{j_{-} \rightarrow j_{-}}=$Identity; $\mathrm{m}_{j_{-} \rightarrow R_{-}}[\theta]=0$;
$\mathrm{m}_{j_{-} \rightarrow \mathrm{R}_{-}}\left[\mathcal{E}_{-} P L u s\right]:=\operatorname{Simp}\left[\mathrm{m}_{j \rightarrow k} / @ \mathcal{E}\right]$;
$\mathrm{m}_{\mathrm{S}_{-\ldots}, i_{-}, j_{-} \rightarrow k_{-}}\left[\mathcal{E}_{-}\right]:=\mathrm{m}_{j \rightarrow k}$ @ $\mathrm{m}_{i s, i \rightarrow j}$ @ \mathcal{E};
$\mathbf{S}_{i_{-}}\left[\mathcal{E}_{-} P L u s\right]$:= Simp $\left[\mathbf{S}_{i} / @\right.$] ;
$\Delta_{i s_{-}}\left[\mathcal{E}_{-} P L u s\right]:=\operatorname{Simp}\left[\Delta_{i s} / @ 8\right] ;$
Implementing $\mathrm{CU}=\mathcal{U}\left(\mathrm{sl}_{2}^{\gamma \epsilon}\right)$
DeclareAlgebra[CU, Generators $\rightarrow\{y, a, x\}$, Centrals $\rightarrow\{t\}] ;$

$\mathrm{B}\left[\mathrm{X}_{\mathrm{cu}}, \mathrm{y}_{\mathrm{cu}}\right]=2 \in \mathrm{a}_{\mathrm{cu}}-\mathrm{t} \mathbf{1}_{\mathrm{cu}}$;
(S@ycu = - $\mathbf{y c u}_{\mathrm{cu}}$; S@acu = - \mathbf{a}_{cu}; S@ $\mathrm{X}_{\mathrm{Cu}}=-\mathrm{x}_{\mathrm{Cu}}$;)
$S_{i_{-}}[C U, C e n t r a l s]=\left\{t_{i} \rightarrow-t_{i}\right\} ;$
$\Delta @ y_{c u}=C U @ y_{1}+C U @ y_{2} ; \Delta @ a_{c u}=C U @ a_{1}+C U @ a_{2} ;$
$\Delta @ X_{C U}=C U @ x_{1}+C U @ x_{2}$;
$\Delta_{i_{-} \rightarrow j_{-}, k_{-}}[C U$, Centrals $]=\left\{t_{i} \rightarrow t_{j}+t_{k}\right\} ;$
Implementing $\mathrm{QU}=\mathcal{U}_{q}\left(\mathrm{sl}_{2}^{\gamma^{\epsilon}}\right)$
DeclareAlgebra[QU, Generators $\rightarrow\{y, a, x\}$,
Centrals \rightarrow \{t, T\}];
$B\left[a_{Q u}, Y_{Q u}\right]=-\gamma Y_{Q U} ; B\left[X_{Q U}, a_{Q u}\right]=-\gamma Q U @ x ;$
$B\left[X_{Q U}, Y_{Q u}\right]:=S S\left[q_{\hbar}-1\right]$ QU@ $\{y, x\}+$
$\mathbb{O}_{\mathrm{Qu}}\left[\{a\}, \mathrm{SS}\left[\left(1-\mathrm{T} e^{-2 \in \mathrm{E}^{\hbar}}\right) / \hbar\right]\right] ;$
$\left(S @ y_{Q U}:=\mathscr{O}_{Q U}\left[\{a, y\}, S S\left[-T^{-1} e^{\hbar \in \mathrm{a}} \mathrm{y}\right]\right] ; \mathrm{S@} \mathrm{a}_{\mathrm{QU}}=-\mathrm{a}_{\mathrm{QU}} ;\right.$
S@ $\left.X_{Q U}:=\mathbb{O}_{Q U}\left[\{a, X\}, S S\left[-e^{\hbar \in a} x\right]\right] ;\right)$
$S_{i_{-}}\left[Q U\right.$, Centrals] $=\left\{t_{i} \rightarrow-t_{i}, T_{i} \rightarrow T_{i}^{-1}\right\} ;$
$\Delta @ y_{\mathrm{QU}}:=\mathbb{O}_{\mathrm{QU}}\left[\left\{y_{1}, a_{1}\right\}_{1},\left\{y_{2}\right\}_{2}, S S\left[y_{1}+T_{1} e^{-\hbar \in a_{1}} y_{2}\right]\right] ;$
$\Delta @ a_{Q U}=$ QU@ $a_{1}+$ QU@ a_{2}
$\Delta @ x_{\mathrm{QU}}:=\mathbb{O}_{\mathrm{QU}}\left[\left\{\mathrm{a}_{1}, \mathrm{x}_{1}\right\}_{1},\left\{\mathrm{x}_{2}\right\}_{2}, \mathrm{SS}\left[\mathrm{x}_{1}+\mathbb{e}^{-\hbar \epsilon \mathrm{a}_{1}} \mathrm{x}_{2}\right]\right] ;$
$\Delta_{i_{-} \rightarrow j_{-}, k_{-}}\left[Q U\right.$, Centrals] $=\left\{t_{i} \rightarrow t_{j}+t_{k}, T_{i} \rightarrow T_{j} T_{k}\right\} ;$
The representation ρ
$\rho @ \mathbf{y}_{\mathrm{cu}}=\rho @ \mathbf{y}_{\mathrm{Qu}}=\left(\begin{array}{cc}0 & 0 \\ \epsilon & 0\end{array}\right) ; \rho @ \mathbf{a}_{\mathrm{cu}}=\rho @ \mathrm{a}_{\mathrm{Qu}}=\left(\begin{array}{ll}\gamma & 0 \\ 0 & 0\end{array}\right)$;
$\rho @ x_{C U}=\left(\begin{array}{cc}0 & \gamma \\ 0 & 0\end{array}\right) ; \rho @ x_{Q U}=\left(\begin{array}{cc}0 & \left(1-e^{-\gamma \in \hbar}\right) /(\epsilon \hbar) \\ 0 & 0\end{array}\right) ;$
$\rho\left[\mathbb{e}^{\delta_{-}}\right]:=$MatrixExp $[\rho[\mathcal{E}]]$;
$\rho\left[\mathcal{E}_{-}\right]:=$
($\varepsilon / . \operatorname{T2t} / . \mathrm{t} \rightarrow \gamma \in /$.
(U:CU|QU) [u__] : \rightarrow Fold $\left.\left[\operatorname{Dot},\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right), \rho / @ U / @\{u\}\right]\right)$
tSW
Goal. In either U, compute $F=\boldsymbol{e}^{-\eta y} \mathbb{e}^{\xi x} \mathbb{e}^{\eta y} \mathbb{e}^{-\xi x}$. First compute
$\mathrm{G}=\mathbb{e}^{\xi \mathrm{x}} \mathrm{y} \mathbb{e}^{-\xi \mathrm{x}}$, a finite sum. Now F satisfies the ODE
$\partial_{\eta} F=\partial_{\eta}\left(e^{-\eta y} e^{\eta G}\right)=-\mathrm{yF}+\mathrm{FG}$ with initial conditions $F(\eta=0)=1$. So
we set it up and solve:

```
\(S W_{x y}\left[U_{-}, k k_{-}\right]:=\)
    \(S W_{x y}[U, k k]=B l o c k[\{\$ U=U, \$ \mathrm{k}=k k, \$ \mathrm{p}=k k\}\),
        Module[\{G, F, fs, f, bs, e, b, es\},
            \(\mathrm{G}=\operatorname{Simp}\left[\operatorname{Table}\left[\xi^{k} / k!,\{k, 0, \$ k+1\}\right]\right.\).
            NestList[Simp[B[ \(\left.\left.x_{u}, \#\right]\right]\) \&, \(\left.y u, \$ k+1\right]\) ];
        \(\mathrm{fs}=\mathrm{Flatten} @ \operatorname{Table}\left[\mathrm{f}_{1, \mathrm{i}, \mathrm{j}, \mathrm{k}}[\eta],\{1,0, \$ \mathrm{k}\},\{\mathrm{i}, 0,1\}\right.\),
            \(\{j, 0, l\},\{k, 0, l\}] ;\)
        \(F=f s .\left(b s=f s / . f_{L_{-}, i_{-}, j_{-}, k_{-}}[\eta]: \rightarrow \epsilon^{L} U @\left\{\mathbf{y}^{i}, a^{j}, \mathbf{x}^{k}\right\}\right) ;\)
        es = Flatten [Table [Coefficient \([e, b]=0\),
            \(\left\{\mathrm{e},\left\{\mathrm{F}-\mathbf{1}_{U} / . \eta \rightarrow 0, \mathrm{~F} * * \mathrm{G}-\mathrm{y}_{u} * * \mathrm{~F}-\partial_{\eta} \mathrm{F}\right\}\right\}\),
            \{b, bs\}]];
        \(F=F /\). DSolve[es, fs, \(\eta][1]\);
        \(\mathbb{E}[0\),
            \(\xi \mathbf{x}+\eta \mathbf{y}+(U / .\{\mathbf{C U} \rightarrow-\mathbf{t} \eta \xi, \mathbf{Q U} \rightarrow \eta \xi(\mathbf{1}-\mathrm{T}) / \hbar\})\),
            \(\mathrm{F}+\boldsymbol{0}_{\$ \mathrm{k}} / \cdot\left\{\mathrm{e}^{-} \rightarrow \mathbf{1}, U \rightarrow\right.\) Times \(\}\)
            ] /. (v: \(\eta|\xi| \mathrm{t}|\mathrm{T}| \mathrm{y}|\mathrm{a}| \mathrm{x}) \rightarrow \mathrm{v}_{\mathbf{1}}\)
    ]];
\(\mathrm{tSW}_{x y_{-}, i_{-}, j_{-} \rightarrow k_{-}}:=\)
    \(\mathrm{SW}_{x y}[\$ \mathrm{U}, \$ \mathrm{k}] / .\left\{\xi_{1} \rightarrow \xi_{i}, \eta_{1} \rightarrow \eta_{j},(v: \mathrm{t}|\mathrm{T}| \mathrm{y}|\mathrm{a}| \mathrm{x})_{1} \rightarrow \mathbf{v}_{k}\right\} ;\)
\(\mathrm{tSW}_{\mathrm{xa}, i_{-}, j_{-} \rightarrow k_{-}}:=\mathbb{E}\left[\alpha_{j} \mathrm{a}_{k}, \mathbb{e}^{-\gamma \alpha_{j}} \xi_{i} \mathrm{X}_{k}, 1\right]\);
\(t S W_{\mathrm{ay}, i_{-}, j_{-} \rightarrow k_{-}}:=\mathbb{E}\left[\alpha_{i} \mathrm{a}_{k}, \mathbb{e}^{-\gamma \alpha_{i}} \eta_{j} \boldsymbol{y}_{k}, 1\right] ;\)
```

Exponentials as needed.
Task. Define $\operatorname{Exp}_{U_{i}, k}[\xi, P]$ which computes $\mathbb{e}^{\xi \mathbb{O}(P)}$ to ϵ^{k} in the algebra U_{i}, where ξ is a scalar, X is x_{i} or y_{i}, and P is an ϵ-dependent neardocile element, giving the answer in 正-form. Should satisfy $U @ \operatorname{Exp}_{U_{i}, k}[\xi, P]==\boldsymbol{S}_{U}\left[e^{\xi x}, x \rightarrow \mathbb{D}(P)\right]$.
Methodology. If $P_{0}:=P_{\epsilon=0}$ and $e^{\xi \mathbb{O}(P)}=\mathbb{O}\left(e^{\xi P_{0}} F(\xi)\right)$, then $F(\xi=0)=1$ and we have:

$$
\begin{aligned}
\mathbb{O}\left(e^{\xi P_{0}}\left(P_{0} F(\xi)+\partial_{\xi} F\right)\right. & =\mathbb{O}\left(\partial_{\xi} \mathbb{e}^{\xi P_{0}} F(\xi)\right)= \\
\partial_{\xi} \mathbb{O}\left(e^{\xi P_{0}} F(\zeta)\right) & =\partial_{\xi} \mathbb{e}^{\xi \mathbb{O}(P)}=e^{\xi \mathbb{O}(P)} \mathbb{O}(P)=\mathbb{O}\left(e^{\xi P_{0}} F(\xi)\right) \mathbb{O}(P)
\end{aligned}
$$

This is an ODE for F. Setting inductively $F_{k}=F_{k-1}+\epsilon^{k} \varphi$ we find that $F_{0}=1$ and solve for φ.
(* Bug: The first line is valid only if $\left.\mathbb{O}\left(\mathbb{e}^{P_{\theta}}\right)==\mathbb{e}^{\mathbb{O}\left(P_{\theta}\right)} \cdot *\right)$
(* Bug: § must be a symbol. *)
$\operatorname{Exp}_{U_{-} i_{-}, \theta}\left[\xi_{-}, P_{-}\right]:=$Module $[\{L Q=$ Normal@ $P / . \epsilon \rightarrow 0\}$,
$\mathbb{E}\left[\xi \mathrm{LQ} / .(\mathrm{x} \mid \mathrm{y})_{i} \rightarrow \boldsymbol{0}, \varepsilon \mathrm{LQ} / .(\mathrm{t} \mid \mathrm{a})_{i} \rightarrow \mathbf{0}, \mathbf{1]}\right] ;$
$\operatorname{Exp}_{U_{-} i_{-}, k_{-}}\left[\xi_{-}, P_{-}\right]:=\operatorname{Block}[\{\$ \mathrm{U}=U, \$ \mathrm{k}=k\}$,
Module [\{P0, $\varphi, \varphi s, F, j, r h s, a t \theta, a t \xi\}$,
P0 = Normal@P / $\in \boldsymbol{\epsilon} \boldsymbol{0}$;
$\varphi s=$ Flatten@Table $\left[\varphi_{\mathrm{j} 1, \mathrm{j} 2, \mathrm{j} 3}[\xi],\{j 2,0, k\}\right.$,
$\{\mathrm{j} 1,0,2 k+1$ - j2\}, $\{\mathrm{j} 3,0,2 k+1-\mathrm{j} 2-\mathrm{j} 1\}] ;$
$\mathrm{F}=\operatorname{Normal@Last@Exp} \mathrm{E}_{U_{i}, k-1}[\xi, P]+$
$\epsilon^{k} \varphi s .\left(\varphi s / . \varphi_{j s_{--}}[\varepsilon]: \rightarrow\right.$ Times @@ $\left.\left\{\mathbf{y}_{i}, \mathbf{a}_{i}, \mathbf{x}_{i}\right\}{ }^{\{j s\}}\right) ;$
rhs =
Normal@
Last@
$\mathrm{m}_{i, j \rightarrow i}\left[\mathbb{E}\left[\xi \mathrm{P} 0 / \cdot(\mathbf{x} \mid \mathrm{y})_{i} \rightarrow 0, \varepsilon \mathrm{~S} 0 / \cdot(\mathrm{t} \mid \mathrm{a})_{i} \rightarrow 0, \mathrm{~F}+\boldsymbol{\theta}_{k}\right]\right.$ $\left.\mathrm{m}_{i \rightarrow j} @ \mathbb{E}\left[0,0, P+\boldsymbol{0}_{k}\right]\right] ;$
at0 = (\# == 0) \& / @
Flatten@CoefficientList[F-1/. $\left.\mathcal{E} \rightarrow 0,\left\{y_{i}, a_{i}, x_{i}\right\}\right]$;
at $\xi=$ (\# =: 0) \& / @
Flatten@CoefficientList [($\left.\partial_{\xi} F\right)$ + P0 F - rhs, $\left.\left\{y_{i}, a_{i}, x_{i}\right\}\right] ;$
$\mathbb{E}\left[\varepsilon \mathrm{P} 0 / .(\mathrm{x} \mid \mathrm{y})_{i} \rightarrow 0, \varepsilon \mathrm{P} \theta / .(\mathrm{t} \mid \mathrm{a})_{i} \rightarrow 0, \mathrm{~F}+\boldsymbol{\theta}_{k}\right] /$.
DSolve[And @@ (at0 Uat§), $\varphi s, \xi]$ [1]]]

Zip and Bind

$\mathbb{E} /: \mathbb{E}\left[L 1_{-}, Q 1_{-}, P 1_{-}\right] \equiv \mathbb{E}\left[L 2_{-}, Q 2_{-}, P 2_{-}\right]:=$
CF[L1 == L2] ^CF[Q1 == Q2] ^CF[Normal[P1-P2] == 0];
$\mathbb{E} /: \mathbb{E}\left[L 1_{-}, Q 1_{-}, P 1_{-}\right] \mathbb{E}\left[L 2_{-}, Q 2_{-}, P 2_{-}\right]:=$ $\mathbb{E}[L 1+L 2, Q 1+Q 2, P 1 * P 2] ;$
$\left\{t^{*}, \mathbf{y}^{*}, \mathbf{a}^{*}, \mathbf{x}^{*}, \mathbf{z}^{*}\right\}=\{\tau, \eta, \alpha, \xi, \zeta\} ;$
$\left\{\tau^{*}, \eta^{*}, \alpha^{*}, \xi^{*}, \zeta^{*}\right\}=\{t, y, a, x, z\} ;$
$\left(u_{-} i_{-}\right)^{*}:=\left(u^{*}\right)_{i}$;
$\operatorname{Zip}_{\{ \}}\left[P_{-}\right]:=P$;
$\operatorname{Zip}_{\left\{\zeta_{-}, \xi_{s_{-}-}\right\}}\left[P_{-}\right]:=$
(Expand [P// $\left.\operatorname{Zip}_{\left\{5^{5}\right\}}\right] / \cdot f_{-} \cdot \zeta^{d_{-} \cdot}: \rightarrow \partial_{\left\{s^{*}, d\right\}} f$) / $\cdot \zeta^{*} \rightarrow 0$
QZip implements the "Q-level zips" on $\mathbb{E}(L, Q, P)=P e^{L+Q}$. Such zips regard the L variables as scalars.

```
QZip
    Module[{\zeta, z, zs, c, ys, \etas, qt, zrule, Q1, Q2},
        zs = Table[\zeta*, {\zeta, \zetaS}];
        c = Q /. Alternatives @@ (\zetas Uzs) ->0;
        ys = Table[\partial}\mp@subsup{\partial}{s}{(Q/. Alternatives @@ zs ->0), {\zeta, \zetas}];
        \etas=Table[\partial\mp@subsup{\partial}{z}{\prime}(Q/. Alternatives @@ \zetas ->0), {z, zs }];
```



```
        zrule = Thread[zs }->\mathrm{ qt.(zs + ys)];
    Q2 = (Q1 = c + \etas.zs /. zrule) /. Alternatives @@ zs ->0;
    simp/@\mathbb{E}[L,Q2, Det[qt] e [Q2 Zip
QZip
```

LZip implements the " L-level zips" on $\mathbb{E}(L, Q, P)=P \mathbb{e}^{L+Q}$. Such zips
regard all of $P e^{Q}$ as a single" P ". Here the z 's are t and α and the ζs
are τ and a.
$\operatorname{LZip}_{\text {Ss_List,simp_}} @ \mathbb{E}\left[L_{-}, Q_{-}, P_{-}\right]:=$
Module [\{̧, z, zs, c, ys, $n s, 1 t$, zrule, L1, L2, Q1, Q2\},
zs = Table[$\left.\zeta^{*},\{\zeta, \zeta S\}\right]$;
$\mathrm{c}=L /$. Alternatives @@ (̧s Uzs) $\rightarrow 0$;
$y s=\operatorname{Table}\left[\partial_{\zeta}(L /\right.$. Alternatives @@ zs $\left.\rightarrow 0),\{\zeta, \zeta s\}\right] ;$
$\eta s=$ Table $\left[\partial_{z}(L /\right.$ Alternatives @@ $\left.\zeta s \rightarrow 0),\{z, z s\}\right] ;$
lt = Inverse@Table $\left[K \delta_{z, \zeta^{*}}-\partial_{z, ~} L,\{\zeta, \zeta \varsigma\},\{z, z s\}\right]$;
zrule $=$ Thread $[z s \rightarrow$ lt. (zs + ys)];
$\mathrm{L} 2=(\mathrm{L} 1=c+\eta \mathrm{s} . \mathrm{zs} /$. zrule $) /$. Alternatives @@ zs $\rightarrow 0$;
Q2 = (Q1 = Q /. T2t /. zrule) /.Alternatives @@ zs $\rightarrow 0$;
simp / @
$\mathbb{E}\left[\mathrm{L} 2, \mathrm{Q} 2, \operatorname{Det}[1 \mathrm{t}] \mathrm{e}^{-\mathrm{L} 2-\mathrm{Q} 2}\right.$
$\left.\left.\operatorname{Zip}_{S s}\left[\mathbb{e}^{\mathrm{L} 1+\mathrm{Q1}}(\mathrm{P} / . \mathrm{T} 2 \mathrm{t} / . \mathrm{zrule})\right]\right] / / . \mathrm{t} 2 \mathrm{~T}\right] ;$
LZip $_{\text {Ss_List }}:=$ LZip $_{s s, c F}$;
$\operatorname{Bind}_{\{ \}}\left[L_{-}, R_{-}\right]:=L R$;
$\operatorname{Bind}_{\left\{i s_{--}\right\}}\left[L_{-} \mathbb{E}, R_{-} \mathbb{E}\right]:=\operatorname{Module}[\{n\}$,
Times [
L/. Table[(v: T|t|a|x|y) $\left.\mathrm{i}_{\mathrm{i}} \mathrm{V}_{\mathrm{n} \text { @i }},\{\mathrm{i},\{i s\}\}\right]$,
$R / . \operatorname{Table}\left[(v: \tau|\alpha| \xi \mid \eta)_{i} \rightarrow \mathbf{v}_{\text {n@i }},\{i,\{i s\}\}\right]$
] // LZip Flatten@Table[\{ $\left.\left._{\text {n@i }}, a_{n @ i}\right\},\{i,\{i s\}\}\right] / /$
QZip Flatten@Table $\left.\left\{\xi_{\text {n@i }}, y_{\text {n@i }}\right\},\{i,\{i s\}\}\right]$];
$\mathbf{B}_{L_{-} L i s t}:=\operatorname{Bind}_{L} ; \mathbf{B}_{\text {is_-_ }}:=\operatorname{Bind}_{\{i s\}}$;
Bind $\left[\mathcal{E}_{-} \mathbb{E}\right]:=\varepsilon$;
Bind [Ls__, Ss_List, R_] := Bind ${ }_{s s}[$ Bind $[L s], R]$;
Tensorial Representations
$\mathrm{t} \eta=\mathrm{t} \mathbb{1}=\mathbb{E}\left[0,0,1+\boldsymbol{0}_{\$ k}\right] ;$
$\mathrm{tm}_{i_{-}, j_{-} \rightarrow k_{-}}:=$Module[\{tk\},
$\mathbb{E}\left[\left(\tau_{i}+\tau_{j}\right) \mathbf{t}_{k}+\alpha_{i} \mathbf{a}_{k}+\alpha_{j} \mathbf{a}_{k}, \eta_{i} \mathbf{y}_{k}+\xi_{j} \mathbf{x}_{k}, \mathbf{1}\right]$
$\left(\mathrm{tSW}_{\mathrm{xy}}, \mathrm{i}, j \rightarrow \mathrm{tk} / .\left\{\mathrm{t}_{\mathrm{tk}} \rightarrow \mathbf{t}_{k}, \mathbf{T}_{\mathrm{tk}} \rightarrow \mathbf{T}_{k}, \mathbf{y}_{\mathrm{tk}} \rightarrow \mathbf{e}^{-\gamma \alpha_{i}} \mathbf{y}_{k}\right.\right.$,
$\left.\left.\left.\mathbf{a}_{\mathrm{tk}} \rightarrow \mathbf{a}_{k}, \mathbf{x}_{\mathrm{tk}} \rightarrow \mathbb{e}^{-\gamma \alpha_{j}} \mathbf{x}_{k}\right\}\right)\right]$;
$\mathrm{m}_{j_{-} \rightarrow k_{-}}\left[\mathcal{E}_{-} \mathbb{E}\right]:=\varepsilon \sim \mathrm{B}_{j, k} \sim \mathrm{tm}_{j, k \rightarrow k} ;$
$\mathrm{tm}_{1,2 \rightarrow 3}$
$\mathbb{E}\left[a_{3} \alpha_{1}+a_{3} \alpha_{2}+t_{3}\left(\tau_{1}+\tau_{2}\right)\right.$,
$\mathbf{y}_{3} \eta_{1}+e^{-\gamma \alpha_{1}} \mathbf{y}_{3} \eta_{2}+e^{-\gamma \alpha_{2}} \mathbf{x}_{3} \xi_{1}+\frac{\left(\mathbf{1}-\mathbf{T}_{3}\right) \eta_{2} \xi_{1}}{\hbar}+\mathbf{x}_{3} \xi_{2}$,
$1+\frac{1}{4 \hbar} \eta_{2} \xi_{1}\left(8 \hbar a_{3} T_{3}+4 e^{-\gamma \alpha_{1}-\gamma \alpha_{2}} \gamma \hbar^{2} x_{3} y_{3}+2 e^{-\gamma \alpha_{1}} \gamma \hbar y_{3} \eta_{2}-\right.$ $6 \mathbb{e}^{-\gamma \alpha_{1}} \gamma \hbar \mathrm{~T}_{3} \mathrm{y}_{3} \eta_{2}+2 \mathbb{e}^{-\gamma \alpha_{2}} \gamma \hbar \mathrm{x}_{3} \xi_{1}-6 \mathbb{e}^{-\gamma \alpha_{2}} \gamma \hbar \mathrm{~T}_{3} \mathrm{x}_{3} \xi_{1}+$ $\left.\left.\gamma \eta_{2} \xi_{1}-4 \gamma T_{3} \eta_{2} \xi_{1}+3 \gamma T_{3}^{2} \eta_{2} \xi_{1}\right) \epsilon+\mathbf{O}[\epsilon]^{2}\right]$
$\mathrm{S}\left[U_{-}, k k_{-}\right]:=\mathbf{S}[U, k k]=\operatorname{Module}[\{O E\}$,
$\mathrm{OE}=\mathrm{m}_{3,2,1 \rightarrow 1}\left[\operatorname{Exp}_{\mathrm{QU}_{1}, \$ \mathrm{k}}\left[\eta, \mathrm{S}_{1}\left[\mathrm{QU}\left[\mathrm{y}_{1}\right]\right] / . \mathrm{QU} \rightarrow\right.\right.$ Times $]$
$\operatorname{Exp}_{\mathrm{QU}_{2}, \$ k}\left[\alpha, \mathrm{~S}_{2}\left[\mathrm{QU}\left[\mathrm{a}_{2}\right]\right] / \cdot \mathrm{QU} \rightarrow\right.$ Times $]$
$\operatorname{Exp}_{\mathrm{QU}_{3}, \$ \mathrm{k}}\left[\xi, \mathrm{S}_{3}\left[\mathrm{QU}\left[\mathrm{x}_{3}\right]\right] / . \mathrm{QU} \rightarrow\right.$ Times]];
$\mathbb{E}\left[-\mathrm{t}_{1} \tau_{1}+O E \llbracket 1 \rrbracket, O E \llbracket 2 \rrbracket, O E \llbracket 3 \rrbracket\right] /$. $\left.\left\{\eta \rightarrow \eta_{1}, \alpha \rightarrow \alpha_{1}, \xi \rightarrow \xi_{1}\right\}\right]$;
$\mathrm{tS}_{i_{-}}:=\mathrm{S}[\$ \mathrm{U}, \$ \mathrm{k}] / \cdot\left\{(v: \tau|\eta| \alpha \mid \xi)_{1} \rightarrow \mathrm{v}_{i}\right.$,
$\left.(v: \mathrm{t}|\mathrm{T}| \mathrm{y}|\mathrm{a}| \mathrm{x})_{1} \rightarrow \mathrm{v}_{\mathrm{i}}\right\}$;
tS_{1}

```
E [- a}\mp@subsup{\textrm{a}}{1}{}\mp@subsup{\alpha}{1}{}-\mp@subsup{t}{1}{}\mp@subsup{\tau}{1}{}
    -\mp@subsup{e}{}{\gamma\mp@subsup{\alpha}{1}{}}\hbar\mp@subsup{\mathbf{y}}{1}{}\mp@subsup{\eta}{1}{}-\mp@subsup{e}{}{\gamma\mp@subsup{\alpha}{1}{}}\hbar\mp@subsup{\mathbf{T}}{1}{}\mp@subsup{\mathbf{x}}{1}{}\mp@subsup{\xi}{1}{}+\mp@subsup{e}{}{\gamma\mp@subsup{\alpha}{1}{}}\mp@subsup{\eta}{1}{}\mp@subsup{\xi}{1}{}-\mp@subsup{e}{}{\gamma\mp@subsup{\alpha}{1}{}}\mp@subsup{\textrm{T}}{1}{}\mp@subsup{\eta}{1}{}\mp@subsup{\xi}{1}{}
    4\hbar\mp@subsup{T}{1}{2}}(4\mp@subsup{e}{}{\gamma\mp@subsup{\alpha}{1}{}}\gamma\mp@subsup{\hbar}{}{2}\mp@subsup{T}{1}{}\mp@subsup{y}{1}{}\mp@subsup{\eta}{1}{}-4\mp@subsup{e}{}{\gamma\mp@subsup{\alpha}{1}{}}\mp@subsup{\hbar}{}{2}\mp@subsup{a}{1}{}\mp@subsup{T}{1}{}\mp@subsup{y}{1}{}\mp@subsup{\eta}{1}{}-2\mp@subsup{e}{}{2\gamma\mp@subsup{\alpha}{1}{}}\gamma\mp@subsup{\hbar}{}{2}\mp@subsup{y}{1}{2}\mp@subsup{\eta}{1}{2
            4 e}\mp@subsup{e}{}{\gamma\mp@subsup{\alpha}{1}{}}\mp@subsup{\hbar}{}{2}\mp@subsup{a}{1}{}\mp@subsup{T}{1}{2}\mp@subsup{x}{1}{}\mp@subsup{\xi}{1}{}-4\mp@subsup{e}{}{\gamma\mp@subsup{\alpha}{1}{}}\gamma\hbar\mp@subsup{T}{1}{}\mp@subsup{\eta}{1}{}\mp@subsup{\xi}{1}{}+8\mp@subsup{e}{}{\gamma\mp@subsup{\alpha}{1}{}}\hbar\mp@subsup{a}{1}{}\mp@subsup{T}{1}{}\mp@subsup{\eta}{1}{}\mp@subsup{\xi}{1}{}
            4 e }\mp@subsup{}{}{\mp@subsup{\alpha}{1}{\prime}}\gamma\hbar\mp@subsup{T}{1}{2}\mp@subsup{\eta}{1}{}\mp@subsup{\xi}{1}{}-4\mp@subsup{e}{}{2\gamma\mp@subsup{\alpha}{1}{}}\gamma\mp@subsup{\hbar}{}{2}\mp@subsup{\textrm{T}}{1}{}\mp@subsup{\mathbf{x}}{1}{}\mp@subsup{\mathbf{y}}{1}{}\mp@subsup{\eta}{1}{}\mp@subsup{\xi}{1}{}+6\mp@subsup{\mathbb{e}}{}{2\gamma\mp@subsup{\alpha}{1}{}}
            \hbar}\mp@subsup{\mathbf{y}}{1}{}\mp@subsup{\eta}{1}{2}\mp@subsup{\xi}{1}{}-2\mp@subsup{e}{}{2\gamma\mp@subsup{\alpha}{1}{}}\gamma\hbar\mp@subsup{T}{1}{}\mp@subsup{\mathbf{y}}{1}{}\mp@subsup{\eta}{1}{2}\mp@subsup{\xi}{1}{}-2\mp@subsup{e}{}{2\gamma\mp@subsup{\alpha}{1}{}}\gamma\mp@subsup{\hbar}{}{2}\mp@subsup{\textrm{T}}{1}{2}\mp@subsup{\textrm{x}}{1}{2}\mp@subsup{\xi}{1}{2}
            6 e}\mp@subsup{}{2\gamma\mp@subsup{\alpha}{1}{}}{\gamma\hbar}\mp@subsup{\textrm{T}}{1}{}\mp@subsup{\textrm{x}}{1}{}\mp@subsup{\eta}{1}{}\mp@subsup{\xi}{1}{2}-2\mp@subsup{e}{}{2\gamma\mp@subsup{\alpha}{1}{}}\gamma\hbar\mp@subsup{\textrm{T}}{1}{2}\mp@subsup{\textrm{x}}{1}{}\mp@subsup{\eta}{1}{}\mp@subsup{\xi}{1}{2}-3\mp@subsup{e}{}{2\gamma\mp@subsup{\alpha}{1}{}}\gamma\mp@subsup{\eta}{1}{2}\mp@subsup{\xi}{1}{2}
            4 e er\mp@subsup{\alpha}{1}{}}\gamma\mp@subsup{\mathbf{T}}{1}{}\mp@subsup{\eta}{1}{2}\mp@subsup{\xi}{1}{2}-\mp@subsup{e}{}{2\gamma\mp@subsup{\alpha}{1}{}}\gamma\mp@subsup{\textrm{T}}{1}{2}\mp@subsup{\eta}{1}{2}\mp@subsup{\xi}{1}{2})\epsilon+\mathbf{O}[\epsilon\mp@subsup{]}{}{2}
```

$\Delta\left[U_{-}, k k_{-}\right]:=\Delta[U, k k]=$ Module [$\{O E\}$,
$\mathrm{OE}=\mathrm{Block}[\{\$ \mathrm{k}=k k, \$ \mathrm{p}=k k+1\}$,
$m_{1,3,5 \rightarrow 1}$ @
$m_{2,4,6 \rightarrow 2} @$ Times [(* Warning:
wrong unless $\$ p \geq \$ k+1!*)$
ReplacePart [1 $\rightarrow 0$] @
$\operatorname{Exp}_{\mathrm{Qu}_{1}, \$ k}\left[\eta, \Delta_{1 \rightarrow 1,2}\left[\mathrm{QU}\left[\mathrm{y}_{1}\right]\right] / . \mathrm{QU} \rightarrow\right.$ Times],
ReplacePart[2 $\rightarrow 0$] @
$\operatorname{Exp}_{\mathrm{QU}}^{3}, \$ \mathrm{kk}\left[\alpha, \Delta_{3 \rightarrow 3,4}\left[\mathrm{QU}\left[\mathrm{a}_{3}\right]\right] / . \mathrm{QU} \rightarrow\right.$ Times] ,
ReplacePart [1 $\rightarrow 0$]@
$\operatorname{Exp}_{\mathrm{QU}_{5}, \$ \mathrm{k}}\left[\xi, \Delta_{5 \rightarrow 5,6}\left[\mathrm{QU}\left[\mathrm{X}_{5}\right]\right] / . \mathrm{QU} \rightarrow\right.$ Times $]$
] /. $\left.\left\{\eta \rightarrow \eta_{1}, \alpha \rightarrow \alpha_{1}, \xi \rightarrow \xi_{1}\right\}\right]$;
$\left.\mathbb{E}\left[\tau_{1}\left(t_{1}+t_{2}\right)+\alpha_{1}\left(a_{1}+a_{2}\right), O E \llbracket 2 \rrbracket, O E \llbracket 3 \rrbracket\right]\right] ;$
$t \Delta_{i_{-} \rightarrow j_{-}, k_{-}}:=$
$\Delta[\$ \mathrm{U}, \$ \mathrm{k}] / .\left\{(v: \tau|\eta| \alpha \mid \xi)_{1} \rightarrow \mathrm{v}_{i}\right.$,
$\left.(v: \mathrm{t}|\mathrm{T}| \mathrm{y}|\mathrm{a}| \mathrm{x})_{1} \rightarrow \mathrm{v}_{j},(v: \mathrm{t}|\mathrm{T}| \mathrm{y}|\mathrm{a}| \mathrm{x})_{2} \rightarrow \mathrm{v}_{k}\right\}$;
$t \Delta_{1 \rightarrow 1,2}$
$\mathbb{E}\left[\left(a_{1}+a_{2}\right) \alpha_{1}+\left(t_{1}+t_{2}\right) \tau_{1}, y_{1} \eta_{1}+\mathbf{t}_{1} y_{2} \eta_{1}+x_{1} \xi_{1}+x_{2} \xi_{1}\right.$,
$1+\frac{1}{2}\left(-2 \hbar a_{1} T_{1} y_{2} \eta_{1}+\gamma \hbar T_{1} y_{1} y_{2} \eta_{1}^{2}-2 \hbar a_{1} x_{2} \xi_{1}+\gamma \hbar x_{1} x_{2} \xi_{1}^{2}\right) \epsilon+$
$\left.\mathrm{O}[\epsilon]^{2}\right]$

The Faddeev-Quesne formula:
$\mathfrak{e}_{q_{-}, k_{-}}\left[x_{-}\right]:=\mathbb{e}^{\wedge}\left(\sum_{j=1}^{k+1} \frac{(1-q)^{j} x^{j}}{j\left(1-q^{j}\right)}\right) ; \mathbb{e}_{q_{-}}\left[x_{-}\right]:=e_{q, \$ k}[x]$

R[QU, $\left.k k_{-}\right]:=$
$R[Q U, k k]=\mathbb{E}\left[-\frac{\hbar a_{2} t_{1}}{\gamma}, \hbar x_{2} y_{1}\right.$,
Series $\left[e^{\hbar \gamma^{-1} t_{1} a_{2}-\hbar y_{1} x_{2}}\right.$
$\left(e^{\hbar b_{1} a_{2}} e_{q_{\hbar}, k k}\left[\hbar y_{1} x_{2}\right] / b_{1} \rightarrow \gamma^{-1}\left(\epsilon a_{1}-t_{1}\right)\right)$, $\{\epsilon, 0, k k\}]]$;
$\mathrm{tR}_{i_{-}, j_{-}}:=$
$\mathrm{R}[\$ \mathrm{U}, \$ \mathrm{k}] / \cdot\left\{(v: \mathrm{t}|\mathrm{T}| \mathrm{y}|\mathrm{a}| \mathrm{x})_{1} \rightarrow \mathrm{v}_{i}\right.$, (v:t|T|y|a|x $\left.)_{2} \rightarrow v_{j}\right\} ;$
$\overline{\mathbf{t R}}_{i_{-}, j_{-}}:=\overline{\mathbf{t R}}_{i, j}=\mathbf{t R _ { i , j } \sim B _ { j } \sim \mathbf { t S }}{ }_{j}$;
$\left\{\mathrm{tR}_{1,2}, \overline{\mathrm{tR}}_{1,2}\right\}$
$\left\{\mathbb{E}\left[-\frac{\hbar a_{2} t_{1}}{\gamma}, \hbar x_{2} y_{1}, 1+\left(\frac{\hbar a_{1} a_{2}}{\gamma}-\frac{1}{4} \gamma \hbar^{3} x_{2}^{2} y_{1}^{2}\right) \in+O[\epsilon]^{2}\right]\right.$,
$\mathbb{E}\left[\frac{\hbar a_{2} t_{1}}{\gamma},-\frac{\hbar x_{2} y_{1}}{T_{1}}, 1+\frac{1}{4 \gamma T_{1}^{2}}\right.$
$\left(-4 \hbar a_{1} a_{2} T_{1}^{2}-4 \gamma \hbar^{2} a_{1} T_{1} x_{2} y_{1}-4 \gamma \hbar^{2} a_{2} T_{1} x_{2} y_{1}-3 \gamma^{2} \hbar^{3} x_{2}^{2} y_{1}^{2}\right)$
$\left.\left.\epsilon+O[\epsilon]^{2}\right]\right\}$
tC is the counterclockwise spinner; $\overline{\mathrm{tC}}$ is its inverse.
$\mathrm{tC}_{i_{-}}:=\mathbb{E}\left[\theta, \theta, \mathrm{T}_{i}^{1 / 2} e^{-\epsilon \mathrm{a}_{i} \hbar}+\boldsymbol{\theta}_{\$ \mathrm{k}}\right] ;$
$\overline{\mathrm{tC}}_{i_{-}}:=\mathbb{E}\left[0,0, \mathrm{~T}_{i}^{-1 / 2} \mathbb{e}^{\epsilon \mathrm{a}_{i} \hbar}+\theta_{\$ \mathrm{k}}\right] ;$
Block $\left[\{\$ \mathrm{k}=3\},\left\{\mathrm{tC}_{1}, \overline{\mathrm{tC}}_{2}\right\}\right]$
$\{\mathbb{E}[0,0$,

$$
\left.\sqrt{T_{1}}-\hbar a_{1} \sqrt{T_{1}} \epsilon+\frac{1}{2} \hbar^{2} a_{1}^{2} \sqrt{T_{1}} \epsilon^{2}-\frac{1}{6}\left(\hbar^{3} a_{1}^{3} \sqrt{T_{1}}\right) \epsilon^{3}+O[\epsilon]^{4}\right]
$$

$$
\left.\mathbb{E}\left[0,0, \frac{1}{\sqrt{T_{2}}}+\frac{\hbar a_{2} \epsilon}{\sqrt{T_{2}}}+\frac{\hbar^{2} a_{2}^{2} \epsilon^{2}}{2 \sqrt{T_{2}}}+\frac{\hbar^{3} a_{2}^{3} \epsilon^{3}}{6 \sqrt{T_{2}}}+0[\epsilon]^{4}\right]\right\}
$$

Kink[QU, $k k_{-}$] :=
$\operatorname{Kink}[Q U, k k]=$
Block $\left[\{\$ k=k k\},\left(\operatorname{tR}_{1,3} \overline{t C}_{2}\right) \sim B_{1,2} \sim \operatorname{tm}_{1,2 \rightarrow 1} \sim B_{1,3} \sim \operatorname{tm}_{1,3 \rightarrow 1}\right]$;
tKink $_{i_{-}}:=\operatorname{Kink}[\$ \mathrm{U}, \$ \mathrm{k}] / \cdot\left\{(v: \mathrm{t}|\mathrm{T}| \mathrm{y}|\mathrm{a}| \mathrm{x})_{1} \rightarrow \mathrm{v}_{i}\right\}$;
$\overline{K i n k}\left[Q U, k k_{-}\right]:=$
$\overline{K i n k}[Q U, k k]=$
Block $\left[\{\$ \mathrm{k}=k k\},\left(\overline{\mathrm{tR}}_{1,3} \mathrm{tC}_{2}\right) \sim \mathrm{B}_{1,2} \sim \mathrm{tm}_{1,2 \rightarrow 1} \sim \mathrm{~B}_{1,3} \sim \mathrm{tm}_{1,3 \rightarrow 1}\right]$;
$\overline{\mathrm{tKink}}_{i_{-}}:=\overline{\operatorname{Kink}}[\$ \mathrm{U}, \$ \mathrm{k}] / \cdot\left\{(v: \mathrm{t}|\mathrm{T}| y|\mathrm{a}| \mathrm{x})_{1} \rightarrow \mathrm{v}_{i}\right\}$

Alternative Algorithms

$\lambda_{\text {alt, } k_{-}}[C U]:=\mathbf{I f}[k=0, \mathbf{1}$, Module $[\{e q, d, b, c$, so $\}$, $e q=\rho @ e^{\xi \times c u} . \rho @ e^{\eta y c u}=\rho @ e^{d y c u} \cdot \rho @ e^{c}(t 1 c u-2 \varepsilon a c u) . \rho @ e^{b \times c u} ;$ $\{$ so\} = Solve[Thread [Flatten /@eq], \{d, b, c\}] /.

C@1 $\rightarrow 0$;
Series $\left[e^{-\eta y-\xi x+\eta \xi t+c t+d y-2 \epsilon c a+b x} /\right.$. so, $\left.\left.\{\in, 0, k\}\right]\right]$;
The Trefoil
Block [\{\$k = 1\},
$Z=\mathrm{tR}_{1,5} \mathrm{tR}_{6,2} \mathrm{tR}_{3,7} \overline{\mathrm{tC}}_{4} \overline{\mathrm{tKink}}_{8} \overline{\mathrm{tKink}}_{9} \overline{\mathrm{tKink}}_{10}$;
Do $\left.\left[Z=Z \sim B_{1, k} \sim \operatorname{tm}_{1, k \rightarrow 1},\{k, 2,10\}\right] ; Z\right]$
$\mathbb{E}\left[0,0, \frac{T_{1}}{1-T_{1}+T_{1}^{2}}+\right.$
(($-2 \hbar a_{1} T_{1}-\gamma \hbar T_{1}^{2}+2 \hbar a_{1} T_{1}^{2}+2 \gamma \hbar T_{1}^{3}-3 \gamma \hbar T_{1}^{4}-2 \hbar a_{1} T_{1}^{4}+$ $\left.\left.2 \gamma \hbar T_{1}^{5}+2 \hbar a_{1} T_{1}^{5}-2 \gamma \hbar^{2} T_{1} x_{1} y_{1}-2 \gamma \hbar^{2} T_{1}^{4} x_{1} y_{1}\right) \epsilon\right) /$
$\left.\left(1-3 T_{1}+6 T_{1}^{2}-7 T_{1}^{3}+6 T_{1}^{4}-3 T_{1}^{5}+T_{1}^{6}\right)+O[\epsilon]^{2}\right]$

| diagram | $n_{k}^{t} \quad$ Alexander's ω^{+} Today's / Rozansky's ρ_{1}^{+} | genus / ribbon unknotting number / amphicheiral | diagram | $n_{k}^{t} \quad$ Alexander's ω^{+} Today's / Rozansky's ρ_{1}^{+} | genus / ribbon unknotting number / amphicheiral |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | 0_{1}^{a} 1
 0 | $\begin{aligned} & 0 / \checkmark \\ & 0 / \checkmark \end{aligned}$ | | $\begin{array}{ll} 3_{1}^{a} & t-1 \\ t \end{array}$ | $\begin{aligned} & 1 / x \\ & 1 / x \end{aligned}$ |
| (8) | $\begin{array}{ll} 4_{1}^{a} & 3-t \\ 0 & \end{array}$ | $\begin{aligned} & 1 / X \\ & 1 / X \end{aligned}$ | | $\begin{aligned} & 5_{1}^{a} \quad t^{2}-t+1 \\ & 2 t^{3}+3 t \end{aligned}$ | $\begin{aligned} & 2 / x \\ & 2 / x \end{aligned}$ |
| | $\begin{aligned} & 5_{2}^{a} \quad 2 t-3 \\ & 5 t-4 \end{aligned}$ | $\begin{aligned} & 1 / x \\ & 1 / X \\ & \hline \end{aligned}$ | 8 | $\begin{aligned} & 6_{1}^{a} 5-2 t \\ & t-4 \end{aligned}$ | $\begin{aligned} & 1 / \sqrt{2} \\ & 1 / x \end{aligned}$ |

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Matemale-1804/
m
n
N
Abstract. It has long been known that there are knot invariants Theorem ([BNG], conjectured [MM], e- Melvin, associated to semi-simple Lie algebras, and there has long been lucidated [Ro1]). Let $J_{d}(K)$ be the co- 25 , 2 , Morton, a dogma as for how to extract them: "quantize and use repre- loured Jones polynomial of K, in the d-dimensional representasentation theory". We present an alternative and better procedu- tion of $s l_{2}$. Writing
re: "centrally extend, approximate by solvable, and learn how to re-order exponentials in a universal enveloping algebra". While equivalent to the old invariants via a complicated process, our invariants are in practice stronger, faster to compute (poly-time vs. exp-time), and clearly carry topological information.
KiW 43 Abstract ($\omega \varepsilon \beta /$ kiw). Whether or not you like the formulas on this page, they describe the strongest truly computable knot invariant we know.
Experimental Analysis ($\omega \varepsilon \beta / \operatorname{Exp}$). Log-log plots of computation time (sec) vs. crossing number, for all knots with up to 12 crossings (mean times) and for all torus knots with up to 48 crossings:

Power. On the 250 knots with at most 10 crossings, the pair (ω, ρ_{1}) attains 250 distinct values, while (Khovanov, HOMFLYPT) attains only 249 distinct values. To 11 crossings the numbers are $(802,788,772)$ and to 12 they are $(2978,2883,2786)$.
Genus. Up to 12 xings, always ρ_{1} is symmetric under $t \leftrightarrow t^{-1}$. With ρ_{1}^{+}denoting the positive-degree part of ρ_{1}, always $\operatorname{deg} \rho_{1}^{+} \leq$ $2 g-1$, where g is the 3 -genus of K (equality for 2530 knots). This gives a lower bound on g in terms of ρ_{1} (conjectural, but undoubtedly true). This bound is often weaker than the Alexander bound, yet for 10 of the 12 -xing Alexander failures it does give the right answer.
 for Alexander! Ribbon Knots.
 $o_{1}^{+}=5 t^{15}-18 t^{14}+33 t^{13}-32 t^{12}+2 t^{11}+42 t^{10}-62 t^{9}-8 t^{8}+166 t^{7}-242 t^{6}+$ Faster is better, leaner is meaner! $108 t^{5}+132 t^{4}-226 t^{3}+148 t^{2}-11 t-36$
Ordering Symbols. \mathbb{O} (poly \mid specs $)$ plants the variables of poly in $\mathcal{S}\left(\oplus_{i} \mathfrak{g}\right)$ on several tensor copies of $\mathcal{U}(\mathfrak{g})$ according to specs. E.g., $\bigcirc\left(a_{1}^{3} y_{1} a_{2} e^{y_{3}} x_{3}^{9} \mid x_{3} a_{1} \otimes y_{1} y_{3} a_{2}\right)=x^{9} a^{3} \otimes y e^{y} a \in \mathcal{U}(\mathrm{~g}) \otimes \mathcal{U}(\mathrm{g})$ This enables the description of elements of $\hat{\mathcal{U}}(\mathfrak{g})^{\otimes S}$ using commutative polynomials / power series.

$$
\left.\frac{\left(q^{1 / 2}-q^{-1 / 2}\right) J_{d}(K)}{q^{d / 2}-q^{-d / 2}}\right|_{q=e^{\hbar}}=\sum_{j, m \geq 0} a_{j m}(K) d^{j} \hbar^{m},
$$

"below diagonal" coefficients vanish, $a_{j m}(K)=$ 0 if $j>m$, and "on diagonal" coefficients give the inverse of the Alexander polynomial: $\left(\sum_{m=0}^{\infty} a_{m m}(K) \hbar^{m}\right) \cdot \omega(K)\left(e^{\hbar}\right)=1$.

"Above diagonal" we have Rozansky's Theorem [Ro3, (1.2)]:

$$
J_{d}(K)(q)=\frac{q^{d}-q^{-d}}{\left(q-q^{-1}\right) \omega(K)\left(q^{d}\right)}\left(1+\sum_{k=1}^{\infty} \frac{(q-1)^{k} \rho_{k}(K)\left(q^{d}\right)}{\omega^{2 k}(K)\left(q^{d}\right)}\right) .
$$

The Yang-Baxter Technique. Given an algebra U (typically $\hat{\mathcal{U}}(\mathrm{g})$ or $\hat{\mathcal{U}}_{q}(\mathrm{~g})$) and elements

$$
R=\sum a_{i} \otimes b_{i} \in U \otimes U \quad \text { and } \quad C \in U
$$

form

$$
Z=\sum_{i, j, k} C a_{i} b_{j} a_{k} C^{2} b_{i} a_{j} b_{k} C
$$

Problem. Extract information from Z.
The Dogma. Use representation theory. In principle finite, but slow.
The Loyal Opposition. For certain algebras, work in a homomorphic poly-dimensional "space of formulas".
$m_{k}^{i j} \longrightarrow\left\{\mathcal{F}_{S}\right\} \xrightarrow{\mathbb{E}} \not\left\{U^{\otimes S}\right\} \longleftrightarrow m_{k}^{i j}$

The (fake) moduli of Lie algebras on V, a quadratic variety in $\left(V^{*}\right)^{\otimes 2} \otimes V$ is on the right. We care about $s l_{17}^{k}:=s l_{17}^{\epsilon} /\left(\epsilon^{k+1}=0\right)$.
 Recomposing $g l_{n}$. Half is enough! $g l_{n} \oplus \mathfrak{a}_{n}=\mathcal{D}(\nabla, b, \delta)$:

Now define $g l_{n}^{\epsilon}:=\mathcal{D}(\nabla, b, \epsilon \delta)$. Schematically, this is $[\nabla, \nabla]=\nabla$, $[\Delta, \Delta]=\epsilon \Delta$, and $[\nabla, \Delta]=\Delta+\epsilon \nabla$. In detail, it is

| $\begin{aligned} {\left[x_{i j}, y_{k l}\right]=} & \delta_{j k}\left(\epsilon \delta_{j<k} x_{i l}+\delta_{i l}\left(b_{i}+\epsilon a_{i}\right) / 2+\delta_{i>l} y_{i l}\right) \\ & -\delta_{l i}\left(\epsilon \delta_{k<j} x_{k j}+\delta_{k j}\left(b_{j}+\epsilon a_{j}\right) / 2+\delta_{k>j} y_{k j}\right) \\ {\left[a_{i}, x_{j k}\right]=} & \left(\delta_{i j}-\delta_{i k}\right) x_{j k} \\ {\left[a_{i}, y_{j k}\right]=} & {\left.\left[b_{i}, x_{j k}\right]=\epsilon\left(\delta_{i j}-\delta_{i j}\right) \delta_{i k}\right) y_{j k} } \\ & {\left[b_{i}, y_{j k}\right]=\epsilon\left(\delta_{i j}-\delta_{i k}\right) y_{j k} } \end{aligned}$ | |
| :---: | :---: |
| | |
| | |
| | |
| | |
| | |

The Main $s l_{2}$ Theorem. Let $\mathfrak{g}^{\epsilon}=\langle t, y, a, x\rangle /([t, \cdot]=0,[a, x]=$ $x,[a, y]=-y,[x, y]=t-2 \epsilon a)$ and let $\mathfrak{g}_{k}=\mathfrak{g}^{\epsilon} /\left(\epsilon^{k+1}=0\right)$. The $\mathfrak{g}_{k^{-}}$ invariant of any S-component tangle K can be written in the form $Z(K)=\mathbb{O}\left(\omega \mathbb{e}^{L+Q+P}: \bigotimes_{i \in S} y_{i} a_{i} x_{i}\right)$, where ω is a scalar (a rational function in the variables t_{i} and their exponentials $\left.T_{i}:=\mathbb{C}^{t_{i}}\right)$, where $L=\sum l_{i j} t_{i} a_{j}$ is a quadratic in t_{i} and a_{j} with integer coefficients $l_{i j}$, where $Q=\sum q_{i j} y_{i} x_{j}$ is a quadratic in the variables y_{i} and x_{j} with scalar coefficients $q_{i j}$, and where P is a polynomial in $\left\{\epsilon, y_{i}, a_{i}, x_{i}\right\}$ (with scalar coefficients) whose ϵ^{d}-term is of degree at most $2 d+2$ in $\left\{y_{i}, \sqrt{a_{i}}, x_{i}\right\}$. Furthermore, after setting $t_{i}=t$ and $T_{i}=T$ for all i, the invariant $Z(K)$ is poly-time computable.

The PBW Problem. In $\mathcal{U}\left(\mathfrak{g}^{\epsilon}\right)$, bring $Z=y^{3} a^{2} x^{2} \cdot y^{2} a^{2} x$ to yax-order. In other words, find $g \in \mathbb{Z}[\epsilon, t, y, a, x]$ such that $Z=\mathbb{O}\left(f=y_{1}^{3} y_{2}^{2} a_{1}^{2} a_{2}^{2} x_{1}^{2} x_{2}: y_{1} a_{1} x_{1} y_{2} a_{2} x_{2}\right)=\mathbb{O}(g: y a x)$.
Solution, Part 1. In $\hat{\mathcal{U}}\left(\mathfrak{g}^{\epsilon}\right)$ we have

$$
\begin{aligned}
& X_{\tau_{1}, \eta_{1}, \alpha_{1}, \xi_{1}, \tau_{2}, \eta_{2}, \alpha_{2}, \xi_{2}}:=\mathbb{e}^{\tau_{1} t} \mathbb{C}^{\eta_{1} y} \mathbb{C}^{\alpha_{1} a} \mathbb{e}^{\xi_{1} x} \mathbb{e}^{\tau_{2} t} \mathbb{e}^{\eta_{2} y} \mathbb{e}^{\alpha_{2} a} \mathbb{e}^{\xi_{2} x} \\
&=\mathbb{e}^{\tau t} \mathbb{C}^{\eta y} \mathbb{C}^{\alpha a} \mathbb{e}^{\xi x}=: Y_{\tau, \eta, \alpha, \xi},
\end{aligned}
$$

where τ, η, α, ξ are ugly functions of $\tau_{1}, \eta_{i}, \alpha_{i}, \xi_{i}$:

$$
\begin{aligned}
\tau & =\tau_{1}+\tau_{2}-\frac{\log \left(1-\epsilon \eta_{2} \xi_{1}\right)}{\epsilon}=\tau_{1}+\tau_{2}+\eta_{2} \xi_{1}+\frac{\epsilon}{2} \eta_{2}^{2} \xi_{1}^{2}+\ldots, \\
\eta & =\eta_{1}+\frac{\mathbb{e}^{-\alpha_{1}} \eta_{2}}{\left(1-\epsilon \eta_{2} \xi_{1}\right)}=\eta_{1}+\mathbb{e}^{-\alpha_{1}} \eta_{2}+\epsilon \mathbb{e}^{-\alpha_{1}} \eta_{2}^{2} \xi_{1}+\ldots, \\
\alpha & =\alpha_{1}+\alpha_{2}+2 \log \left(1-\epsilon \eta_{2} \xi_{1}\right)=\alpha_{1}+\alpha_{2}-2 \epsilon \eta_{2} \xi_{1}+\ldots, \\
\xi & =\frac{\mathbb{e}^{-\alpha_{2}} \xi_{1}}{\left(1-\epsilon \eta_{2} \xi_{1}\right)}+\xi_{2}=\mathbb{e}^{-\alpha_{2}} \xi_{1}+\xi_{2}+\epsilon \mathbb{e}^{-\alpha_{2}} \eta_{2} \xi_{1}^{2}+\ldots
\end{aligned}
$$

Note 1. This defines a mapping $\Phi: \mathbb{R}_{\tau_{1}, \eta_{1}, \alpha_{1}, \xi_{1}, \tau_{2}, \eta_{2}, \alpha_{2}, \xi_{2}}^{8} \rightarrow \mathbb{R}_{\tau, \eta, \alpha, \xi}^{4}$.
Proof. \mathfrak{g}^{ϵ} has a 2D representation ρ :

```
\rhot =( lll
\rhoa=( (1+1/\epsilon)/2 - 0
Simplify@{\rhoa.\rhox - \rhox.\rhoa == \rhox, \rhoa.\rhoy - \rhoy.\rhoa == -\rhoy,
    \rhox.\rhoy-\rhoy.\rhox == \rhot-2\in\rhoa}
```

\{True, True, True \}
It is enough to verify the desired identity in ρ :
ME = MatrixExp;
Simplify [


```
        ME [ }\mp@subsup{\eta}{2}{}\rho\textrm{y}].\textrm{ME}[\mp@subsup{\alpha}{2}{}\rho\textrm{a}].ME[\mp@subsup{\xi}{2}{}\rho\textrm{x}]=
    ME[\tau
    { 
```


True
Solution, Part 2. But now, with $D_{f}=f\left(z \mapsto \partial_{\zeta}\right)=$ $\partial_{\eta_{1}}^{3} \partial_{\alpha_{1}}^{2} \partial_{\xi_{1}}^{2} \partial_{\eta_{2}}^{2} \partial_{\alpha_{2}}^{2} \partial_{\xi_{2}}$,

$$
\begin{aligned}
& Z=\left.D_{f} X_{\tau_{1}, \eta_{1}, \alpha_{1}, \xi_{1}, \tau_{2}, \eta_{2}, \alpha_{2}, \xi_{2}}\right|_{v s=0}=\left.D_{f} Y_{\tau, \eta, \alpha, \xi}\right|_{v s=0} \\
&=\mathbb{O}\left(\left.D_{f} \mathbb{C}^{\tau t} \mathbb{C}^{\eta y} \mathbb{C}^{\alpha a} \mathbb{C}^{\xi x}\right|_{v s=0}: y a x\right)=\mathbb{O}(g: y a x):
\end{aligned}
$$

Expand $\left[\partial_{\left\{\eta_{1}, 3\right\}} \partial_{\left\{\alpha_{1}, 2\right\}} \partial_{\left\{\xi_{1}, 2\right\}} \partial_{\left\{\eta_{2}, 2\right\}} \partial_{\left\{\alpha_{2}, 2\right\}} \partial_{\left\{\xi_{2}, 1\right\}} \operatorname{Exp}[\right.$ $\left(-\frac{\log \left[1-\epsilon \eta_{2} \xi_{1}\right]}{\epsilon}+\tau_{1}+\tau_{2}\right) \mathbf{t}+\left(\eta_{1}+\frac{\boldsymbol{e}^{-\alpha_{1} \eta_{2}}}{1-\epsilon \eta_{2} \xi_{1}}\right) \mathbf{y}+$ $\left(2 \log \left[1-\epsilon \eta_{2} \xi_{1}\right]+\alpha_{1}+\alpha_{2}\right) a+\left(\frac{e^{-\alpha \varepsilon_{2}} \xi_{1}}{1-\epsilon \eta_{2} \xi_{1}}+\xi_{2}\right) x$ $\left./ \cdot(\tau|\eta| \alpha \mid \xi)_{1_{12} \rightarrow \theta}\right]$
$2 a^{4} t^{2} x y^{3}+4 t x^{2} y^{4}-16 a t x^{2} y^{4}+24 a^{2} t x^{2} y^{4}-16 a^{3} t x^{2} y^{4}+$ $4 a^{4} t x^{2} y^{4}+16 x^{3} y^{5}-32 a x^{3} y^{5}+24 a^{2} x^{3} y^{5}-8 a^{3} x^{3} y^{5}+a^{4} x^{3} y^{5}+$ $2 a^{4} t x y^{3} \in-8 a^{5} t x y^{3} \in+8 x^{2} y^{4} \in-40 a x^{2} y^{4} \in+80 a^{2} x^{2} y^{4} \in-$
$80 a^{3} x^{2} y^{4} \epsilon+40 a^{4} x^{2} y^{4} \in-8 a^{5} x^{2} y^{4} \in-4 a^{5} x y^{3} \epsilon^{2}+8 a^{6} x y^{3} \epsilon^{2}$

Note 2. Replacing $f \rightarrow$ D_{f} (and likewise $g \rightarrow$ D_{g}), we find that $D_{g}=$ $\Phi_{*} D_{f}$.
Note 3. The two great evils of mathematics are non-commutativity and
 non-linearity. We traded one for the other.
Note 4 . We could have done similarly with $\mathbb{e}^{\tau_{1} t} \mathbb{C}^{\eta_{1}} \mathbb{C}^{\alpha_{1}} a_{\mathbb{C}}{ }^{\xi_{1} x}=$ $\mathbb{e}^{\tau t+\eta y+\alpha a+\xi x}$, and with $S\left(\mathbb{e}^{\tau_{1} t} \mathbb{C}^{\eta_{1} y_{\mathbb{C}}} \mathbb{C}^{\alpha_{1} a} \mathbb{C}^{\xi_{1} x}\right), \Delta\left(\mathbb{e}^{\tau_{1} t} \mathbb{C}^{\eta_{1} y} \mathbb{C}^{\alpha_{1} a} \mathbb{C}^{\xi_{1} x}\right)$, $\prod_{i=1}^{5} \mathbb{e}^{\tau_{i} t} \mathbb{E}^{\eta_{i} y} \mathbb{C}^{\alpha_{i} a} \mathbb{C}^{\xi_{i} x}$.
Fact. $R_{12} \rightarrow \exp \left(\partial_{\tau_{1}} \partial_{\alpha_{2}}+\partial_{y_{1}} \partial_{x_{2}}\right)\left(1+\sum_{d \geq 1} \epsilon^{d} p_{d}\right)$, where the p_{d} are computable polynomials of a-priori bounded degrees.
Moral. We need to understand the pushforwards via maps like Φ of (formally ∞-order) "differential operators at 0 ", that in themselves are perturbed Gaussians. This turns out to be the same problem as "0-dimensional QFT" (except no integration is ever needed), and if $\epsilon^{k+1}=0$, it is explicitly soluble.
References.
[BN] D. Bar-Natan, Polynomial Time Knot Polynomial, research proposal for the 2017 Killam Fellowship, $\omega \varepsilon \beta / \mathrm{K} 17$.
[BNG] D. Bar-Natan and S. Garoufalidis, On the Melvin-Morton-Rozansky conjecture, Invent. Math. 125 (1996) 103-133.
[BV1] D. Bar-Natan and R. van der Veen, A Polynomial Time Knot Polynomial, arXiv:1708.04853.
[BV2] D. Bar-Natan and R. van der Veen, Poly-Time Knot Polynomials Via Solvable Approximations, in preparation.
[GST] R. E. Gompf, M. Scharlemann, and A. Thompson, Fibered Knots and Potential Counterexamples to the Property $2 R$ and Slice-Ribbon Conjectures, Geom. and Top. 14 (2010) 2305-2347, arXiv:1103.1601.
[MM] P. M. Melvin and H. R. Morton, The coloured Jones function, Commun. Math. Phys. 169 (1995) 501-520.
[Ov] A. Overbay, Perturbative Expansion of the Colored Jones Polynomial, University of North Carolina PhD thesis, $\omega \varepsilon \beta / \mathrm{Ov}$.
[Ro1] L. Rozansky, A contribution of the trivial flat connection to the Jones polynomial and Witten's invariant of $3 d$ manifolds, I, Comm. Math. Phys. 175-2 (1996) 275-296, arXiv:hep-th/9401061.
[Ro2] L. Rozansky, The Universal R-Matrix, Burau Representation and the Melvin-Morton Expansion of the Colored Jones Polynomial, Adv. Math. 134-1 (1998) 1-31, arXiv:q-alg/9604005.
[Ro3] L. Rozansky, A Universal U(1)-RCC Invariant of Links and Rationality Conjecture, arXiv:math/0201139.
[Vo] H. Vo, University of Toronto Ph.D. thesis, in preparation.
dog•ma (dôg'mə, dŏg') The Free Dictionary, $\omega \in \beta /$ TFD
n. pl. dog-mas or dog•ma•ta (-mə-tə)

1. A doctrine or a corpus of doctrines relating to matters such as morality and faith, set forth in an authoritative manner by a religion.
2. A principle or statement of ideas, or a group of such principles or statements, especially when considered to be authoritative or accepted uncritically: "Much education consists in the instilling of unfounded dogmas in place of a spirit of inquiry" (Bertrand Russell).

| diagram | $\begin{aligned} & n_{k}^{l} \text { Alexan } \\ & \text { Today's / R } \end{aligned}$ | genus / ribbon unknotting number / amphicheiral | diagram | n_{k}^{t} Alexander's ω^{+} Today's / Rozansky's ρ_{1}^{+} | genus / ribbon unknotting number / amphicheiral |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | $\begin{array}{ll}0_{1}^{a} & 1 \\ 0\end{array}$ | $\begin{aligned} & \hline 0 / V \\ & 0 / \mathrm{V} \end{aligned}$ | | $\begin{array}{ll} 3_{1}^{a} & t-1 \\ t \end{array}$ | $\begin{aligned} & 1 / X \\ & 1 / X \end{aligned}$ |
| 8 | $\begin{array}{cc} \hline 4_{1}^{a} & 3-t \\ 0 & \end{array}$ | $\begin{aligned} & 1 / x \\ & 1 / 6 \end{aligned}$ | \mathscr{B} | $\begin{aligned} & 5_{1}^{a} \quad t^{2}-t+1 \\ & 2 t^{3}+3 t \end{aligned}$ | $\begin{aligned} & 2 / x \\ & 2 / x \end{aligned}$ |
| 8 | $\begin{aligned} & 5_{2}^{a} \quad 2 t-3 \\ & 5 t-4 \end{aligned}$ | $\begin{aligned} & 1 / x \\ & 1 / x \\ & \hline \end{aligned}$ | 8 | $\begin{aligned} & 6_{1}^{a} \quad 5-2 t \\ & t-4 \end{aligned}$ | $\begin{aligned} & 1 / v \\ & 1 / x \end{aligned}$ |

Video and more at http://www.math.toronto.edu/~drorbn/Talks/LesDiablerets-1708/

Abstract. It has long been known that there are knot invariants Theorem ([BNG], conjectured [MM], e- A \quad Melvin, associated to semi-simple Lie algebras, and there has long been lucidated [Ro1]). Let $J_{d}(K)$ be the co- 3,3 , Morton a dogma as for how to extract them: "quantize and use repre- loured Jones polynomial of K, in the d-dimensional representasentation theory". We present an alternative and better procedu- tion of $s l_{2}$. Writing
re: "centrally extend, approximate by solvable, and learn how to re-order exponentials in a universal enveloping algebra". While equivalent to the old invariants via a complicated process, our invariants are in practice stronger, faster to compute (poly-time vs. exp-time), and clearly carry topological information.
KiW 43 Abstract ($\omega \varepsilon \beta /$ kiw). Whether or not you like the formulas on this page, they describe the strongest truly computable knot invariant we know.

Experimental Analysis ($\omega \varepsilon \beta / \operatorname{Exp}$). Log-log plots of computation time (sec) vs. crossing number, for all knots with up to 12 crossings (mean times) and for all torus knots with up to 48 crossings:

Power. On the 250 knots with at most 10 crossings, the pair (ω, ρ_{1}) attains 250 distinct values, while (Khovanov, HOMFLYPT) attains only 249 distinct values. To 11 crossings the numbers are $(802,788,772)$ and to 12 they are $(2978,2883,2786)$.
Genus. Up to 12 xings, always ρ_{1} is symmetric under $t \leftrightarrow t^{-1}$. With ρ_{1}^{+}denoting the positive-degree part of ρ_{1}, always $\operatorname{deg} \rho_{1}^{+} \leq$ $2 g-1$, where g is the 3 -genus of K (equality for 2530 knots). This gives a lower bound on g in terms of ρ_{1} (conjectural, but undoubtedly true). This bound is often weaker than the Alexander bound, yet for 10 of the 12 -xing Alexander failures it does give the right answer.

[Vo]: Works
for Alexander! $o_{1}^{+}=5 t^{15}-18 t^{14}+33 t^{13}-32 t^{12}+2 t^{11}+42 t^{10}-62 t^{9}-8 t^{8}+166 t^{7}-242 t^{6}+$ Faster is better, leaner is meaner! $108 t^{5}+132 t^{4}-226 t^{3}+148 t^{2}-11 t-36$ dog•ma (dôg'mə, dŏg'-)

The Free Dictionary, $\omega \varepsilon \beta /$ TFD
n. pl. dog-mas or dog•ma'ta (-mə-tə)

1. A doctrine or a corpus of doctrines relating to matters such as morality and faith, set forth in an authoritative manner by a religion.
2. A principle or statement of ideas, or a group of such principles or statements especially when considered to be authoritative or accepted uncritically: "Much education consists in the instilling of unfounded dogmas in place of a spirit of inquiry" (Bertrand Russell).

$$
\left.\frac{\left(q^{1 / 2}-q^{-1 / 2}\right) J_{d}(K)}{q^{d / 2}-q^{-d / 2}}\right|_{q=e^{\hbar}}=\sum_{j, m \geq 0} a_{j m}(K) d^{j} \hbar^{m},
$$

"below diagonal" coefficients vanish, $a_{j m}(K)=$ 0 if $j>m$, and "on diagonal" coefficients give the inverse of the Alexander polynomial: $\left(\sum_{m=0}^{\infty} a_{m m}(K) \hbar^{m}\right) \cdot \omega(K)\left(e^{\hbar}\right)=1$.

"Above diagonal" we have Rozansky's Theorem [Ro3, (1.2)]:

$$
J_{d}(K)(q)=\frac{q^{d}-q^{-d}}{\left(q-q^{-1}\right) \omega(K)\left(q^{d}\right)}\left(1+\sum_{k=1}^{\infty} \frac{(q-1)^{k} \rho_{k}(K)\left(q^{d}\right)}{\omega^{2 k}(K)\left(q^{d}\right)}\right) .
$$

The Yang-Baxter Technique. Given an alge$\operatorname{bra} A$ (typically $\hat{\mathcal{U}}(\mathfrak{g})$ or $\left.\hat{\mathcal{U}}_{q}(\mathfrak{g})\right)$ and elements

$$
R=\sum a_{i} \otimes b_{i} \in A \otimes A \quad \text { and } \quad C \in A
$$

form

$$
Z=\sum_{i, j, k} C a_{i} b_{j} a_{k} C^{2} b_{i} a_{j} b_{k} C
$$

Problem. Extract information from Z.
The Dogma. Use representation theory. In principle finite, but slow.
The Loyal Opposition. For certain algebras, work in a homomorphic poly-dimensional "space of formulas".
$m_{k}^{i j} \longrightarrow\left\{\mathcal{F}_{S}\right\} \xrightarrow{\mathbb{E}} \longrightarrow\left\{A^{\otimes S}\right\} \leftrightharpoons m_{k}^{i j}$

The (fake) moduli of Lie algebras on V, a quadratic variety in $\left(V^{*}\right)^{\otimes 2} \otimes V$ is on the right. We care about $s l_{17}^{k}:=s l_{17}^{\epsilon} /\left(\epsilon^{k+1}=0\right)$.
 Why are "solvable algebras" any good? Contrary to common beliefs, computations in semi-simple Lie algebras are just awful:
$\ln [1]=\operatorname{MatrixExp}\left[\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\right] / /$ FullSimplify // MatrixForm Enter
Yet in solvable algebras, exponentiation is fine and even BCH ,
$z=\log \left(\mathbb{C}^{x} \mathbb{C}^{y}\right)$, is bearable:

Out[2]//MatrixForm=
$\operatorname{In}[2]:=\operatorname{MatrixExp}\left[\left(\begin{array}{ll}a & b \\ 0 & c\end{array}\right)\right] / /$ MatrixForm $\quad\left(\begin{array}{cc}e^{a} & \frac{b\left(e^{a}-e^{c}\right)}{a-c} \\ 0 & e^{c}\end{array}\right)$
$\ln [3]:=\operatorname{MatrixExp}\left[\left(\begin{array}{cc}a_{1} & b_{1} \\ 0 & c_{1}\end{array}\right)\right] \cdot \operatorname{MatrixExp}\left[\left(\begin{array}{cc}a_{2} & b_{2} \\ 0 & c_{2}\end{array}\right)\right] / /$
MatrixLog // PowerExpand // Simplify // MatrixForm

Enter

Recomposing $g l_{n}$. Half is enough! $g l_{n} \oplus \mathfrak{a}_{n}=\mathcal{D}(\nabla, b, \delta)$:

Now define $g l_{n}^{\epsilon}:=\mathcal{D}(\nabla, b, \epsilon \delta)$. Schematically, this is $[\nabla, \nabla]=\nabla$, $[\triangle, \triangle]=\epsilon \Delta$, and $[\nabla, \Delta]=\Delta+\epsilon \nabla$. In detail, it is

| | |
| :---: | :---: |
| | $\left[e_{i j}, f_{k l}\right]=\delta_{j k}\left(\epsilon \delta_{j<k} e_{i l}+\delta_{i l}\left(h_{i}+\epsilon g_{i}\right) / 2+\delta_{i>l} f_{i l}\right)$ |
| | $-\delta_{l i}\left(\epsilon \delta_{k<j} e_{k j}+\delta_{k j}\left(h_{j}+\epsilon g_{j}\right) / 2+\delta_{k>j} f_{k j}\right)$ |
| | $\left.e_{j k}\right]=\left(\delta_{i j}-\delta_{i k}\right) e_{j k} \quad\left[h_{i}, e_{j k}\right]=\epsilon\left(\delta_{i j}-\delta_{i k}\right) e_{j k}$ |
| | $\left.f_{j k}\right]=\left(\delta_{i j}-\delta_{i k}\right) f_{j k} \quad\left[h_{i}, f_{j k}\right]=\epsilon\left(\delta_{i j}-\delta_{i k}\right) f_{j k}$ |

The $s l_{2}$ Example. Let $\mathfrak{g}^{\epsilon}=\langle h, e, l, f\rangle /([h, \cdot]=0,[e, l]=$ $-e,[f, l]=f,[e, f]=h-2 \epsilon l)$ and let $\mathfrak{g}_{k}=\mathfrak{g}^{\epsilon} /\left(\epsilon^{k+1}=0\right)$.
The Main \mathfrak{g}_{k} Theorem. The \mathfrak{g}_{k}-invariant of any S-component tangle T can be written in the form

$$
Z(T)=\mathbb{O}\left(\omega \mathbb{e}^{L+Q+P}: \bigotimes_{i \in S} e_{i} l_{i} f_{i}\right)
$$

where ω is a scalar (meaning, a rational function in the variables h_{i} and their exponentials $t_{i}:=\mathbb{e}^{h_{i}}$, where $L=\sum a_{i j} h_{i} l_{j}$ is a balanced quadratic in the variables h_{i} and l_{j} with integer coefficients, where $Q=\sum b_{i j} e_{i} f_{j}$ is a balanced quadratic in the variables e_{i} and f_{j} with scalar coefficients $b_{i j}$, and where P is a polynomial in $\left\{\epsilon, e_{i}, l_{i}, f_{i}\right\}$ (with scalar coefficients) whose ϵ^{d}-term is of degree at most $2 d+2$ in $\left\{e_{i}, \sqrt{l_{i}}, f_{i}\right\}$. Furthermore, after setting $h_{i}=h$ and $t_{i}=t$ for all i, the invariant $Z(T)$ is poly-time computable.
The Main \mathfrak{g}_{k} Lemma. The following "re-ordering relations" hold: $\mathcal{O}\left(\mathbb{C}^{\gamma l+\beta e}: l e\right)=\mathbb{O}\left(\mathbb{e}^{\gamma l+\mathbb{e}^{\gamma} \beta e}: e l\right) \quad($ and similarly for $f l \rightarrow l f)$, $\mathbb{O}\left(\mathbb{C}^{\beta e+\alpha f+\delta e f}: f e\right)=\mathbb{O}\left(v \mathbb{e}^{\nu(-\alpha \beta h+\beta e+\alpha f+\delta e f)+\lambda_{k}(\epsilon, e, l, f, \alpha, \beta, \delta)}: e l f\right)$, with $v=(1+h \delta)^{-1}$ and where $\lambda_{k}(\epsilon, e, l, f, \alpha, \beta, \delta)$ is some fixed polynomial of degree at most $2 k+2$ in $\epsilon, e, \sqrt{l}, f, \alpha, \beta, \delta$, with scalar coefficients.

Demo Programs.

CF[$\left.\varepsilon_{-}\right]:=\operatorname{Module}\left[\left\{\right.\right.$ vars $=$ Union@Cases $\left.\left[\varepsilon_{,}, e_{-}\left|l_{-}\right| f_{-}, \infty\right]\right\}$,
If [vars === \{\}, Factor [δ], Total[CoefficientRules[ε, vars] /. $\left(p_{-} \rightarrow c_{-}\right): \rightarrow$ Factor [c] Times @@ (vars^{p})]]];
$\mathrm{CF}\left[\mathcal{E}_{-} \mathbb{E}\right]:=\mathrm{CF} / @ \varepsilon$;
$\mathbb{E}\left[i_{-}, j_{-}, s_{-}\right]:=\mathbb{E}\left[1,(-1)^{s} 1_{j},(-t)^{s} e_{i} f_{j}\right.$,
$\mathrm{t}^{s} \mathrm{e}_{i} \mathbf{l}_{(1+s)}$ i-sj $\left.\mathrm{f}_{j}+(-1)^{s} \mathbf{l}_{i} \mathbf{l}_{j}+\left(-\mathrm{t}^{2}\right)^{s} \mathrm{e}_{i}^{2} \mathrm{f}_{j}^{2} / 4\right]$;
$\mathbb{E}\left[i_{-}, s_{-}\right]:=\mathbb{E}\left[1,0,0, s 1_{i}\right]$;
$\mathbb{E} /: \mathbb{E}\left[1, L 1_{-}, Q 1_{-}, P 1_{-}\right] \mathbb{E}\left[1, L 2_{-}, Q 2_{-}, P 2_{-}\right]:=$
$\mathbb{E}[1, L 1+L 2, Q 1+Q 2, P 1+P 2] ;$
$\mathbf{z 1}=(\mathbb{E}[1,11,0] \mathbb{E}[4,2,-1] \mathbb{E}[15,5,0] \times$ Preparing the Trefoil $\mathbb{E}[6,8,-1] \mathbb{E}[9,16,0] \mathbb{E}[12,14,-1] \times$ $\mathbb{E}[3,-1] \mathbb{E}[7,+1] \mathbb{E}[10,-1] \mathbb{E}[13,+1])$

$\mathbb{E}\left[1,-l_{2}+l_{5}-l_{8}+l_{11}-l_{14}+l_{16}\right.$,
$-\frac{e_{4} f_{2}}{t}+e_{15} f_{5}-\frac{e_{6} f_{8}}{t}+e_{1} f_{11}-\frac{e_{12} f_{14}}{t}+e_{9} f_{16}$, $-\frac{e_{4}^{2} f_{2}^{2}}{4 t^{2}}+\frac{1}{4} e_{15}^{2} f_{5}^{2}-\frac{e_{6}^{2} f_{5}^{2}}{4 t^{2}}+\frac{1}{4} e_{1}^{2} f_{11}^{2}-\frac{e_{12}^{2} f_{14}^{2}}{4 t^{2}}+\frac{1}{4} e_{9}^{2} f_{16}^{2}+e_{1} f_{11} 1_{1}+$
$\frac{e_{4} f_{2} l_{2}}{\mathrm{t}}-1_{3}-l_{2} l_{4}+l_{7}+\frac{e_{6} f_{8} l_{8}}{\mathrm{t}}-1_{6} 1_{8}+e_{9} f_{16} l_{9}-l_{10}+$
$\left.l_{1} l_{11}+l_{13}+\frac{e_{12} f_{14} l_{14}}{t}-l_{12} l_{14}+e_{15} f_{5} l_{15}+l_{5} l_{15}+l_{9} l_{16}\right]$
$\mathbf{D P}_{x_{-} \rightarrow \mathbf{D}_{\alpha}, y_{-} \rightarrow \mathbf{D}_{\beta_{-}}}\left[P_{-}\right]\left[f_{-}\right]:=\quad$ Differential Polynomials
Total [CoefficientRules $[P,\{x, y\}] / . \quad$ (Implementing $P\left(\partial_{\alpha}, \partial_{\beta}\right)(f)$) $\left.\left(\left\{m_{-}, n_{-}\right\} \rightarrow c_{-}\right) \Leftrightarrow c \operatorname{D}[f,\{\alpha, m\},\{\beta, n\}]\right]$
$\mathrm{S}_{\mathrm{l}_{-}(\mathrm{x}: \mathrm{e} \mid \mathrm{f})_{i_{-} \rightarrow k_{-}}\left[\mathbb{E}\left[\omega_{-}, L_{-}, Q_{-}, P_{-}\right]\right]:=}$
$l e$ and $f l$ Sorts

$$
\begin{aligned}
& \text { With }\left[\left\{\lambda=\partial_{1_{j}} L, \alpha=\partial_{x_{i}} Q, q=e^{\gamma} \beta x_{k}+\gamma l_{k}\right\}, C F[\right. \\
& \mathbb{E}\left[\omega, L / .1_{j} \rightarrow l_{k}, \mathrm{t}^{\lambda} \alpha x_{k}+\left(Q / . x_{i} \rightarrow 0\right),\right. \\
& \left.\left.\left.\mathbb{e}^{-q} \mathrm{DP}_{1_{j} \rightarrow \mathrm{D}_{\gamma}, x_{i} \rightarrow D_{\beta}}[P]\left[\mathrm{e}^{q}\right] / .\{\beta \rightarrow \alpha / \omega, \gamma \rightarrow \lambda \log [\mathrm{t}]\}\right]\right]\right] ; \\
& \Delta\left[k_{-}\right]:=\left((t-1)\left(2(\alpha \beta+\delta \mu)^{2}-\alpha^{2} \beta^{2}\right)-4 e_{k} l_{k} f_{k} \delta^{2} \mu^{2}-\right. \\
& \delta(1+\mu)\left(f_{k}^{2} \alpha^{2}+\mathbf{e}_{k}^{2} \beta^{2}\right)-\mathbf{e}_{k}^{2} \mathrm{f}_{k}^{2} \delta^{3}(1+3 \mu)-\quad \text { The } \Lambda \text { ó } \gamma \text { os } \\
& 2\left(\alpha \beta+2 \delta \mu+e_{k} f_{k} \delta^{2}(1+2 \mu)+2 l_{k} \delta \mu^{2}\right)\left(f_{k} \alpha+e_{k} \beta\right)- \\
& \left.4\left(\mathbf{l}_{k} \mu^{2}+\mathbf{e}_{k} \mathbf{f}_{k} \delta(1+\mu)\right)(\alpha \beta+\delta \mu)\right)(\mathbf{1}+\mathrm{t}) / 4 \text {; }
\end{aligned}
$$

$\mathrm{S}_{\mathrm{f}_{-} \mathrm{e}_{j_{-} \rightarrow k_{-}}\left[\mathbb{E}\left[\omega_{-}, L_{-}, Q_{-}, P_{-}\right]\right]:=\quad f e \text { Sorts }}$
With $\left[\left\{q=\left((1-t) \alpha \beta+\beta \mathbf{e}_{k}+\alpha \mathbf{f}_{k}+\delta \mathbf{e}_{k} \mathbf{f}_{k}\right) / \mu\right\}, \operatorname{CF}[\right.$ $\mathbb{E}\left[\mu \omega, L, \mu \omega \mathbf{q}+\mu\left(Q / . f_{i} \mid \mathbf{e}_{j} \rightarrow 0\right)\right.$, $\left.\mu^{4} e^{-q} \mathbf{D P}_{f_{i} \rightarrow D_{\alpha}, e_{j} \rightarrow D_{\beta}}[P]\left[e^{q}\right]+\omega^{4} \Lambda[k]\right] / . \mu \rightarrow \mathbf{1 + (t - 1) \delta / .}$ $\left\{\alpha \rightarrow \omega^{-1}\left(\partial_{f_{i}} Q / . e_{j} \rightarrow 0\right), \beta \rightarrow \omega^{-1}\left(\partial_{e_{j}} Q / . f_{i} \rightarrow 0\right)\right.$, $\left.\left.\left.\delta \rightarrow \omega^{-1} \partial_{f_{i}, \mathrm{e}_{j}} \ell\right\}\right]\right]$;
$m_{i_{-}, j_{-} \rightarrow k_{-}}\left[Z_{-} \mathbb{E}\right]:=\operatorname{Module}[\{x, z\}$,
Elf Merges
$\left.\operatorname{CF}\left[\left(z / / S_{f_{i} e_{j \rightarrow x}} / / S_{1_{i} e_{x \rightarrow x}} / / S_{f_{x} 1_{j \rightarrow x}}\right) / \cdot z_{-i|j| x} \rightarrow z_{k}\right]\right]$
($\left.\mathbf{D o}\left[\mathbf{z 1}=\mathbf{z 1} / / \mathrm{m}_{1, k \rightarrow 1},\{\mathbf{k}, \mathbf{2}, \mathbf{1 6}\}\right] ; \mathbf{z 1}\right) \quad$ Rewriting the Trefoil
$\mathbb{E}\left[\frac{1-t+t^{2}}{t}, 0,0, \frac{(-1+t)\left(1-t+t^{2}\right)^{2}\left(1-t+2 t^{2}\right)}{t^{3}}-\right.$ (by merging 16 elves)
$\left.\frac{2(1+t)\left(1-t+t^{2}\right)^{3} e_{1} f_{1}}{t^{4}}-\frac{2(-1+t)(1+t)\left(1-t+t^{2}\right)^{3} 1_{1}}{t^{4}}\right]$
$\rho_{1}\left[\mathbb{E}\left[\omega_{-},,_{-}, P_{-}\right]\right]:=\operatorname{CF}\left[\frac{\mathrm{t}\left(\left(P / \mathrm{e}_{-}\left|l_{-}\right| \mathrm{f}_{-} \rightarrow \theta\right)-\mathrm{t} \omega^{3}\left(\partial_{\mathrm{t}} \omega\right)\right)}{(\mathrm{t}-1)^{2} \omega^{2}}\right]$
$\rho_{1}[z 1] / /$ Expand
$\rho_{1}\left(3_{1}\right)$
$\frac{1}{t}+t$
Preparation References.
[BN] D. Bar-Natan, Polynomial Time Knot Polynomial, research proposal for the 2017 Killam Fellowship, $\omega \varepsilon \beta / \mathrm{K} 17$.
[BNG] D. Bar-Natan and S. Garoufalidis, On the Melvin-Morton-Rozansky conjecture, Invent. Math. 125 (1996) 103-133.
[GST] R. E. Gompf, M. Scharlemann, and A. Thompson, Fibered Knots and Potential Counterexamples to the Property $2 R$ and Slice-Ribbon Conjectures, Geom. and Top. 14 (2010) 2305-2347, arXiv:1103.1601.
[MM] P. M. Melvin and H. R. Morton, The coloured Jones function, Commun. Math. Phys. 169 (1995) 501-520.
[Ov] A. Overbay, Perturbative Expansion of the Colored Jones Polynomial, University of North Carolina PhD thesis, $\omega \varepsilon \beta / \mathrm{Ov}$.
[Ro1] L. Rozansky, A contribution of the trivial flat connection to the Jones polynomial and Witten's invariant of $3 d$ manifolds, I, Comm. Math. Phys. 175-2 (1996) 275-296, arXiv:hep-th/9401061.
[Ro2] L. Rozansky, The Universal R-Matrix, Burau Representation and the Melvin-Morton Expansion of the Colored Jones Polynomial, Adv. Math. 134-1 (1998) 1-31, arXiv:q-alg/9604005.
[Ro3] L. Rozansky, A Universal U(1)-RCC Invariant of Links and Rationality Conjecture, arXiv:math/0201139.
[Vo] H. Vo, University of Toronto Ph.D. thesis, in preparation.

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Toulouse-1705/

Abstract. Recently, Roland van der Veen and myself found that Chern-Simons-Witten. Given a knot $\gamma(t)$ in there are sequences of solvable Lie algebras "converging" to any \mathbb{R}^{3} and metrized Lie algebra \mathfrak{g}, set $Z(\gamma):=$ given semi-simple Lie algebra (such as $s l_{2}$ or $s l_{3}$ or $E 8$). Certain computations are much easier in solvable Lie algebras; in particular, using solvable approximations we can compute in polynomial time certain projections (originally discussed by Rozansky) of the knot invariants arising from the Chern-Simons-Witten topological quantum field theory. This provides us with the first strong knot invariants that are computable for truly large knots.
But $s l_{2}$ and $s l_{3}$ and similar algebras occur in physics (and in mathematics) in many other places, beyond the Chern-SimonsWitten theory. Do solvable approximations have further applications?
Recomposing $g l_{n}$. Half is enough! $g l_{n} \oplus \mathfrak{a}_{n}=\mathcal{D}(\nabla, b, \delta)$:

Now define $g l_{n}^{\epsilon}:=\mathcal{D}(\nabla, b, \epsilon \delta)$. Schematically, this is $[\nabla, \nabla]=\nabla$, $[\triangle, \triangle]=\epsilon \triangle$, and $[\nabla, \triangle]=\Delta+\epsilon \nabla$. In detail, it is

$\left[e_{i j}, e_{k l}\right]=\delta_{j k} e_{i l}-\delta_{l i} e_{k j} \quad\left[f_{i j}, f_{k l}\right]=\epsilon \delta_{j k} f_{i l}-\epsilon \delta_{l i} f_{k j}$ $\left[e_{i j}, f_{k l}\right]=\delta_{j k}\left(\epsilon \delta_{j<k} e_{i l}+\delta_{i l}\left(h_{i}+\epsilon g_{i}\right) / 2+\delta_{i>l} f_{i l}\right)$ $-\delta_{l i}\left(\epsilon \delta_{k<j} e_{k j}+\delta_{k j}\left(h_{j}+\epsilon g_{j}\right) / 2+\delta_{k>j} f_{k j}\right)$ $\left[g_{i}, e_{j k}\right]=\left(\delta_{i j}-\delta_{i k}\right) e_{j k} \quad\left[h_{i}, e_{j k}\right]=\epsilon\left(\delta_{i j}-\delta_{i k}\right) e_{j h}$ $\left[g_{i}, f_{j k}\right]=\left(\delta_{i j}-\delta_{i k}\right) f_{j k} \quad\left[h_{i}, f_{j k}\right]=\epsilon\left(\delta_{i j}-\delta_{i k}\right) f_{j k}$
Solvable Approximation. At $\epsilon=1$ and modulo $h=g$, the above is just $g l_{n}$. By rescaling at $\epsilon \neq 0, g l_{n}^{\epsilon}$ is independent of ϵ. We let $g l_{n}^{k}$ be $g l_{n}^{\epsilon}$ regarded as an algebra over $\mathbb{Q}[\epsilon] / \epsilon^{k+1}=0$. It is the " k-smidgen solvable approximation" of $g l_{n}$!
Recall that \mathfrak{g} is "solvable" if iterated commutators in it ultimately vanish: $\mathfrak{g}_{2}:=[\mathfrak{g}, \mathfrak{g}], \mathfrak{g}_{3}:=\left[\mathfrak{g}_{2}, \mathfrak{g}_{2}\right], \ldots, \mathfrak{g}_{d}=0$. Equivalently, if it is a subalgebra of some large-size ∇ algebra.
Note. This whole process makes sense for arbitrary semi-simple Lie algebras.
Why are "solvable algebras" any good? Contrary to common beliefs, computations in semi-simple Lie algebras are just awful:

$$
\ln [1]=\text { MatrixExp }\left[\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right] / / \text { FullSimplify // MatrixForm Enter }
$$

Yet in solvable algebras, exponentiation is fine and even BCH ,
$z=\log \left(\mathbb{C}^{x} \mathbb{C}^{y}\right)$, is bearable:

Question. What else can you do with solvable approximation? Chern-Simons-Witten theory is often "solved" using ideas from conformal field theory and using quantization of various moduli spaces. Does it make sense to use solvable approximation there too? Elsewhere in physics? Elsewhere in mathematics?
See Also. Talks at George Washington University [$\omega \varepsilon \beta / \mathrm{gwu}$], Indiana $[\omega \varepsilon \beta / \mathrm{ind}]$, and Les Diablerets $[\omega \varepsilon \beta / \mathrm{ld}]$, and a University of Toronto "Algebraic Knot Theory" class [$\omega \varepsilon \beta /$ akt].

$$
\int_{A \in \Omega^{1}\left(\mathbb{R}^{3}, \mathfrak{g}\right)} \mathcal{D} A \mathbb{e}^{i k c s(A)} P \operatorname{Exp}_{\gamma}(A)
$$

where $c s(A):=\frac{1}{4 \pi} \int_{\mathbb{R}^{3}} \operatorname{tr}\left(A d A+\frac{2}{3} A^{3}\right)$ and

$$
\operatorname{PExp}_{\gamma}(A):=\prod_{0}^{1} \exp \left(\gamma^{*} A\right) \in \mathcal{U}=\hat{\mathcal{U}}(\mathfrak{g})
$$

and $\mathcal{U}(\mathfrak{g}):=\langle$ words in $\mathfrak{g}\rangle /(x y-y x=[x, y])$. In a favourable gauge, one may hope that this computation will localize near the crossings and the bends, and all will depend on just two quantities,

$$
R=\sum a_{i} \otimes b_{i} \in \mathcal{U} \otimes \mathcal{U} \quad \text { and } \quad C \in \mathcal{U}
$$

This was never done formally, yet R and C can be "guessed" and all "quantum knot invariants" arise in this way. So for the trefoil,

$$
Z=\sum_{i, j, k} C a_{i} b_{j} a_{k} C^{2} b_{i} a_{j} b_{k} C
$$

But Z lives in \mathcal{U}, a complicated space. How do you extract information out of it?
Solution 1, Representation Theory. Choose a finite dimensional representation ρ of \mathfrak{g} in some vector space V. By luck and the wisdom of Drinfel'd and Jimbo, $\rho(R) \in V^{*} \otimes V^{*} \otimes V \otimes V$ and $\rho(C) \in V^{*} \otimes V$ are computable, so Z is computable too. But in exponential time!

Solution 2, Solvable Approximation. Work directly in $\hat{\mathcal{U}}\left(\mathfrak{g}_{k}\right)$, where $\mathfrak{g}_{k}=s l_{2}^{k}$ (or a similar algebra); everything is expressible using low-degree polynomials in a small number of variables, hence everything is poly-time computable!
Example 0. Take $\mathfrak{g}_{0}=s l_{2}^{0}=\mathbb{Q}\langle h, e, l, f\rangle$, with h central and $[f, l]=f,[e, l]=-e,[e, f]=h$. In it, using normal orderings,

$$
\begin{gathered}
R=\mathbb{O}\left(\left.\exp \left(h l+\frac{\mathbb{e}^{h}-1}{h} e f\right) \right\rvert\, e \otimes l f\right), \quad \text { and } \\
\mathbb{O}\left(\mathbb{e}^{\delta e f} \mid f e\right)=\mathbb{O}\left(v \mathbb{e}^{v \delta e f} \mid e f\right) \quad \text { with } v=(1+h \delta)^{-1} .
\end{gathered}
$$

Example 1. Take $R=\mathbb{Q}[\epsilon] /\left(\epsilon^{2}=0\right)$ and $\mathfrak{g}_{1}=s l_{2}^{1}=R\langle h, e, l, f\rangle$, with h central and $[f, l]=f,[e, l]=-e,[e, f]=h-2 \epsilon l$. In it,

$$
\mathbb{O}\left(\mathbb{C}^{\delta e f} \mid f e\right)=\mathbb{O}\left(v(1+\epsilon v \delta \Lambda / 2) \mathbb{C}^{\nu \delta e f} \mid e l f\right), \quad \text { where } \Lambda \text { is }
$$ $4 v^{3} \delta^{2} e^{2} f^{2}+3 v^{3} \delta^{3} h e^{2} f^{2}+8 v^{2} \delta e f+4 v^{2} \delta^{2} h e f+4 v \delta e l f-2 v \delta h+4 l$. Fact. Setting $h_{i}=h$ (for all i) and $t=\mathbb{e}^{h}$, the \mathfrak{g}_{1} invariant of any tangle T can be written in the form

$$
Z_{\mathfrak{g}_{1}}(T)=\mathbb{O}\left(\omega^{-1} \mathbb{e}^{h L+\omega^{-1} Q}\left(1+\epsilon \omega^{-4} P\right) \mid \bigotimes_{i} e_{i} l_{i} f_{i}\right)
$$

where L is linear, Q quadratic, and P quartic in the $\left\{e_{i}, l_{i}, f_{i}\right\}$ with ω and all coefficients polynomials in t. Furthermore, everything is poly-time computable.

On Elves and Invariants
his page，they describe the strongest truly computable knot invariant we know． Three steps to the computation of ρ_{1} ： 1．Preparation．Given K ，results〈long word｜｜simple formulas〉． 2．Rewrite rules．Make the word sim－ pler and the formulas more complica－ ted，until the word＂elf＂is reached． 3．Readout．The invariant ρ_{1} is read from the last formulas．

> Knot K
> \downarrow preparation
> $\left\langle\right.$ elf \ldots elf $\left.\| \omega_{0} ; L_{0} ; Q_{0} ; P_{0}\right\rangle$
> \downarrow rewrite rules
$\langle e l f \| \omega ;-;-; P\rangle$
\downarrow readout
$\rho_{1}(K)=\rho_{1}(\omega, P)$

Preparation．Draw K using a 0 －framed 0 －rotation planar diagram D where all crossings are poin－ ting up．Walk along D labeling features by $1, \ldots, m$ in order：over－passes，under－passes，and right－heading cups and caps（＂\pm－cuaps＂）．If x is a xing，let i_{x} and j_{x} be the labels on its over／under strands，and let s_{x} be 0 if it right－handed and -1
 otherwise．If c is a cuap，let i_{c} be its label and s_{c} be its sign．Set

$$
\begin{aligned}
(L ; Q ; P) & =\sum_{x:(i, j, s)}(-)^{s}\left(l_{j} ; t^{s} e_{i} f_{j} ;(-t)^{s} e_{i} l_{(1+s) i-s j} f_{j}+l_{i} l_{j}+\frac{t^{2 s} e_{i}^{2} f_{j}^{2}}{4}\right) \\
& +\sum_{c:(i, s)}\left(0 ; 0 ; s \cdot l_{i}\right) .
\end{aligned}
$$

This done，output $\left\langle e_{1} l_{1} f_{1} e_{2} l_{2} f_{2} \cdots e_{m} l_{m} f_{m} \| 1 ; L ; Q ; P\right\rangle$ ．
In formulas，L is always \mathbb{Z}－linear in $\left\{l_{i}\right\}, Q$ is an R－linear combina－ tion of $\left\{e_{i} f_{j}\right\}$ where $R:=\mathbb{Q}\left[t^{ \pm 1}\right]$ ，and P is an R－linear combination of $\left\{1, l_{i}, l_{i} l_{j}, e_{i} f_{j}, e_{i} l_{j} f_{k}, e_{i} e_{j} f_{k} f_{l}\right\}$ ．（The key to computability！）
Rewrite Rules．Manipulate〈word \｜formulas〉 expressions u－ sing the rewrite rules below，until you come to the form $\left\langle e_{1} l_{1} f_{1} \| \omega ;-;-; P\right\rangle$ ．Output (ω, P) ．
Rule 1，Deletions．If a letter appears in word but not in formulas， you can delete it．
Rule 2，Merges．In word，you can replace adjacent $v_{i} v_{j}$ with v_{k} （for $v \in\{e, l, f\}$ ）while making the same changes in formulas （provided k creates no naming clashes）．E．g．，

$$
\left\langle\ldots e_{i} e_{j} \ldots \| Z\right\rangle \rightarrow\left\langle\ldots e_{k} \ldots \|\left. Z\right|_{e_{i}, e_{j} \rightarrow e_{k}}\right\rangle .
$$

Rule 3，le Sorts．Provided k introduces no clashes，given $\left\langle\ldots l_{j} e_{i} \ldots \| \omega ; L ; Q ; P\right\rangle$ ，decompose $L=\lambda l_{j}+L^{\prime}, Q=\alpha e_{i}+Q^{\prime}$ ， write $P=P\left(e_{i}, l_{j}\right)$（with messy coefficients），set $q=\mathbb{e}^{\gamma} \beta e_{k}+\gamma l_{k}$ ， and output
$\left\langle\ldots e_{k} l_{k} \ldots \| \omega ;\left.L\right|_{l_{j} \rightarrow l_{k}} ; t^{\lambda} \alpha e_{k}+Q^{\prime} ;\left.\mathbb{E}^{-q} P\left(\partial_{\beta}, \partial_{\gamma}\right) \mathbb{E}^{q}\right|_{\beta \rightarrow \alpha / \omega, \gamma \rightarrow \lambda \log t}\right\rangle$. Rule 4，$f l$ Sorts．Provided k introduces no clashes，given $\left\langle\ldots f_{i} l_{j} \ldots \| \omega ; L ; Q ; P\right\rangle$ ，decompose $L=\lambda l_{j}+L^{\prime}, Q=\alpha f_{i}+Q^{\prime}$ ， write $P=P\left(f_{i}, l_{j}\right)$（with messy coefficients），set $q=\mathbb{C}^{\gamma} \beta f_{k}+\gamma l_{k}$ ， and output
$\left\langle\ldots l_{k} f_{k} \ldots \| \omega ; L l_{l_{j} \rightarrow l_{k}} ; t^{\lambda} \alpha f_{k}+Q^{\prime} ;\left.\mathbb{e}^{-q} P\left(\partial_{\beta}, \partial_{\gamma}\right) \mathbb{e}^{q}\right|_{\beta \rightarrow \alpha / \omega, \gamma \rightarrow \lambda \log t}\right\rangle$ ．
$\left\langle\ldots f_{i} e_{j} \ldots \| \omega ; L ; Q ; P\right\rangle$ ，decompose $Q=Q_{f e} f_{i} e_{j}+Q_{f} f_{i}+Q_{e} e_{j}+$ Q^{\prime} write $P=P\left(f_{i}, e_{j}\right)$（with messy coefficients），set $\mu=1+(t-1) \delta$ and $q=\left((1-t) \alpha \beta+\beta e_{k}+\alpha f_{k}+\delta e_{k} f_{k}\right) / \mu$ ，and output

$$
\left\langle\ldots e_{k} f_{k} \ldots \|\left._{\omega^{4} \Lambda_{k}+\mathbb{E}^{-q} P\left(\partial_{\alpha}, \partial_{\beta}\right)\left(\mathbb{P}^{q}\right)}^{\mu \omega ; L ; \mu \omega q+\mu Q^{\prime} ;}\right|_{\substack{\left.\alpha \rightarrow Q_{f} \mid \omega, \beta, \beta\right)-Q_{e} / \omega, \delta \rightarrow Q_{e}}},\right.
$$

where Λ_{k} is the Λ ó $\gamma \mathbf{o}$ ，＂a principle of order and knowledge＂：

$$
\begin{aligned}
& \Lambda_{k}=\frac{t+1}{4}\left(-\delta(\mu+1)\left(\beta^{2} e_{k}^{2}+\alpha^{2} f_{k}^{2}\right)-\delta^{3}(3 \mu+1) e_{k}^{2} f_{k}^{2}\right. \\
& -2\left(\beta e_{k}+\alpha f_{k}\right)\left(\alpha \beta+2 \delta \mu+\delta^{2}(2 \mu+1) e_{k} f_{k}+2 \delta \mu^{2} l_{k}\right) \\
& -4(\alpha \beta+\delta \mu)\left(\delta(\mu+1) e_{k} f_{k}+\mu^{2} l_{k}\right)-4 \delta^{2} \mu^{2} e_{k} f_{k} l_{k} \\
& \left.+(t-1)\left(2(\alpha \beta+\delta \mu)^{2}-\alpha^{2} \beta^{2}\right)\right) \text {. } \\
& \text { elf merges, } m_{k}^{i j} \text {, are defined as compositions } \geq \rightarrow \rightarrow \\
& e_{i} l_{i} \overline{f_{i} e_{j}} l_{j} f_{j} \xrightarrow{s_{x}^{f_{i} e_{j}}} e_{i} \overline{l_{i} e_{x}} \overline{f_{x} l_{j}} f_{j} \xrightarrow{s_{x}^{t_{x}} / / S_{x}^{f_{x} l_{j}}} \overline{e_{i} e_{x}} \overline{l_{x} l_{x}} \overline{f_{x} f_{j}} \\
& \xrightarrow{i, j, x \rightarrow k} e_{k} l_{k} f_{k}
\end{aligned}
$$

Readout．Given $\langle e l f \| \omega ;-;-; P\rangle$ ，output

$$
\rho_{1}(K):=\frac{t\left(\left.P\right|_{e, l, f \rightarrow 0}-t \omega^{\prime} \omega^{3}\right)}{(t-1)^{2} \omega^{2}} .
$$

（ ω is the Alexander polynomial，L and Q are not interesting）．

Experimental Analysis（ $\omega \varepsilon \beta /$ Exp）．Log－log plots of computation time（sec）vs．crossing number，for all knots with up to 12 cros－ sings（mean times）and for all torus knots with up to 48 crossings：

Power．On the 250 knots with at most 10 crossings，the pair （ ω, ρ_{1} ）attains 250 distinct values，while（Khovanov，HOMFLY－ PT）attains only 249 distinct values．To 11 crossings the numbers are $(802,788,772)$ and to 12 they are $(2978,2883,2786)$ ．
Genus．Up to 12 xings，always ρ_{1} is symmetric under $t \leftrightarrow t^{-1}$ ． With ρ_{1}^{+}denoting the positive－degree part of ρ_{1} ，always $\operatorname{deg} \rho_{1}^{+} \leq$ $2 g-1$ ，where g is the 3 －genus of K（equallity for 2530 knots）． This gives a lower bound on g in terms of ρ_{1}（conjectural，but undoubtedly true）．This bound is often weaker than the Alexander bound，yet for 10 of the 12 －xing Alexander failures it does give the right answer．
Why Works？The Lie algebra \mathfrak{g}_{1}（below）is a＂solvable approxi－ mation of $s l_{2}{ }^{\prime}$ ．
Theorem．The map（as defined below）
$\left.\langle w \| \omega ; L ; Q ; P\rangle \mapsto \mathbb{O}\left(\omega^{-1} \mathbb{e}^{L \log t+\omega^{-1}} Q_{(}+\epsilon \omega^{-4} P\right): w\right) \in \hat{\mathcal{U}}\left(\mathrm{g}_{1}\right)$ is well defined modulo the sorting rules．It maps the initial prepa－ ration to a product of＂R－matrices＂and＂cuap values＂satisfying the usual moves for Morse knots（R3，etc．）．（And hence the result is a＂quantum invariant＂，except computed very differently；no representation theory！）． ＂God created the knots，all else in topology is the work of mortals．＂

Leopold Kronecker（modified）

Happy Birthday， Scott！

1-Smidgen $s l_{2}$ Let \mathfrak{g}_{1} be the 4-dimensional Lie algebra $\mathfrak{g}_{1}=$ $\left\langle h, e^{\prime}, l, f\right\rangle$ over the ring $R=\mathbb{Q}[\epsilon] /\left(\epsilon^{2}=0\right)$, with h central and with $[f, l]=f,\left[e^{\prime}, l\right]=-e^{\prime}$, and $\left[e^{\prime}, f\right]=h-2 \epsilon l$. Over $\mathbb{Q}, \mathfrak{g}_{1}$ is a solvable approximation of $s l_{2}: \mathfrak{g}_{1} \supset\left\langle h, e^{\prime}, f, \epsilon h, \epsilon e^{\prime}, \epsilon l, \epsilon f\right\rangle \supset$ $\left\langle h, \epsilon h, \epsilon e^{\prime}, \epsilon l, \epsilon f\right\rangle \supset 0$. Pragmatics: declare $\operatorname{deg}\left(h, e^{\prime}, l, f, \epsilon\right)=$ $(1,1,0,0,1)$ and set $t:=\mathbb{e}^{h}$ and $e:=(t-1) e^{\prime} / h$.
How did it arise? $s l_{2}=\mathfrak{b}^{+} \oplus \mathfrak{b}^{-} / \mathfrak{h}=: s l_{2}^{+} / \mathfrak{h}$, where $\mathfrak{b}^{+}=$ $\langle l, f\rangle /[f, l]=f$ is a Lie bialgebra with $\delta: \mathfrak{b}^{+} \rightarrow \mathfrak{b}^{+} \otimes \mathfrak{b}^{+}$by $\delta:(l, f) \mapsto(0, l \wedge f)$. Going back, $s l_{2}^{+}=\mathcal{D}\left(\mathfrak{b}^{+}\right)=\left(\mathfrak{b}^{+}\right)^{*} \oplus \mathfrak{b}^{+}=$ $\left\langle h^{\prime}, e^{\prime}, l, f\right\rangle / \cdots$. Idea. Replace $\delta \rightarrow \epsilon \delta$ over $\mathbb{Q}[\epsilon] /\left(\epsilon^{k+1}=0\right)$. At $k=1$, get $[f, l]=f,\left[f, h^{\prime}\right]=-\epsilon f,\left[l, e^{\prime}\right]=e^{\prime},\left[h^{\prime}, e^{\prime}\right]=-\epsilon e^{\prime}$, $\left[h^{\prime}, l\right]=0$, and $\left[e^{\prime}, f\right]=h^{\prime}-\epsilon l$. Now note that $h^{\prime}+\epsilon l$ is central, so switch to $h:=h^{\prime}+\epsilon l$. This is \mathfrak{g}_{1}.
Ordering Symbols. \mathbb{O} (poly \mid specs $)$ plants the variables of poly in $\hat{\mathcal{S}}\left(\oplus_{i} \mathfrak{g}\right)$ along $\hat{\mathcal{U}}(\mathrm{g})$ according to specs. E.g.,

$$
\mathcal{O}\left(e_{1} \mathbb{E}^{e_{3}} l_{1}^{3} l_{2} f_{3}^{9} \mid f_{3} l_{1} e_{1} e_{3} l_{2}\right)=f^{9} l^{3} e \mathbb{E}^{e} l \in \hat{\mathcal{U}}(\mathfrak{g})
$$

This enables the description of elements of $\hat{\mathcal{U}}(\mathfrak{g})$ using commutative polynomials / power series. In \mathfrak{g}_{1}, no need to specify h / t. Algebras and Invariants. Given any unital algebra A (even better if A is Hopf; typically, $A \sim \hat{\mathcal{U}}(\mathfrak{g})$), appropriate orange $R \in A \otimes A$, and appropriate cuaps $\in A$, get an $A^{\otimes S}$-valued invariant of pure S-component tangles:

What we didn't say (more, including videos, in $\omega \varepsilon \beta /$ Talks).

- ρ_{1} is "line" in the coloured Jones polynomial; related to Melvin-Morton-Rozansky.
- ρ_{1} extends to "rotational virtual tangles" and is a projection of the universal finite type invariant of such.
- ρ_{1} seems to have a better chance than anything else we know to detect a counterexample to slice=ribbon.
- ρ_{1} leads to many questions and a very long to-do list. Years of work, many papers ahead. Have fun!
Demo Programs.
$\omega \varepsilon \beta /$ Demo
$\mathrm{CF}\left[\varepsilon_{-}\right]:=\mathrm{Module}\left[\left\{\right.\right.$ vars $=$ Union@Cases $\left.\left[\varepsilon, \mathrm{e}_{-}\left|\mathrm{l}_{-}\right| \mathrm{f}_{-}, \infty\right]\right\}$,
If [vars $===\{ \}$, Factor $[\varepsilon]$,
Total [CoefficientRules [\mathcal{E}, vars] /.
$\left(p_{-} \rightarrow c_{-}\right): \rightarrow$ Factor [c] Times @@ (vars^{p})]]];
$\mathrm{CF}\left[\mathcal{E}_{-} \mathbb{E}\right]:=\mathrm{CF} / @ \varepsilon$;
$\mathbb{E}\left[i_{-}, j_{-}, s_{-}\right]:=\mathbb{E}\left[1,(-1)^{s} l_{j},(-t)^{s} e_{i} f_{j}\right.$,
Preparation
$\left.\mathrm{t}^{s} \mathbf{e}_{i} \mathbf{l}_{(1+s) i-s j} \mathrm{f}_{j}+(-1)^{s} \mathbf{l}_{i} \mathbf{l}_{j}+\left(-\mathrm{t}^{2}\right)^{s} \mathrm{e}_{i}^{2} \mathrm{f}_{j}^{2} / \mathbf{4}\right] ;$
$\mathbb{E}\left[i_{-}, s_{-}\right]:=\mathbb{E}\left[1,0,0, s 1_{i}\right]$;
$\mathbb{E} /: \mathbb{E}\left[1, L 1_{-}, Q 1_{-}, P 1_{-}\right] \mathbb{E}\left[1, L 2_{-}, Q 2_{-}, P 2_{-}\right]:=$
$\mathbb{E}[1, L 1+L 2, Q 1+Q 2, P 1+P 2] ;$
$\mathbf{z 1}=(\mathbb{E}[1,11,0] \mathbb{E}[4,2,-1] \mathbb{E}[15,5,0] \quad$ Preparing the Trefoil $\mathbb{E}[6,8,-1] \mathbb{E}[9,16,0] \mathbb{E}[12,14,-1] \mathbb{E}[3,-1] \mathbb{E}[7,+1]$ $\mathbb{E}[10,-1] \mathbb{E}[13,+1])$
$\mathbb{E}\left[1,-1_{2}+1_{5}-1_{8}+1_{11}-1_{14}+l_{16}\right.$,
$-\frac{e_{4} f_{2}}{t}+e_{15} f_{5}-\frac{e_{6} f_{8}}{t}+e_{1} f_{11}-\frac{e_{12} f_{14}}{t}+e_{9} f_{16}$,
$-\frac{e_{4}^{2} f_{2}^{2}}{4 t^{2}}+\frac{1}{4} e_{15}^{2} f_{5}^{2}-\frac{e_{6}^{2} f_{8}^{2}}{4 t^{2}}+\frac{1}{4} e_{1}^{2} f_{11}^{2}-\frac{e_{12}^{2} f_{14}^{2}}{4 t^{2}}+\frac{1}{4} e_{9}^{2} f_{16}^{2}+e_{1} f_{11} l_{1}+$
$\frac{e_{4} f_{2} l_{2}}{t}-l_{3}-l_{2} l_{4}+l_{7}+\frac{e_{6} f_{8} l_{8}}{t}-l_{6} l_{8}+e_{9} f_{16} l_{9}-l_{10}+$
$\left.l_{1} l_{11}+l_{13}+\frac{e_{12} f_{14} l_{14}}{t}-l_{12} l_{14}+e_{15} f_{5} l_{15}+l_{5} l_{15}+l_{9} l_{16}\right]$
$\mathbf{D P}_{x_{-} \rightarrow \mathbf{D}_{\alpha_{-}}, y_{-} \rightarrow \mathbf{D}_{\beta_{-}}}\left[P_{-}\right]\left[f_{-}\right]:=\quad$ Differential Polynomials
Total[CoefficientRules $[P,\{x, y\}] /$ (Implementing $P\left(\partial_{\alpha}, \partial_{\beta}\right)(f)$) $\left.\left(\left\{m_{-}, n_{-}\right\} \rightarrow c_{-}\right): \rightarrow C \operatorname{D}[f,\{\alpha, m\},\{\beta, n\}]\right]$
$\mathrm{S}_{\mathrm{l}_{j_{-}}(x: \mathrm{e} \mid \mathrm{f})_{i_{-} \rightarrow k_{-}}\left[\mathbb{E}\left[\omega_{-}, L_{-}, Q_{-}, P_{-}\right]\right]:=\quad l e \text { and } f l \text { Sorts }}$
$\operatorname{With}\left[\left\{\lambda=\partial_{1_{j}} L, \alpha=\partial_{x_{i}} Q, q=e^{\gamma} \beta x_{k}+\gamma 1_{k}\right\}, C F[\right.$
$\mathbb{E}\left[\omega, L / .1_{j} \rightarrow \mathbf{l}_{k}, \mathrm{t}^{\lambda} \alpha x_{k}+\left(Q / . x_{i} \rightarrow 0\right)\right.$, $\left.\left.\left.e^{-q} \mathrm{DP}_{\mathrm{l}_{j \rightarrow \mathrm{D}_{\gamma}}, x_{i} \rightarrow \mathrm{D}_{\beta}}[P]\left[\mathrm{e}^{\mathrm{q}}\right] / .\{\beta \rightarrow \alpha / \omega, \gamma \rightarrow \lambda \log [\mathrm{t}]\}\right]\right]\right] ;$
$\Lambda\left[k_{-}\right]:=\left((t-1)\left(2(\alpha \beta+\delta \mu)^{2}-\alpha^{2} \beta^{2}\right)-4 e_{k} \mathbf{l}_{k} f_{k} \delta^{2} \mu^{2}-\right.$ $\delta(1+\mu)\left(\mathbf{f}_{k}^{2} \alpha^{2}+\mathbf{e}_{k}^{2} \beta^{2}\right)-\mathbf{e}_{k}^{2} \mathbf{f}_{k}^{2} \delta^{3}(1+3 \mu)-\quad$ The Λ ó γ os $2\left(\alpha \beta+2 \delta \mu+e_{k} f_{k} \delta^{2}(1+2 \mu)+2 l_{k} \delta \mu^{2}\right)\left(f_{k} \alpha+e_{k} \beta\right)-$ $\left.4\left(\mathbf{l}_{k} \mu^{2}+\mathbf{e}_{k} \mathbf{f}_{k} \delta(1+\mu)\right)(\alpha \beta+\delta \mu)\right)(1+t) / 4$;
$\mathbf{S}_{\mathbf{f}_{-} \mathbf{e}_{j_{-} \rightarrow k_{-}}\left[\mathbb{E}\left[\omega_{-}, L_{-}, Q_{-}, P_{-}\right]\right]:=\quad f e \text { Sorts }}$
With $\left[\left\{q=\left((\mathbf{1}-\mathrm{t}) \alpha \beta+\beta \mathbf{e}_{k}+\alpha \mathbf{f}_{k}+\delta \mathbf{e}_{k} \mathbf{f}_{k}\right) / \mu\right\}, \mathrm{CF}[\right.$ $\mathbb{E}\left[\mu \omega, L, \mu \omega \mathrm{q}+\mu\left(Q / . \mathrm{f}_{i} \mid \mathrm{e}_{j} \rightarrow 0\right)\right.$,
$\left.\mu^{4} \mathbb{e}^{-q} \mathbf{D P}_{\mathrm{f}_{i} \rightarrow \mathrm{D}_{\alpha}, \mathrm{e}_{j \rightarrow \mathrm{D}_{\beta}}}[P]\left[\mathbb{e}^{q}\right]+\omega^{4} \Lambda[k]\right] / . \mu \rightarrow \mathbf{1 + (t - 1)} \delta /$. $\left\{\alpha \rightarrow \omega^{-1}\left(\partial_{\mathrm{f}_{i}} Q / . \mathrm{e}_{j} \rightarrow 0\right), \beta \rightarrow \omega^{-1}\left(\partial_{\mathrm{e}_{j}} Q / . \mathrm{f}_{i} \rightarrow 0\right)\right.$, $\left.\left.\left.\delta \rightarrow \omega^{-1} \partial_{\mathrm{f}_{i}, \mathrm{e}_{j}} Q\right\}\right]\right] ;$
$m_{i_{-}, j_{-} \rightarrow k_{-}}\left[Z_{-} \mathbb{E}\right]:=\operatorname{Module}[\{x, z\}$, Elf Merges $\left.\operatorname{CF}\left[\left(z / / S_{f_{i} e_{j \rightarrow x}} / / S_{1_{i} e_{x} \rightarrow x} / / S_{f_{x} 1_{j \rightarrow x}}\right) / \cdot z_{-i|j| x} \rightarrow Z_{k}\right]\right]$
($\operatorname{Do}\left[\mathbf{z 1}=\mathbf{z 1} / / m_{1, k \rightarrow 1},\{\mathbf{k}, \mathbf{2}, \mathbf{1 6 \}}] ; \mathbf{z 1}\right.$) Rewriting the Trefoil
$\mathbb{E}\left[\frac{1-t+t^{2}}{t}, 0,0, \frac{(-1+t)\left(1-t+t^{2}\right)^{2}\left(1-t+2 t^{2}\right)}{t^{3}}-\right.$ (by merging 16 elves)
$\left.\frac{2(1+\mathrm{t})\left(1-\mathrm{t}+\mathrm{t}^{2}\right)^{3} \mathrm{e}_{1} \mathrm{f}_{1}}{\mathrm{t}^{4}}-\frac{2(-1+\mathrm{t})(1+\mathrm{t})\left(1-\mathrm{t}+\mathrm{t}^{2}\right)^{3} \mathrm{l}_{1}}{\mathrm{t}^{4}}\right]$
$\rho_{1}\left[\mathbb{E}\left[\omega_{-},,_{-}, P_{-}\right]\right]:=\operatorname{CF}\left[\frac{\mathrm{t}\left(\left(P / e_{-}\left|l_{-}\right| f_{-} \rightarrow 0\right)-\mathrm{t} \omega^{3}\left(\partial_{\mathrm{t}} \omega\right)\right)}{(\mathrm{t}-1)^{2} \omega^{2}}\right]$
$\rho_{1}[z 1] / /$ Expand
$\rho_{1}\left(3_{1}\right)$
$\frac{1}{t}+t$
References.
[Ov] A. Overbay, Perturbative Expansion of the Colored Jones Polynomial, University of North Carolina PhD thesis, $\omega \varepsilon \beta / \mathrm{Ov}$.
[Ro1] L. Rozansky, A contribution of the trivial flat connection to the Jones polynomial and Witten's invariant of $3 d$ manifolds, I, Comm. Math. Phys. 175-2 (1996) 275-296, arXiv:hep-th/9401061.
[Ro2] L. Rozansky, The Universal R-Matrix, Burau Representation and the Melvin-Morton Expansion of the Colored Jones Polynomial, Adv. Math. 134-1 (1998) 1-31, arXiv:q-alg/9604005.
[Ro3] L. Rozansky, A Universal U(1)-RCC Invariant of Links and Rationality Conjecture, arXiv:math/0201139.

| diagram | $n_{k}^{t} \quad$ Alexander's ω^{+} Today's / Rozansky's ρ_{1}^{+} | genus / ribbon unknotting number / amphicheiral | diagram | $n_{k}^{t} \quad$ Alexander's ω^{+} Today's / Rozansky's ρ_{1}^{+} | genus / ribbon unknotting number / amphicheiral |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | $\begin{array}{ll}0_{1}^{a} & 1 \\ 0 & \end{array}$ | $\begin{aligned} & 0 / \swarrow \\ & 0 / \swarrow \\ & \hline \end{aligned}$ | | $3_{1}^{a} \quad t-1$ | $\begin{aligned} & 1 / X \\ & 1 / X \end{aligned}$ |
| | $\begin{array}{ll} 4_{1}^{a} & 3-t \\ 0 & \\ \hline \end{array}$ | $\begin{aligned} & 1 / x \\ & 1 / V \\ & \hline \end{aligned}$ | | $\begin{aligned} & 5_{1}^{a} \quad t^{2}-t+1 \\ & 2 t^{3}+3 t \end{aligned}$ | $\begin{aligned} & 2 / x \\ & 2 / x \\ & \hline \end{aligned}$ |

Abstract. Rozansky [Ro2] and Overbay [Ov] described a spectacular knot polynomial that failed to attract the attention it deserved as the first poly-time-computable knot polynomial since Alexander's [Al, 1928] and (in my opinion) as the second most likely knot polynomial (after Alexander's) to carry topological information. With Roland van der Veen, I will explain how to compute the Rozansky polynomial using some new commutator-calculus techniques and a Lie algebra \mathfrak{g}_{1} which is at the same time
 solvable and an approximation of the simple Lie algebra $s l_{2}$.
Theorem ([BNG], conjectured [MM], e- مि 28 Melvin, lucidated [Ro1]). Let $J_{d}(K)$ be the co-
loured Jones polynomial of K, in the d-dimensional representation of $s l_{2}$. Writing

$$
\left.\frac{\left(q^{1 / 2}-q^{-1 / 2}\right) J_{d}(K)}{q^{d / 2}-q^{-d / 2}}\right|_{q=e^{\hbar}}=\sum_{j, m \geq 0} a_{j m}(K) d^{j} \hbar^{m},
$$

"below diagonal" coefficients vanish, $a_{j m}(K)=\uparrow m$ 0 if $j>m$, and "on diagonal" coefficients give the inverse of the Alexander polynomial: $\left(\sum_{m=0}^{\infty} a_{m m}(K) \hbar^{m}\right) \cdot A(K)\left(e^{\hbar}\right)=1$.

"Above diagonal" we have Rozansky's Theorem [Ro3, (1.2)]:

$$
J_{d}(K)(q)=\frac{q^{d}-q^{-d}}{\left(q-q^{-1}\right) A(K)\left(q^{d}\right)}\left(1+\sum_{k=1}^{\infty} \frac{(q-1)^{k} R_{k}(K)\left(q^{d}\right)}{A^{2 k}(K)\left(q^{d}\right)}\right)
$$

Why "spectacular"? Foremost reason: OBVIOUSLY. Cf. proving (incomputable A)=(incomputable B), or categorifying (incomputable C). Also, will bound genus and may disprove \{ribbon $\}=\{$ slice $\}$.

A bit about ribbon knots. A "ribbon knot" is a knot that can be presented as the boundary of a disk that has "ribbon singularities", but no "clasp singularities". A "slice knot" is a knot in $S^{3}=\partial B^{4}$ which is the boundary of a non-singular disk in B^{4}. Every ribbon knots is clearly slice, yet,
Conjecture. Some slice knots are not ribbon.
Fox-Milnor. The Alexander polynomial of a ribbon knot is always of the form $A(t)=f(t) f(1 / t)$.
(also for slice)

$4^{+}=-t^{8}+2 t^{7}-t^{6}-2 t^{4}+5 t^{3}-2 t^{2}-7 t+13$

$$
\begin{array}{r}
o_{1}^{+}=5 t^{15}-18 t^{14}+33 t^{13}-32 t^{12}+2 t^{11}+42 t^{10}-62 t^{9}-8 t^{8}+166 t^{7}-242 t^{6}+ \\
108 t^{5}+132 t^{4}-226 t^{3}+148 t^{2}-11 t-36
\end{array}
$$

The Gold Standard is set by the " Γ-calculus" Alexander formulas [BNS, BN1]. An S-component tangle T has $\Gamma(T) \in R_{S} \times M_{S \times S}\left(R_{S}\right)=\left\{\begin{array}{c|c}\omega & S \\ \hline S & A\end{array}\right\}$ with $R_{S}:=\mathbb{Z}\left(\left\{t_{a}: a \in S\right\}\right):$ $\left(a_{a} \widetilde{C}_{b}, b^{\nearrow} \mathbb{a}_{a}\right) \rightarrow$\begin{tabular}{c|cc}
1 \& a \& b

\hlinea \& 1 \& $1-t_{a}^{ \pm 1}$

b \& 0 \& $t_{a}^{ \pm 1}$

$\quad T_{1} \sqcup T_{2} \rightarrow$

$\omega_{1} \omega_{2}$ \& S_{1} \& S_{2}

\hlineS_{1} \& A_{1} \& 0

S_{2} \& 0 \& A_{2}

ω \& a \& b \& S

\hlinea \& α \& β \& θ

b \& γ \& δ \& ϵ

S \& ϕ \& ψ \& Ξ
\end{tabular}\(\xrightarrow[t_{a}, t_{b} \rightarrow t_{c}]{m_{c}^{a b}}\left(\begin{array}{c|cc}(1-\beta) \omega \& c \& S

\hline c \& \gamma+\frac{\alpha \delta}{1-\beta} \& \epsilon+\frac{\delta \theta}{1-\beta}

S \& \phi+\frac{\alpha \psi}{1-\beta} \& \Xi+\frac{\psi \theta}{1-\beta}\end{array}\right)\)
(Roland: "add to A the product of column b and row a, divide by $\left(1-A_{a b}\right)$, delete column b and row $a^{\prime \prime}$.)

For long knots, ω is Alexander, and that's the fastest Alexander algorithm I know!

Dunfield: 1000-crossing fast.
 (There are also formulas for strand doubling and strand reversal). Theorem [EK, Ha, En, Se]. There is a "homomorphic expansion" $Z:\left\{\begin{array}{l}S \text {-component } \\ (v / b-) \text { tangles }\end{array}\right\} \rightarrow \mathcal{A}_{S}^{v}:=?_{2}$ Algebras and Invariants. Given any unital algebra A (even better if A is Hopf; typically, $A \sim \hat{\mathcal{U}}(\mathrm{~g})$), appropriate orange $R \in A \otimes A$, and appropriate cuaps $\in A$, get an $A^{\otimes S}$-valued invariant of pure S-component tangles:

Good News. In theory, enough to know R, the cuaps, and stitching/multiplication $m_{k}^{i j}: A_{i} \otimes A_{j} \rightarrow A_{k}$.
Problem. Extract information out of Z.
Textbook Solution. Use representation theory ...works, slowly. Today's Solution (with van der Veen). For some specific \mathfrak{g} 's, work in a space of "formulas of a specific type" for elements of $\hat{\mathcal{U}}(\mathfrak{g})^{\otimes S}$:

$$
\left\{\begin{array}{l}
\text { ordered perturbed } \\
\text { Gaussian formulas }
\end{array}\right\} \rightarrow \hat{\mathcal{U}}(\mathrm{g})^{\otimes S}
$$

van der Veen

This is http://www.math.toronto.edu/~drorbn/Talks/MIT-1612/. Better videos at .../Indiana-1611/, . . /LesDiablerets-1608/

1-Smidgen $s l_{2}$ Let \mathfrak{g}_{1} be the 4-dimensional Lie algebra $\mathfrak{g}_{1}=$ $\langle b, c, u, w\rangle$ over the ring $R=\mathbb{Q}[\epsilon] /\left(\epsilon^{2}=0\right)$, with b central and wi- 5. $O\left(e^{\alpha w+\beta u+\delta u w} \mid w u\right)=\mathbb{O}\left(v(1+\epsilon v \Lambda) e^{\nu(-b \alpha \beta+\alpha w+\beta u+\delta u w)} \mid u c w\right)$ th $[w, c]=w,[c, u]=u$, and $[u, w]=b-2 \epsilon c$, with CYBE $r_{i j}=$ Here Λ is for Λ ó $\gamma o s$, "a principle of order and knowledge", a ba-$\left(b_{i}-\epsilon c_{i}\right) c_{j}+u_{i} w_{j}$ in $\mathcal{U}\left(\mathfrak{g}_{1}\right)^{\otimes\{i, j\}}$. Over $\mathbb{Q}, \mathfrak{g}_{1}$ is a solvable approxi- lanced quartic in α, β, u, c, and w : mation of $s l_{2}: \mathfrak{g}_{1} \supset\langle b, u, w, \epsilon b, \epsilon c, \epsilon u, \epsilon w\rangle \supset\langle b, \epsilon b, \epsilon c, \epsilon u, \epsilon w\rangle \supset$ 0. $($ note: $\operatorname{deg}(b, c, u, w, \epsilon)=(1,0,1,0,1))$
0 -Smidgen $s l_{2} \odot$. Let \mathfrak{g}_{0} be \mathfrak{g}_{1} at $\epsilon=0$, or $\mathbb{Q}\langle b, c, u, w\rangle /([b, \cdot]=$ $0,[c, u]=u,[c, w]=-w,[u, w]=b$ with $r_{i j}=b_{i} c_{j}+u_{i} w_{j}$. It is $\mathfrak{b}^{*} \rtimes \mathfrak{b}$ where \mathfrak{b} is the 2D Lie algebra $\mathbb{Q}\langle c, w\rangle$ and (b, u) is the dual basis of (c, w). For topology, it is more valuable than $\mathfrak{g}_{1} / s l_{2}$, but topology already got by other means almost everything \mathfrak{g}_{0} gives. How did these arise? $s l_{2}=\mathfrak{b}^{+} \oplus \mathfrak{b}^{-} / \mathfrak{b}=: s l_{2}^{+} / \mathfrak{h}$, where $\mathfrak{b}^{+}=$ $\langle c, w\rangle /[w, c]=w$ is a Lie bialgebra with $\delta: \mathfrak{b}^{+} \rightarrow \mathfrak{b}^{+} \otimes \mathfrak{b}^{+}$by $\delta:(c, w) \mapsto(0, c \wedge w)$. Going back, $s l_{2}^{+}=\mathcal{D}\left(\mathrm{b}^{+}\right)=\left(\mathrm{b}^{+}\right)^{*} \oplus \mathrm{~b}^{+}=$ $\langle b, u, c, w\rangle / \cdots$. Idea. Replace $\delta \rightarrow \epsilon \delta$ over $\mathbb{Q}[\epsilon] /\left(\epsilon^{k+1}=0\right)$. At $k=0$, get \mathfrak{g}_{0}. At $k=1$, get $[w, c]=w,\left[w, b^{\prime}\right]=-\epsilon w,[c, u]=u$, $\left[b^{\prime}, u\right]=-\epsilon u,\left[b^{\prime}, c\right]=0$, and $[u, w]=b^{\prime}-\epsilon c$. Now note that $b^{\prime}+\epsilon c$ is central, so switch to $b:=b^{\prime}+\epsilon c$. This is \mathfrak{g}_{1}.
Ordering Symbols. O (poly \mid specs $)$ plants the variables of poly in $\mathcal{S}\left(\oplus_{i} \mathfrak{g}\right)$ on several tensor copies of $\mathcal{U}(\mathfrak{g})$ according to specs. E.g., $\bigcirc\left(c_{1}^{3} u_{1} c_{2} e^{u_{3}} w_{3}^{9} \mid x: w_{3} c_{1}, y: u_{1} u_{3} c_{2}\right)=w^{9} c^{3} \otimes u e^{u} c \in \mathcal{U}(\mathfrak{g})_{x} \otimes \mathcal{U}(\mathfrak{g})_{y}$ This enables the description of elements of $\hat{\mathcal{U}}(\mathrm{g})^{\otimes S}$ using commutative polynomials / power series.
0-Smidgen Invariants. $r=I d \in \mathfrak{b}^{-} \otimes \mathfrak{b}^{+}$solves the CYBE $\left[r_{12}, r_{13}\right]+\left[r_{12}, r_{23}\right]+\left[r_{13}, r_{23}\right]=0$ in $\mathcal{U}\left(\mathrm{g}_{0}\right)^{\otimes 3}$ and, by luck,

$$
\begin{aligned}
& \text { solves YB/R3. }
\end{aligned}
$$

Lemma. $R_{i j}=e^{b_{i} c_{j}+u_{i} w_{j}}=\mathbb{O}\left(\left.\exp \left(b_{i} c_{j}+\frac{e^{b_{i}-1}}{b_{i}} u_{i} w_{j}\right) \right\rvert\, i: u_{i}, j: c_{j} w_{j}\right)$
Example. $Z\left(T_{0}\right)=\quad=\sum_{m, n} \frac{b_{i}^{m-n}\left(e^{b_{i}}-1\right)^{n}}{m!n!} u^{n} \otimes c^{m} w^{n}$.
$\bigcirc\left(\left.\exp \left(b_{5} c_{1}+\frac{e^{b_{5}-1}}{b_{5}} u_{5} w_{1}+b_{2} c_{4}+\frac{e^{b_{2}-1}}{b_{2}} u_{2} w_{4}-b_{3} c_{6}+\frac{e^{-b_{3}-1}}{b_{3}} u_{3} w_{6}\right) \right\rvert\,\right.$ $\left.x: c_{1} w_{1} u_{2}, y: u_{3} c_{4} w_{4} u_{5} c_{6} w_{6}\right)=\mathbb{O}\left(\zeta \mid x: u_{x} c_{x} w_{x}, y: u_{y} c_{y} w_{y}\right)$
Goal. Write ζ as a Gaussian: ωe^{L+Q} where L bilinear in b_{i} and c_{i} with integer coefficients, Q a balanced quadratic in u_{i} and w_{i} with coefficients in $R_{S}:=\mathbb{Q}\left(b_{i}, e^{b_{i}}\right)$, and $\omega \in R_{S}$.
The Big g_{0} Lemma. Under $[c, u]=u,[c, w]=-w$, and $[u, w]=b$: 1a. $N^{c u}:=\mathbb{O}\left(e^{\gamma c+\beta u} \mid u c\right) \xrightarrow{=} \mathbb{O}\left(e^{\gamma c+e^{\gamma} \beta u} \mid c u\right) \quad\left(\right.$ means $e^{\beta u} e^{\gamma c}=e^{\gamma c} e^{e^{\gamma} \beta u}$ $1 \mathrm{~b} . N^{w c}:=\mathbb{O}\left(e^{\gamma c+\alpha w} \mid w c\right) \stackrel{\mathbb{O}}{=}\left(e^{\gamma c+e^{\gamma} \alpha w} \mid c w\right) \quad \ldots$ in the $\{a x+b\}$ group $)$ 2. $\mathbb{O}\left(e^{\alpha w+\beta u} \mid w u\right)=\mathbb{O}\left(e^{-b \alpha \beta+\alpha w+\beta u} \mid u w\right) \quad$ (the Weyl relations) 3. $\mathbb{O}\left(e^{\delta u w} \mid w u\right) e^{\beta u}=e^{\nu \beta u} O\left(e^{\delta u w} \mid w u\right)$, with $v=(1+b \delta)^{-1}$
(a. expand and crunch. b. use $w=b \hat{x}, u=\partial_{x} . \quad$ c. use "scatter and glow".)
4. $\mathbb{O}\left(e^{\delta u w} \mid w u\right)=\mathbb{O}\left(v e^{v \delta u w} \mid u w\right)$
(same techniques)
5. $N^{w u}:=\mathbb{O}\left(e^{\beta u+\alpha w+\delta u w} \mid w u\right) \xrightarrow{=} \mathbb{O}\left(v e^{-b v \alpha \beta+\nu \alpha w+\nu \beta u+\nu \delta u w} \mid u w\right)$
6. $N_{k}^{c_{i} c_{j}}:=\mathbb{O}\left(\zeta \mid c_{i} c_{j}\right) \stackrel{\rightharpoonup}{=} \mathbb{O}\left(\zeta /\left(c_{i}, c_{j} \rightarrow c_{k}\right) \mid c_{k}\right)$

Sneaky. α may contain (other) u 's, β may contain (other) w 's.
Strand Stitching, $m_{k}^{i j}$, is defined as the composition

$$
u_{i} c_{i} \overline{w_{i} u_{j}} c_{j} w_{j} \xrightarrow{N_{x}^{w_{i} u_{j}}} u_{i} \overline{c_{i} u_{x}} \overline{w_{x} c_{j}} w_{j} \xrightarrow{N_{x}^{c_{i} u_{x}} / / N_{x}^{w_{x} c_{j}}} \widetilde{u_{i} u_{x}} \overline{c_{x} c_{x}} \overline{w_{x} w_{j}} \begin{aligned}
& i, j, x \rightarrow k \\
& u_{k} \\
& c_{k} w_{k}
\end{aligned}
$$

$$
\begin{aligned}
\Lambda= & -b v\left(\alpha^{2} \beta^{2} v^{2}+4 \alpha \beta \delta v+2 \delta^{2}\right) / 2+\beta^{2} \delta v^{3}(b \delta+2) u^{2} / 2 \\
& +\delta^{3} v^{3}(3 b \delta+4) u^{2} w^{2} / 2+\beta \delta^{2} v^{3}(2 b \delta+3) u^{2} w \\
& +\alpha \delta^{2} v^{3}(2 b \delta+3) u w^{2}+2 \delta v^{2}(b \delta+2)(\alpha \beta v+\delta) u w \\
& +\alpha^{2} \delta v^{3}(b \delta+2) w^{2} / 2+2(\alpha \beta v+\delta) c+2 \beta \delta v u c+2 \delta^{2} v u c w \\
& +2 \alpha \delta v c w+\beta v^{2}(\alpha \beta v+2 \delta) u+\alpha v^{2}(\alpha \beta v+2 \delta) w .
\end{aligned}
$$

Proof. A lengthy computation.
(Verification: $\omega \varepsilon \beta / \mathrm{Big}$) Problem. We now need to normal-order perturbed Gaussians! Solution. Borrow some tactics from QFT:

$$
\mathbb{O}\left(\epsilon P(c, u) e^{\gamma c+\beta u} \mid u c\right)=\mathbb{O}\left(\epsilon P\left(\partial_{\gamma}, \partial_{\beta}\right) e^{\gamma c+\beta u} \mid u c\right)=
$$

$$
\text { and likewise } \quad \mathcal{O}\left(\epsilon P\left(\partial_{\gamma}, \partial_{\beta}\right) e^{\gamma c+e^{-\gamma} \beta u} \mid c u\right)
$$

$\bigcirc\left(\epsilon P(u, w) e^{\alpha w+\beta u+\delta u w} \mid w u\right)=\bigcirc\left(\epsilon P\left(\partial_{\beta}, \partial_{\alpha}\right) v e^{v(-b \alpha \beta+\alpha w+\beta u+\delta u w)} \mid u c w\right)$ Finally, the values of the generators $\curvearrowright, \lambda, \vec{n}$, and $\xrightarrow[\rightarrow]{u}$, are set by solving many equations, non-uniquely.
Pragmatic Simplifications. Set $t:=e^{b}$, work with $v:=(t-1) u / b$, and set $\mathbb{E}(\omega, L, Q, P):=\mathbb{O}\left(\omega^{-1} e^{L+Q / \omega}\left(1+\epsilon \omega^{-4} P\right):\left(i: v_{i} c_{i} w_{i}\right)\right)$. Now $\omega \in R_{S}:=\mathbb{Z}\left[t_{i}, t_{i}^{-1}\right]$ is Laurent, $L=\sum l_{i j} \log \left(t_{i}\right) c_{j}$ with $l_{i j} \in$ $\mathbb{Z}, Q=\sum q_{i j} v_{i} w_{j}$ with $q_{i j} \in R_{S}$, and P is a quartic polynomial in v_{i}, c_{j}, w_{k} with coefficients in R_{S}. The operations are lightly modified, and the Λ ó γ os and the values of the generators become somewhat simpler, as in the implementation below.
$\begin{aligned} & \text { Rough complexity esti- } \\ & \text { mate, after } t_{k} \rightarrow t . n \text { : xing } \\ & \text { number; } w \text { : width, maybe }\end{aligned} \frac{B}{\frac{n}{\sum_{A}^{4}}}{ }_{d=0}^{\frac{w^{4-d}}{E}} \frac{w^{d}}{F}, \frac{n^{2}}{G}=n^{3} w^{4} \in\left[n^{5}, n^{7}\right]$ $\sim \sqrt{n}$. A: go over stitchings in order. B : multiplication ops per $N^{u_{i} w_{j}} . d$: deg of u_{i}, w_{j} in P. E: \#terms of $\operatorname{deg} d$ in $P . F$: ops per term. G : cost per polynomial multiplication op.
Experimental Analysis ($\omega \varepsilon \beta /$ Exp). Log-log plots of computation time (sec) vs. crossing number, for all knots with up to 12 crossings (mean times) and for all torus knots with up to 48 crossings:

Conjecture (checked on the ${ }^{\frac{8}{6}}$ same collections). ${ }^{\frac{5}{12}}$ Given ${ }^{20}$ a knot K^{50} with Alexander polynomial A, there is a polynomial ρ_{1} such that

$$
P=A^{2} \frac{(t-1)^{3} \rho_{1}+t^{2}(2 v w+(1-t)(1-2 c)) A A^{\prime}}{(1-t) t}
$$

Furthermore, A and ρ_{1} are symmetric under $t \rightarrow t^{-1}$, so let A^{+}and ρ_{1}^{+}be their "positive parts", so e.g., $\rho_{1}(t)=\rho_{1}^{+}(t)+\rho_{1}^{+}\left(t^{-1}\right)-\rho_{1}^{+}(0)$. Power. On the 250 knots with at most 10 crossings, the pair (A, ρ_{1}) attains 250 distinct values, while (Khovanov, HOMFLYPT) attains only 249 distinct values. To 11 crossings the numbers are $(802,788,772)$ and to 12 they are $(2978,2883,2786)$.
Genus. Up to 12 xings, always $\operatorname{deg} \rho_{1}^{+} \leq 2 g-1$, where g is the 3 -genus of K (equallity for 2530 knots). This gives a lower bound on g in terms of ρ_{1} (conjectural, but undoubtedly true). This bound is often weaker than the Alexander bound, yet for 10 of the 12 -xing Alexander failures it does give the right answer.

This is http://www.math.toronto.edu/~drorbn/Talks/MIT-1612/. Better videos at .../Indiana-1611/, .../LesDiablerets-1608/

Demo Programs for 0-Co.
$\mathrm{R}_{\mathrm{e}, i_{-}, j_{-}}^{+}:=\mathbb{E}\left[\mathrm{b}_{i} \mathrm{c}_{j}+\mathrm{b}_{i}^{-1}\left(\mathrm{e}^{\mathrm{b}_{i}}-1\right) \mathrm{u}_{i} \mathbf{w}_{j}\right] ;$
$\mathrm{R}_{\mathrm{e}, i_{-}, j_{-}}:=\mathbb{E}\left[-\mathrm{b}_{i} \mathrm{c}_{j}+\mathrm{b}_{i}^{-1}\left(\mathrm{e}^{-\mathrm{b}_{i}}-1\right) \mathrm{u}_{i} \mathbf{w}_{j}\right] ;$
$\operatorname{CF}\left[\omega_{-}, \mathbb{E}\left[Q_{-}\right]\right]:=$Simplify[$\left.\omega\right] \mathbb{E}[$ Simplify[Q]];
Utilities
$\mathbb{E} /: \mathbb{E}\left[Q 1 _\right] \mathbb{E}\left[Q 2_{-}\right]:=\mathrm{CF} @ \mathbb{E}[Q 1+Q 2] ;$
$\omega 1_{-} \cdot \mathbb{E}\left[Q 1_{-}\right] \equiv \omega 2_{-} \cdot \mathbb{E}\left[Q 2_{-}\right]:=$Simplify $[\omega 1=\omega 2 \wedge Q 1=Q 2]$;
$\mathbf{N}_{\left(x: W \mid u_{1}\right)_{-} c_{j_{-} \rightarrow k_{-}}\left[\omega_{-} \cdot \mathbb{E}\left[Q_{-}\right]\right]:=\operatorname{CF}[\quad \text { Normal Ordering Operators }}$ $\left.\omega \mathbb{E}\left[e^{\gamma} \alpha x_{k}+\gamma c_{k}+\left(Q / . c_{j} \mid x_{i} \rightarrow 0\right)\right] / .\left\{\gamma \rightarrow \partial_{c_{j}} Q, \alpha \rightarrow \partial_{x_{i}} Q\right\}\right] ;$
$N_{w_{i_{-}}} u_{j_{-} \rightarrow k_{-}}\left[\omega_{-} \cdot \mathbb{E}\left[Q_{-}\right]\right]:=\operatorname{CF}[$
$v \omega \mathbb{E}\left[-b_{k} v \alpha \beta+v \beta u_{k}+v \alpha w_{k}+v \delta u_{k} w_{k}+\left(Q / . w_{i} \mid u_{j} \rightarrow 0\right)\right] /$. $v \rightarrow\left(1+b_{k} \delta\right)^{-1} /$.
$\left.\left\{\alpha \rightarrow \partial_{w_{i}} Q / . u_{j} \rightarrow 0, \beta \rightarrow \partial_{u_{j}} Q / . w_{i} \rightarrow 0, \delta \rightarrow \partial_{w_{i}, u_{j}} Q\right\}\right] ;$
$m_{i_{-}, j_{-} \rightarrow k_{-}}\left[z_{-}\right]:=\operatorname{Module}[\{x, z\}$,
CF $\left.\left[\left(z / / N_{w_{i}} u_{j \rightarrow x} / / N_{c_{i} u_{x} \rightarrow x} / / N_{w_{x}} c_{j \rightarrow x}\right) / \cdot z_{-i|j| x} \rightarrow z_{k}\right]\right]$
Stitching
$T_{\theta}=R_{\theta, 5,1}^{+} R_{\theta, 2,4}^{+} R_{\theta, 3,6}^{-}$
Some calculations for T_{0}
$\mathbb{E}\left[b_{5} c_{1}+b_{2} c_{4}-b_{3} c_{6}+\frac{\left(-1+e^{b_{5}}\right) u_{5} w_{1}}{b_{5}}+\frac{\left(-1+e^{b_{2}}\right) u_{2} w_{4}}{b_{2}}+\frac{\left(-1+e^{-b_{3}}\right) u_{3} w_{6}}{b_{3}}\right]$
$T_{\theta} / / m_{1,2 \rightarrow 1} / / m_{3,4 \rightarrow 3} / / m_{3,5 \rightarrow 3} / / m_{3,6 \rightarrow 3}$
$\frac{1}{1-\left(-1+e^{b_{1}}\right)\left(-1+e^{b_{3}}\right)} \mathbb{E}\left[b_{3} c_{1}+b_{1} c_{3}-b_{3} c_{3}+\right.$

$$
\begin{aligned}
& \frac{e^{b_{3}}\left(-1+e^{b_{1}}\right)\left(-1+e^{b_{3}}\right) u_{1} w_{1}}{\left(-e^{b_{1}}-e^{\left.b_{3}+e^{b_{1}+b_{3}}\right) b_{1}}-\frac{e^{b_{1}}\left(-1+e^{b_{3}}\right) u_{3} w_{1}}{\left(-1+\left(-1+e^{b_{1}}\right)\left(-1+e^{b_{3}}\right)\right) b_{3}}-\right.} \\
& \left.\frac{e^{-b_{3}}\left(-1+e^{b_{3}}\right) u_{3} w_{3}}{b_{3}}-\frac{e^{-b_{3}}\left(-1+e^{b_{1}}\right)\left(-e^{b_{3}} b_{3} u_{1}+e^{b_{1}}\left(-1+e^{b_{3}}\right) b_{1} u_{3}\right) w_{3}}{b_{1}\left(b_{3}-\left(-1+e^{b_{1}}\right)\left(-1+e^{b_{3}}\right) b_{3}\right)}\right]
\end{aligned}
$$

Verifying meta-associativity
$\mathbf{Q 0}=\mathbb{E}\left[\operatorname{Sum}\left[f_{i} \mathbf{c}_{\mathbf{i}},\{\mathbf{i}, \mathbf{3}\}\right]+\operatorname{Sum}\left[f_{i, j} \mathbf{u}_{\mathbf{i}} \mathbf{w}_{\mathbf{j}},\{\mathbf{i}, \mathbf{3}\},\{\mathbf{j}, \mathbf{3}\}\right]\right]$
$\mathbb{E}\left[c_{1} f_{1}+c_{2} f_{2}+c_{3} f_{3}+u_{1} w_{1} f_{1,1}+u_{1} w_{2} f_{1,2}+u_{1} w_{3} f_{1,3}+u_{2} w_{1} f_{2,1}+\right.$
$\left.u_{2} w_{2} f_{2,2}+u_{2} w_{3} f_{2,3}+u_{3} w_{1} f_{3,1}+u_{3} w_{2} f_{3,2}+u_{3} w_{3} f_{3,3}\right]$
($\mathrm{Q} 0 / / \mathrm{m}_{1,2 \rightarrow 1} / / \mathrm{m}_{1,3 \rightarrow 1}$) $\equiv\left(\mathrm{Q} 0 / / \mathrm{m}_{2,3 \rightarrow 2} / / \mathrm{m}_{1,2 \rightarrow 1}\right.$)
True
$\mathbf{t 1}=\mathbf{R}_{0,1,2}^{+} \mathbf{R}_{0,3,4}^{+} \mathbf{R}_{0,5,6}^{+} / / m_{3,5 \rightarrow x} / / m_{1,6 \rightarrow y} / / m_{2,4 \rightarrow z}$
Testing R3
$\mathbb{E}\left[b_{x} c_{y}+b_{x} c_{z}+b_{y} c_{z}+\frac{e^{b_{x}}\left(-1+e^{b_{y}}\right) u_{y} w_{z}}{b_{y}}+\frac{\left(-1+e^{b_{x}}\right) u_{x}\left(w_{y}+w_{z}\right)}{b_{x}}\right]$
$\mathbf{t 1} \equiv\left(\mathbf{R}_{0,1,2}^{+} \mathbf{R}_{0,3,4}^{+} \mathbf{R}_{0,5,6}^{+} / / m_{1,3 \rightarrow x} / / m_{2,5 \rightarrow y} / / m_{4,6 \rightarrow z}\right)$
True

$z 1=R_{0,12,1}^{-} R_{\theta, 2,7}^{-} R_{-, 8,3}^{-} R_{0,4,11}^{-} R_{\theta, 16,5}^{+} R_{\theta, 6,13}^{+} R_{0,14,9}^{+} R_{\theta, 10,15}^{+}$; Do $\left[z 1=\left(z 1 / / m_{1, n \rightarrow 1}\right) / . b_{-} \rightarrow b,\{n, 2,16\}\right] ;$
\{CF@z1, KnotData[\{8, 17\}, "AlexanderPolynomial"][t]\}
$\left\{-\frac{e^{3 b} \mathbb{E}[0]}{1-4 e^{b}+8 e^{2 b}-11 e^{3 b}+8 e^{4 b}-4 e^{5 b}+e^{6 b}}, 11-\frac{1}{t^{3}}+\frac{4}{t^{2}}-\frac{8}{t}-8 t+4 t^{2}-t^{3}\right\}$
Demo Programs for 1-Co.
$\Lambda\left[k_{-}\right]:=\left(\left(t_{k}-1\right)\left(2(\alpha \beta+\delta \mu)^{2}-\alpha^{2} \beta^{2}\right)-4 v_{k} c_{k} w_{k} \delta^{2} \mu^{2}-\right.$
$\delta(1+\mu)\left(w_{k}^{2} \alpha^{2}+v_{k}^{2} \beta^{2}\right)-v_{k}^{2} w_{k}^{2} \delta^{3}(1+3 \mu)-$
$2\left(\alpha \beta+2 \delta \mu+v_{k} w_{k} \delta^{2}(1+2 \mu)+2 c_{k} \delta \mu^{2}\right)\left(w_{k} \alpha+v_{k} \beta\right)-$
$\left.4\left(c_{k} \mu^{2}+\mathbf{v}_{k} \mathbf{w}_{k} \delta(\mathbf{1}+\mu)\right)(\alpha \beta+\delta \mu)\right)\left(\mathbf{1}+\mathbf{t}_{k}\right) / 4$; The Λ ó $\gamma \mathrm{O}$
$\mathbf{R}_{i_{-}, j_{-}}^{+}:=\mathbb{E}\left[1, \log \left[t_{i}\right] c_{j}, v_{i} w_{j}, v_{i} c_{i} w_{j}+c_{i} c_{j}+v_{i}^{2} w_{j}^{2} / 4\right] ;$
$\mathbf{R}_{i_{-}, j_{-}}:=\mathbb{E}\left[1,-\log \left[t_{i}\right] c_{j},-t_{i}^{-1} v_{i} w_{j}\right.$,
The Generators
$\left.\mathbf{t}_{i}^{-1} \mathbf{v}_{i} \mathbf{c}_{j} w_{j}-\mathbf{c}_{i} \mathbf{c}_{j}-\mathrm{t}_{i}^{-2} \mathbf{v}_{i}^{2} w_{j}^{2} / 4\right]$;
(ur $i_{-}:=\mathbb{E}\left[\mathrm{t}_{i}^{-1 / 2}, 0,0, \mathrm{c}_{i} \mathrm{t}_{i}^{-2}\right] ; \mathrm{nr} \mathrm{i}_{-}:=\mathbb{E}\left[\mathrm{t}_{i}^{1 / 2}, 0,0,-\mathrm{c}_{i} \mathrm{t}_{i}^{2}\right] ;$)

Differential Polynomials
$\mathrm{DP}_{\mathrm{x}_{-} \rightarrow \mathrm{D}_{\alpha_{-}}, y_{-} \rightarrow \mathrm{D}_{\beta_{-}}}\left[P_{-}\right]\left[f_{-}\right]:=$(* means $\left.\mathrm{P}\left[\partial_{\alpha}, \partial_{\beta}\right][\mathrm{f}] *\right)$
Total [CoefficientRules $[P,\{x, y\}] /$.
$\left.\left(\left\{m_{-}, n_{-}\right\} \rightarrow c_{-}\right): \subset \mathbb{D}[f,\{\alpha, m\},\{\beta, n\}]\right]$
$\mathrm{CF}\left[\varepsilon_{-} \mathbb{E}\right]:=$ Expand /@ Together /@ ε;
Utilities
$\mathbb{E} /: \mathbb{E}\left[\omega 1_{-}, L 1_{-}, Q 1_{-}, P 1_{-}\right] \mathbb{E}\left[\omega 2_{-}, L 2_{-}, Q 2_{-}, P 2_{-}\right]:=$
CF@E $\left[\omega 1 \omega 2, L 1+L 2, \omega 2 Q 1+\omega 1 Q 2, \omega 2^{4} P 1+\omega 1^{4} P 2\right]$;
Normal Ordering Operators
 $\mathbb{E}\left[\omega, \gamma c_{k}+\left(L /, c_{j} \rightarrow 0\right), \omega e^{\gamma} \beta x_{k}+\left(Q / . x_{i} \rightarrow 0\right)\right.$, $\left.\left.\left.e^{-q} \mathrm{DP}_{\mathrm{c}_{j} \rightarrow \mathrm{D}_{\gamma}, x_{i} \rightarrow \mathrm{D}_{\beta}}[P]\left[\mathrm{e}^{q}\right]\right] / .\left\{\gamma \rightarrow \partial_{\mathrm{c}_{j}} L, \beta \rightarrow \omega^{-1} \partial_{x_{i}} Q\right\}\right]\right] ;$
$N_{w_{i_{-}}} v_{j_{-} \rightarrow k_{-}}\left[\mathbb{E}\left[\omega_{-}, L_{-}, Q_{-}, P_{-}\right]\right]:=$
With $\left[\left\{q=\left(\left(1-t_{k}\right) \alpha \beta+\beta v_{k}+\alpha w_{k}+\delta \mathbf{v}_{k} w_{k}\right) / \mu\right\}, C F[\right.$
$\mathbb{E}\left[\mu \omega, L, \mu \omega \mathrm{q}+\mu\left(Q / . \mathrm{w}_{i} \mid \mathrm{v}_{j} \rightarrow 0\right)\right.$,
$\left.\mu^{4} \mathrm{e}^{-q} \mathrm{DP}_{\mathrm{w}_{i} \rightarrow \mathrm{D}_{\alpha}, v_{j} \rightarrow D_{\beta}}[P]\left[\mathrm{e}^{q}\right]+\omega^{4} \Lambda[k]\right] / . \mu \rightarrow \mathbf{1}+\left(\mathrm{t}_{k}-1\right) \delta /$. $\left\{\alpha \rightarrow \omega^{-1}\left(\partial_{w_{i}} Q / . v_{j} \rightarrow 0\right), \beta \rightarrow \omega^{-1}\left(\partial_{v_{j}} Q / . w_{i} \rightarrow 0\right)\right.$, $\left.\left.\left.\delta \rightarrow \omega^{-1} \partial_{w_{i}}, v_{j} Q\right\}\right]\right]$;
$m_{i_{-}, j_{-} \rightarrow k_{-}}\left[Z_{-} \mathbb{E}\right]:=\operatorname{Module}[\{x, z\}$,
Stitching
$\left.\operatorname{CF}\left[\left(z / / N_{w_{i}} v_{j \rightarrow x} / / N_{c_{i}} v_{x \rightarrow x} / / N_{w_{x}} c_{j \rightarrow x}\right) / \cdot z_{-i|j| x} \rightarrow z_{k}\right]\right]$
 (Do[z2 = z2 // mi,k>1, \{k, 2, 16\}]; $\left.z 2=z 2 / . a_{-1}: \rightarrow a\right)$
$\mathbb{E}\left[-1+\frac{1}{t}+t, 0,0\right.$,
$16+\frac{2 c}{t^{4}}-\frac{1}{t^{3}}-\frac{6 c}{t^{3}}+\frac{4}{t^{2}}+\frac{10 c}{t^{2}}-\frac{10}{t}-\frac{8 c}{t}-18 t+8 c t+$ $14 t^{2}-10 c t^{2}-7 t^{3}+6 c t^{3}+2 t^{4}-2 c t^{4}+2 v w-$ $\left.\frac{2 v w}{t^{4}}+\frac{4 v w}{t^{3}}-\frac{6 v w}{t^{2}}+\frac{2 v w}{t}-6 t v w+4 t^{2} v w-2 t^{3} v w\right]$

Questions and To Do List. • Clean up and write up. • Implement well, compute for everything in sight. - Why are our quantities polynomials rather than just rational functions? • Bounds on their degrees? \bullet Their integrality (\mathbb{Z}) properties? \bullet Can everything be re-stated using integrals (\int)? • Find the 2 -variable version (for knots). How complex is it? - What about links / closed components? - Fully digest the "expansion" theorem; include cuaps. • Explore the (non-)dependence on R. • Is there a canonical R ? • What does "group like" mean? • Strand removal? Strand doubling? Strand reversal? - Say something about knot genus. - Find the EK/AT/KV "vertex". • Use as a playground to study associators/braidors. - Restate in topological language. - Study the associated (v-)braid representations. - Study mirror images and the $\mathfrak{b}^{+} \leftrightarrow \mathfrak{b}^{-}$involution. - Study ribbon knots. - Make precise the relationship with Γ-calculus and Alexander. \bullet Relate to the coloured Jones polynomial. • Relate with "ordinary" q-algebra. - k-smidgen $s l_{n}$, etc. • Are there "solvable" CYBE algebras not arising from semi-simple algebras? \bullet Categorify and appease the Gods.

This is http://www.math.toronto.edu/~drorbn/Talks/MIT-1612/. Better videos at .../Indiana-1611/, .../LesDiablerets-1608/

References.

[Al] J. W. Alexander, Topological invariants of knots and link, Trans. Amer. Math. Soc. 30 (1928) 275-306.
[BN1] D. Bar-Natan, Balloons and Hoops and their Universal Finite Type Invariant, BF Theory, and an Ultimate Alexander Invariant, $\omega \varepsilon \beta / \mathrm{KBH}$, arXi$\mathrm{v}: 1308.1721$.
[BN2] D. Bar-Natan, Polynomial Time Knot Polynomial, research proposal for the 2017 Killam Fellowship, $\omega \varepsilon \beta / \mathrm{K} 17$.
[BNG] D. Bar-Natan and S. Garoufalidis, On the Melvin-Morton-Rozansky conjecture, Invent. Math. 125 (1996) 103-133.
[BNS] D. Bar-Natan and S. Selmani, Meta-Monoids, Meta-Bicrossed Products, and the Alexander Polynomial, J. of Knot Theory and its Ramifications 22-10 (2013), arXiv:1302.5689.
[En] B. Enriquez, A Cohomological Construction of Quantization Functors of Lie Bialgebras, Adv. in Math. 197-2 (2005) 430âĂŞ-479, arXiv: math/0212325.
[EK] P. Etingof and D. Kazhdan, Quantization of Lie Bialgebras, I, Selecta Mathematica 2 (1996) 1-41, arXiv:q-alg/9506005.
[GST] R. E. Gompf, M. Scharlemann, and A. Thompson, Fibered Knots and Potential Counterexamples to the Property $2 R$ and Slice-Ribbon Conjectures, Geom. and Top. 14 (2010) 2305-2347, arXiv:1103.1601.
[Ha] A. Haviv, Towards a diagrammatic analogue of the ReshetikhinTuraev link invariants, Hebrew University PhD thesis, Sep. 2002, arXiv: math.QA/0211031.
[MM] P. M. Melvin and H. R. Morton, The coloured Jones function, Commun. Math. Phys. 169 (1995) 501-520.
[Ov] A. Overbay, Perturbative Expansion of the Colored Jones Polynomial, University of North Carolina PhD thesis, $\omega \varepsilon \beta / \mathrm{Ov}$.
[Ro1] L. Rozansky, A contribution of the trivial flat connection to the Jones polynomial and Witten's invariant of 3 d manifolds, I, Comm. Math. Phys. 175-2 (1996) 275-296, arXiv:hep-th/9401061.
[Ro2] L. Rozansky, The Universal R-Matrix, Burau Representation and the Melvin-Morton Expansion of the Colored Jones Polynomial, Adv. Math. 134-1 (1998) 1-31, arXiv:q-alg/9604005.
[Ro3] L. Rozansky, A Universal U(1)-RCC Invariant of Links and Rationality Conjecture, arXiv:math/0201139.
[Se] P. Ševera, Quantization of Lie Bialgebras Revisited, Sel. Math., NS, to appear, arXiv:1401.6164.

| | genus / ribbon | |
| :--- | :--- | :--- |

This is http://www.math.toronto.edu/~drorbn/Talks/MIT-1612/. Better videos at .../Indiana-1611/, .../LesDiablerets-1608/

The Hardest Math I've Ever Really Used, 1

Dror Bar-Natan at the CMS Niagara Falls Meeting http://drorbn.net/n16

Abstract. What's the hardest math I've ever used in real life? Me, myself, directly - not by using a cellphone or a GPS device that somebody else designed? And in "real life" - not while studying or teaching mathematics? I use addition and subtraction daily, adding up bills or calculating change. I use percentages often, though mostly it is just "add 15 percents". I seldom use multiplication and division: when I buy in bulk, or when I need to know how many tiles I need to replace my kitchen floor. I've used powers twice in my life, doing calculations related to mortgages. I've used a tiny bit of geometry and algebra for a tiny bit of non-math-related computer graphics I've played with. And for a long time, that was all. In my talk I will tell you how recently a math topic discovered only in the 1800s made a brief and modest appearance in my non-mathematical life. There are many books devoted to that topic and a lot of active research. Yet for all I know, nobody ever needed the actual formulas for such a simple reason before.
Hence we'll talk about the motion of movie cameras, and the fastest way to go from A to B subject to driving speed limits that depend on the locale, and the "happy segway principle" which is a the heart of the least action principle which in itself is at the heart of all of modern physics, and finally, about that funny discovery of Janos Bolyai's and Nikolai Ivanovich Lobachevsky's, that the famed axiom of parallels of the ancient Greeks need not actually be true.

I could be a mathematician
 $u_{4}=(0,0,0,1, *, \ldots, *) ; 1:=$ "the pivot". Algorithms by Akoos Seress. position i.

1. If box i is empty, put v there
2. If box i is empty, put v there.
3. If box i is occupied, find a combination v^{\prime} of v and u_{i} the liminates the pivot, and feed ϑ^{\prime}.
Non-Commutative Gaussian Elimination
Prepare a mostly-empty table,

Feed $g_{1}, \ldots, g_{\alpha}$ in order. To feed a non-identity σ, find its pivota feed $g_{1}, \ldots, g_{\alpha}$ in order.

1. If box (i, j) is empty, put σ there.
2. If box (i, j) contains $\sigma_{i, j}$, feed $\sigma^{\prime}:=\sigma_{i, j}^{-1} \sigma$.

The Twist. When done, for every occupied (i, j) and (k, l), feed $\sigma_{i, j} \sigma_{k, l}$. Repeat until the table stops changing.
 Claim. The process stops in our lifeti
operations. Call the resulting table T
operations. Call the resulting table T.
Claim. Anything fed in T is a monotone product in T
f was fed $\Rightarrow f \in M_{1}:=\left\{\sigma_{1, j_{1}} \sigma_{2, j_{2}} \cdots \sigma_{n, j_{n}}: \forall i, j_{i} \geq i \& \sigma_{i, j_{i}} \in T\right\}$
Homework Problem 1. Homework Problem 2.
Can you do cosets?

 Out [3] $=$ \{4, $16,159993501696000,21119142223872000,43252032744895600,432520$
http://www.math.toronto.edu/ \sim drorbn/Talks/Mathcamp-0907/ and links there

..or an
environmentalist.

Al Gore in Futurama, circa 3000AD

Goal. Find the least-blur path to go from Mona's left eye to Mona's right eye in fixed time. Alternatively, fix your blur-tolerance, and find the fastest path to do the same. For fixed blur, our camera moves at a speed proportional to its distance from the image plane:

Video at http://www.math.toronto.edu/~drorbn/Talks/RCI-110213/, more at http://www.math.toronto.edu/~drorbn/Talks/Niagara-1612/

Video at http://www.math.toronto.edu/~drorbn/Talks/RCI-110213/, more at http://www.math.toronto.edu/~drorbn/Talks/Niagara-1612/

Dror Bar-Natan: Talks: Greece-1607: Work in Progress! The Brute and the Hidden Paradise
Abstract. There is expected to be a hidden paradise of poly-time computable knot polynomials lying just beyond the Alexander polynomial. I will describe my brute attempts to gain entry.
Why "expected"? Gauss diagram $v_{d, f}(K)=\sum_{Y \subset X(K),|Y|=d} f(Y)$
formulas [PV, GPV] show that finite-type invariants are all poly-time, and tempt to conjecture that there are no others. But Alexander shows it nonsense:

$$
\begin{array}{r|cccccccc}
d & 2 & 3 & 4 & 5 & 6 & 7 & 8 & \cdots \\
\hline \text { known invts }^{*} \text { in } O\left(n^{d}\right) & 1 & 1 & \infty & 3 & 4 & 8 & 11 & \cdots
\end{array}
$$

This is an unreasonable picture!
${ }^{*}$ Fresh, numerical, no cheating. So there ought to be further poly-time invariants.
Also. - The line above the Alexander line in the Melvin-Rozansky Morton [MM, Ro] expansion of the coloured Jones polyno-
mial. • The 2-loop contribution to the Kontsevich integral
Why "paradise"? Foremost answer: OBVIOUSLY. Cf. proving (incomputable A) $=$ (incomputable B), or categorifying (incomputable C). $\omega \varepsilon \beta / \mathrm{K} 17$: (extend to tangles, perhaps detect non-slice ribbon knots)

Moral. Need "stitching":

Why "brute"? Cause it's the only thing I know, for now. There may be better ways in, and it's fair to hope that sooner or later they will be found.

For long knots, ω is Alexander, and that's the fastest Alexander algorithm I know!

Dunfield: 1000-crossing fast.

Theorem [EK, Ha, En, Se]. There is a "homomorphic expansion" $Z:\left\{\begin{array}{l}S \text {-component } \\ (v / b-) \text { tangles }\end{array}\right\} \rightarrow \mathcal{A}_{S}^{v}:=$ (it is enough to know Z on $\%$ and have disjoint union and stitching formulas)
...exponential and too hard! IIdea. Look for "ideal" quotients of \mathcal{A}_{S}^{v} that have poly-sized descriptions; ... specifically, limit the co-brackets.
1-co and 2-co, aka TC and $T C^{2}$, on the right. The primitives that remain are:

. manageable but still exponential!

We let $\mathcal{A}^{2,2}$ be \mathcal{A}^{v} modulo 2-co and $2 D$, and $z^{2,2}$ be the projection of $\log Z$ to $\mathcal{P}^{2,2}:=\pi \mathcal{P}^{v}$, where \mathcal{P}^{v} are the primitives of \mathcal{A}^{v}.
Main Claim. $z^{2,2}$ is poly-time computable.
Main Point. $\mathcal{P}^{2,2}$ is poly-size, so how hard can it be? Indeed, as a module over $\mathbb{Q} \llbracket b_{i} \rrbracket, \mathcal{P}^{2,2}$ is at most

Claim. $R_{j k}=e^{a_{j k}} e^{\rho_{j k}}$ is a solution of the Yang-Baxter / R3 equation $R_{12} R_{13} R_{23}=R_{23} R_{13} R_{12}$ in $\exp \mathcal{P}^{2,2}$, with $\rho_{j k}:=$
$\psi\left(b_{j}\right)\left(-c_{k}+\frac{c_{k} a_{j k}}{b_{j}}-\frac{\delta a_{j k} a_{j k}}{b_{j}^{2}}\right)+\frac{\phi\left(b_{j}\right) \psi\left(b_{k}\right)}{b_{k} \phi\left(b_{k}\right)}\left(c_{k} a_{k k}-\frac{\delta a_{j k} a_{k k}}{b_{j}}\right)$, and with $\phi(x):=e^{-x}-1=-x+x^{2} / 2-\ldots$, and $\psi(x):=$ $\left((x+2) e^{-x}-2+x\right) /(2 x)=x^{2} / 12-x^{3} / 24+\ldots$ (This already gives some new (v -)braid group representations, as below).
Problem. How do we multiply in $\exp \left(\mathcal{P}^{2,2}\right)$? How do we stitch?
BCH is a theoretical dream. Instead, use "scatter and glow" and "feedback loops":
The Euler trick:
With $E f:=(\operatorname{deg} f) f$ get $E e^{x}=x e^{x}$ and $E\left(e^{x} e^{y} e^{z}\right)=$ $x e^{x} e^{y} e^{z}+e^{x} y e^{y} e^{z}+e^{x} e^{y} z e^{z}$.

Local Algebra (with van der Veen) Much can be reformulated as (non-standard) "quantum algebra" for the 4D Lie algebra $\mathfrak{g}=\langle b, c, u, w\rangle$ over $\mathbb{Q}[\epsilon] /\left(\epsilon^{2}=0\right)$, with b central and $[w, c]=w,[c, u]=u$, and $[u, w]=b-2 \epsilon c$. The key: $a_{i j}=\left(b_{i}-\epsilon c_{i}\right) c_{j}+u_{i} w_{j}$ in $\mathcal{U}(\mathrm{g})^{\otimes\{i, j\}}$.
$\left\{0,-f\left[t_{1}, t_{2}, t_{3}\right] u_{1} u_{2} w_{3}+f\left[t_{1}, t_{2}, t_{3}\right] t_{1} u_{1} u_{2} w_{3}+\right.$
van der Veen
$f\left[t_{1}, t_{2}, t_{3}\right] u_{1} u_{3} w_{3}-f\left[t_{1}, t_{2}, t_{3}\right] t_{1} u_{1} u_{3} w_{3}$,
$-f\left[t_{1}, t_{2}, t_{3}\right] u_{1} u_{2} w_{2}+f\left[t_{1}, t_{2}, t_{3}\right] t_{1} u_{1} u_{2} w_{2}+$
$f\left[t_{1}, t_{2}, t_{3}\right] u_{1} u_{3} w_{2}-$
$\left.f\left[t_{1}, t_{2}, t_{3}\right] t_{1} u_{1} u_{3} w_{2}, 0,0,0,0,0,0\right\}$

Turbo-Burau (new!
Some (new) representationss of the (v-)braid groups.

```
\mp@subsup{B}{\mp@subsup{i}{-}{\prime}}{\prime,}\mp@subsup{j}{-}{\prime}
```

Column@ $\left\{1 \mathrm{hs}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\right\} / / \mathrm{B}_{1,2} / / \mathrm{B}_{1,3} / / \mathrm{B}_{2,3}\right.$,
Burau (old)
... testing R3
rhs $=\left\{v_{1}, v_{2}, v_{3}\right\} / / B_{2,3} / / B_{1,3} / / B_{1,2}$,
lhs - rhs // Expand\}
$\left\{v_{1},(1-t) v_{1}+t v_{2},(1-t) v_{1}+t\left((1-t) v_{2}+t v_{3}\right)\right\}$
$\left\{v_{1},(1-t) v_{1}+t v_{2}\right.$,
$\left.(1-t)\left((1-t) v_{1}+t v_{2}\right)+t\left((1-t) v_{1}+t v_{3}\right)\right\}$
$\{0,0,0\}$
$\mathbf{G}_{i_{-}, j_{-}}\left[\xi_{-}\right]:=\varepsilon / \cdot \mathbf{v}_{j}: \rightarrow\left(1-t_{i}\right) \mathbf{v}_{i}+t_{i} v_{j}$
... Overcrossings Commute (OC):
Column@ \{lhs $=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\right\} / / \mathrm{G}_{1,2} / / \mathrm{G}_{1,3}$,
Expand[lhs - (\{ $\left.\left.\left.\left.\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\right\} / / \mathrm{G}_{1,3} / / \mathrm{G}_{1,2}\right)\right]\right\}$
$\left\{v_{1},\left(1-t_{1}\right) v_{1}+t_{1} v_{2},\left(1-t_{1}\right) v_{1}+t_{1} v_{3}\right\}$
$\{0,0,0\}$
... Undercrossings Commute (UC)
Column@ $\left\{\mathrm{lhs}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\right\} / / \mathrm{G}_{1,3} / / \mathrm{G}_{2,3}\right.$,
rhs $=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\right\} / / \mathrm{G}_{2,3} / / \mathrm{G}_{1,3}$,
lhs - rhs // Expand\}
$\left\{v_{1}, v_{2},\left(1-t_{1}\right) v_{1}+t_{1}\left(\left(1-t_{2}\right) v_{2}+t_{2} v_{3}\right)\right\}$
$\left\{v_{1}, v_{2},\left(1-t_{2}\right) v_{2}+t_{2}\left(\left(1-t_{1}\right) v_{1}+t_{1} v_{3}\right)\right\}$
$\left\{0,0, v_{1}-t_{1} v_{1}-t_{2} v_{1}+t_{1} t_{2} v_{1}-v_{2}+t_{1} v_{2}+t_{2} v_{2}-t_{1} t_{2} v_{2}\right\}$
Gassner Plus (new?
$\operatorname{GP}_{i_{-}, j_{-}}\left[\xi_{-}\right]:=\operatorname{Expand}\left[\varepsilon / .\left\{u_{j}: \rightarrow\left(1-t_{i}\right) u_{i}+t_{i} u_{j}\right.\right.$,
$f_{-} \cdot v_{j}: \rightarrow f\left(1-t_{i}\right) v_{i}+f t_{i} v_{j}+\left(t_{i}-1\right)\left(t_{i} \partial_{t_{i}} f-t_{j} \partial_{t_{j}} f\right) u_{i}+$ $\left.\left.f \mathrm{t}_{i} \mathrm{u}_{i}\right\}\right]$;
bas $=\left\{f\left[t_{1}, t_{2}, t_{3}\right] v_{1}, f\left[t_{1}, t_{2}, t_{3}\right] v_{2}, f\left[t_{1}, t_{2}, t_{3}\right] v_{3}\right.$, $\left.u_{1}, u_{2}, u_{3}\right\} ;$

Short[1hs = bas // GP $\left.1,2 / / \mathrm{GP}_{1,3} / / \mathrm{GP}_{2,3}, 2\right]$
...R3 (left)
$\left\{f\left[t_{1}, t_{2}, t_{3}\right] v_{1}, f\left[t_{1}, t_{2}, t_{3}\right] t_{1} u_{1}+f\left[t_{1}, t_{2}, t_{3}\right] v_{1}-\right.$
$f\left[t_{1}, t_{2}, t_{3}\right] t_{1} v_{1}+\ll 6 \gg+t_{1}^{2} u_{1} f^{(1,0,0)}\left[t_{1}, t_{2}, t_{3}\right]$,
$\ll 1 \gg+\ll 19 \gg+\ll 1 \gg, \ll 1 \gg, u_{1}-t_{1} u_{1}+t_{1} u_{2}$,
$\left.u_{1}-t_{1} u_{1}+t_{1} u_{2}-t_{1} t_{2} u_{2}+t_{1} t_{2} u_{3}\right\}$
(bas // GP ${ }_{2,3} / / \mathrm{GP}_{1,3} / / \mathrm{GP}_{1,2}$) - 1hs
$\{0,0,0,0,0,0\}$
(bas // GP $1,2 / / \mathrm{GP}_{1,3}$) - (bas $/ / \mathrm{GP}_{1,3} / / \mathrm{GP}_{1,2}$)
$\{0,0,0,0,0,0\}$
Question. Does Gassner Plus factor through Gassner?
$K \boldsymbol{\delta}_{i_{-}, j_{-}}:=$KroneckerDelta[i,j]; Turbo-Gassner (new!)
$\mathrm{TG}_{i_{-}, j_{-}}\left[\xi_{-}\right]:=$Expand $[\xi / .\{$
$f_{-} \cdot \mathbf{v}_{k_{-}}: \rightarrow$ Plus $\left[f \mathrm{v}_{k} / . \mathrm{v}_{j} \rightarrow\left(1-\mathrm{t}_{i}\right) \mathrm{v}_{i}+\mathrm{t}_{i} \mathrm{v}_{j}\right.$,
$\left(1-t_{i}^{-1}\right)\left(t_{i} \partial_{\mathrm{t}_{i}} f-\mathrm{t}_{j} \partial_{\mathrm{t}_{j}} f\right)$ *
$\left(u_{k} / \cdot u_{j} \rightarrow\left(1-t_{i}\right) u_{i}+t_{i} u_{j}\right) * u_{i} w_{j}$,
$\left.\mathbf{K} \boldsymbol{\delta}_{k, i} f\left(\mathbf{u}_{j}-\mathbf{u}_{i}\right) \mathbf{u}_{i} \mathbf{w}_{j}\right]$,
$u_{j} \rightarrow\left(1-t_{i}\right) u_{i}+t_{i} u_{j}$,
$\left.\left.\mathrm{w}_{i} \rightarrow \mathrm{w}_{i}+\left(1-\mathrm{t}_{i}^{-1}\right) \mathrm{w}_{j}, \mathrm{w}_{j} \rightarrow \mathrm{t}_{i}^{-1} \mathrm{w}_{j}\right\}\right] ;$
bas $=\left\{f\left[t_{1}, t_{2}, t_{3}\right] v_{1}, f\left[t_{1}, t_{2}, t_{3}\right] v_{2}, f\left[t_{1}, t_{2}, t_{3}\right] v_{3}\right.$, $\left.u_{1}, u_{2}, u_{3}, w_{1}, w_{2}, w_{3}\right\} ;$
Satisfies R3...
$\omega \varepsilon \beta / \operatorname{Reps}^{T^{1} \boldsymbol{B}_{i_{-}}, j_{-}}\left[\xi_{-}\right]:=$
Expand[$\xi /$. \{
$f_{-} \cdot \mathbf{v}_{k_{-}} \rightarrow \operatorname{Plus}\left[f \mathrm{v}_{k} / . \mathrm{v}_{j} \rightarrow(1-\mathrm{t}-\eta[\mathrm{i}]) \mathrm{v}_{i}+(\mathrm{t}+\eta[\mathrm{i}]) \mathrm{v}_{j}\right.$,
(t-1) (Coefficient[f, $\eta[i]]$-Coefficient $[f, \eta[j]])$ *
$\left(u_{k} / . u_{j} \rightarrow(1-t) u_{i}+t u_{j}\right) * u_{i} w_{j}$,
$\left.\kappa \delta_{k, i}(f / ., \eta \rightarrow 0)\left(u_{j}-u_{i}\right) u_{i} w_{j}\right]$,
$u_{j} \rightarrow(1-t) u_{i}+t u_{j}$,
$\left.\left.\mathrm{w}_{i} \rightarrow \mathrm{w}_{i}+\left(1-\mathrm{t}^{-1}\right) \mathrm{w}_{j}, \mathrm{w}_{j} \rightarrow \mathrm{t}^{-1} \mathrm{w}_{j}\right\}\right] ;$
$f \mathrm{f}=\mathrm{f}_{0}+\mathrm{f}_{1} \eta[1]+\mathrm{f}_{2} \eta[2]+\mathrm{f}_{3} \eta[3]$;
bas = $\left\{f f v_{1}, f f v_{2}, f f v_{3}, u_{1}^{2} w_{1}, u_{1}^{2} w_{2}, u_{1}, u_{2}, u_{3}, w_{1}, w_{2}, w_{3}\right\} ;$
(bas $/ / \mathrm{TB}_{1,2} / / \mathrm{TB}_{1,3}$) - (bas $/ / \mathrm{TB}_{1,3} / / \mathrm{TB}_{1,2}$)
$\left\{0,-f_{0} u_{1} u_{2} w_{3}+t f_{0} u_{1} u_{2} w_{3}+f_{0} u_{1} u_{3} w_{3}-t f_{0} u_{1} u_{3} w_{3}\right.$,
$-f_{0} u_{1} u_{2} w_{2}+t f_{0} u_{1} u_{2} w_{2}+f_{0} u_{1} u_{3} w_{2}-t f_{0} u_{1} u_{3} w_{2}$,
$0,0,0,0,0,0,0,0\}$
Flower Surgery Theorem. A knot is ribbon iff it is the result of n-petal flower surgery (from thin petals to wide petals) on an n-componenet unlink, for some n.

References.
[BN] D. Bar-Natan, Balloons and Hoops and their Universal Finite Type Invariant, BF Theory, and an Ultimate Alexander Invariant, $\omega \varepsilon \beta / \mathrm{KBH}$, arXiv: 1308.1721.
[BND] D. Bar-Natan and Z. Dancso, Finite Type Invariants of W-Knotted Objects I, II, IV, $\omega \varepsilon \beta / \mathrm{WKO} 1, \omega \varepsilon \beta / \mathrm{WKO} 2, \omega \varepsilon \beta / \mathrm{WKO}$, arXiv:1405.1956, arXiv: 1405.1955, arXiv:1511.05624.
[BNG] D. Bar-Natan and S. Garoufalidis, On the Melvin-Morton-Rozansky conjecture, Invent. Math. 125 (1996) 103-133.
[BNS] D. Bar-Natan and S. Selmani, Meta-Monoids, Meta-Bicrossed Products, and the Alexander Polynomial, J. of Knot Theory and its Ramifications 22-10 (2013), arXiv:1302.5689.
[En] B. Enriquez, A Cohomological Construction of Quantization Functors of Lie Bialgebras, Adv. in Math. 197-2 (2005) 430-479, arXiv:math/0212325.
[EK] P. Etingof and D. Kazhdan, Quantization of Lie Bialgebras, I, Selecta Mathematica 2 (1996) 1-41, arXiv:q-alg/9506005.
[GPV] M. Goussarov, M. Polyak, and O. Viro, Finite type invariants ... OC of classical and virtual knots, Topology 39 (2000) 1045-1068, arXiv: math.GT/9810073.
[Ha] A. Haviv, Towards a diagrammatic analogue of the ReshetikhinTuraev link invariants, Hebrew University PhD thesis, Sep. 2002, arXiv: math.QA/0211031.
[MM] P. M. Melvin and H. R. Morton, The coloured Jones function, Commun. Math. Phys. 169 (1995) 501-520.
[PV] M. Polyak and O. Viro, Gauss Diagram Formulas for Vassiliev Invariants, Inter. Math. Res. Notices 11 (1994) 445-453.
[Ro] L. Rozansky, A contribution of the trivial flat connection to the Jones polynomial and Witten's invariant of $3 d$ manifolds, I, Comm. Math. Phys. 175-2 (1996) 275-296, arXiv:hep-th/9401061.
[Se] P. Ševera, Quantization of Lie Bialgebras Revisited, Sel. Math., NS, to appear, arXiv:1401.6164.
"God created the knots, all else in
topology is the work of mortals."
Leopold Kronecker (modified)

Abstract. In a "degree d Gauss diagram formula" one produces a number by summing over all possibilities of paying very close attention to d crossings in some n-crossing knot diagram while observing the rest of the diagram only very loosely, minding only its skeleton. The result is always poly-time computable as only $\binom{n}{d}$ states need to be considered. An under-explained paper by Goussarov, Polyak, and Viro [GPV] shows that every type d knot invariant has a formula of this kind. Yet only finitely many integer invariants can be computed in this manner within any specific polynomial time bound.
I suggest to do the same as [GPV], except replacing "the skeleton" with "the Gassner invariant", which is still poly-time. One poly-time invariant that arises in this way is the Alexander polynomial (in itself it is infinitely many numerical invariants) and I believe (and have evidence to support my belief) that there are more.
The QUILT Target. QUick Invariants of Large Tangles, for little had been found since Alexander (and if they're there, how can we not know all about them?), and for $\{$ ribbon $\} \neq\{$ slice $\}$:

Gauss Diagrams.

(just QUILK, today)

Gauss Diagram Formulas [PV, GPV]. If g is a Gauss diagram and F an unsigned Gauss diagram, $\langle F, g\rangle_{\mathrm{PV}}:=\sum_{y \subseteq g}(-1)^{y} \delta(F, \bar{y})$:
 Goussarov-Polyak-Viro
 Under-Explaind Theorem [GPV]. Every | finite type invariant arises in this way.

$$
\begin{aligned}
& F_{2}=\curvearrowleft \neg\left\langle F_{2}, K\right\rangle=v_{2}(K) \\
& F_{3}=3 \sqrt{\checkmark}+2 \sqrt{\vee}+\text { rotations } \\
& \Rightarrow\left\langle F_{3}, K\right\rangle=6 v_{3}(K)
\end{aligned}
$$

Gauss-Gassner Invariants. Want more? Increase your environmental awareness! Instead of nearly-forgetting y^{c}, compute its Burau/Gassner inva-
 riant (note that y^{c} is a tangle in a Swiss cheese; more easily, a virtual tangle):

$$
G G_{k, F}(g)=\sum_{y \subseteq g,|y| \leq k} \bar{F}\left(y, z\left(y^{c}\right)\right)=\sum_{y \subseteq g,|y| \leq k} F(y, z(g \text { cut near } y)),
$$

where k is fixed and $F(y, \gamma)$ is a function of a list of arrows y and a square matrix γ of side $|y|+1 \leq k+1$.

The (Burau-)Gassner Invariant.

Theorem 1. \exists ! an invariant z : \{pure framed S-component angles $\} \rightarrow \Gamma(S):=M_{S \times S}\left(R_{S}\right)$, where $R_{S}=\mathbb{Z}\left(\left(T_{a}\right)_{a \in S}\right)$ is

$$
\text { and satisfying }\left(\left.\right|_{a} ;{ }_{a} \aleph_{b},{ }_{b} 欠^{\aleph}\right) \xrightarrow{z}\left(\begin{array}{c|c|cc}
& a \\
\hline a & 1
\end{array} ; \begin{array}{ccc}
& a & b \\
b & 1 & 1-T_{a}^{ \pm 1} \\
b & T_{a}^{ \pm 1}
\end{array}\right) \text {. }
$$

See also [LD, KLW, CT, BNS].
Theorem 2. With $k=1$ and F_{A} defined by

$$
\begin{aligned}
& F_{A}(\stackrel{s}{\longrightarrow}, \gamma)=\left.s \frac{\gamma_{22} \gamma_{33}-\gamma_{23} \gamma_{32}}{\gamma_{33}+\gamma_{13} \gamma_{32}-\gamma_{12} \gamma_{33}}\right|_{T_{a} \rightarrow T}, \\
& F_{A}(\stackrel{s}{\longleftrightarrow}, \gamma)=\left.s \frac{\gamma_{13} \gamma_{32}-\gamma_{12} \gamma_{33}}{\gamma_{32}-\gamma_{23} \gamma_{32}+\gamma_{22} \gamma_{33}}\right|_{T_{a} \rightarrow T},
\end{aligned}
$$

$G G_{1, F_{A}}(K)$ is a regular isotopy invariant. Unfortunately, for every knot $K, G G_{1, F_{A}}(K)-T \frac{d}{d T} \log A(K)(T) \in \mathbb{Z}$, where $A(K)$ is the Alexander polynomial of K.

Expectation. Higher Gauss-Gassner invariants exist . (though right now I can reach for them only wearing my exoskeleton) En 25 (25) $\begin{aligned} & \text { Jones, Melvin, } \\ & \text { Morton, Rozansky, } \\ & \text { Garoufalidis }\end{aligned}$

... and they are the "higher diagonals" in the MMR expansion of the coloured Jones polynomial J_{λ}.
Theorem ([BNG], conjectured [MM], elucidated [Ro]). Let $J_{d}(K)$ be the coloured Jones polynomial of K, in the d dimensional representation of $s l(2)$. Writing

$$
\left.\frac{\left(q^{1 / 2}-q^{-1 / 2}\right) J_{d}(K)}{q^{d / 2}-q^{-d / 2}}\right|_{q=e^{\hbar}}=\sum_{j, m \geq 0} a_{j m}(K) d^{j} \hbar^{m}
$$

"below diagonal" coefficients vanish, $a_{j m}(K)=0$ if $j>m$, and "on diagonal" coefficients give the inverse of the Alexander polynomial: $\left(\sum_{m=0}^{\infty} a_{m m}(K) \hbar^{m}\right) \cdot A(K)\left(e^{\hbar}\right)=1$.

$$
\begin{aligned}
& \left(\begin{array}{c|l|l}
& S_{1} \\
\hline S_{1} & A_{1}
\end{array}, \begin{array}{l|l|lc}
& S_{2} \\
\hline S_{2} & A_{2}
\end{array}\right) \xrightarrow{\sqcup} \begin{array}{c}
\\
\hline S_{1} \\
S_{1}
\end{array} A_{1} 0 \\
& \begin{array}{c|cccc}
& a & b & S \\
a & \alpha & \beta & \theta \\
b & \gamma & \delta & \epsilon & m_{c}^{a b} \\
S & \phi & \psi & \Xi & \begin{array}{c}
T_{a}, T_{b} \rightarrow T_{c} \\
\mu:=1-\beta
\end{array} \\
\hline
\end{array}\left(\begin{array}{c|cc}
& c & S \\
S & \gamma+\alpha \delta / \mu & \epsilon+\delta \theta / \mu \\
\phi+\alpha \psi / \mu & \Xi+\psi \theta / \mu
\end{array}\right),
\end{aligned}
$$

Warning. Conventions on this page change randomly from line to line.
$Z^{w / 2}$. The GGA story is about $Z^{w / 2}: \mathcal{K} \rightarrow \mathcal{A}^{w / 2}$, defined on arrows a by $\pm a \mapsto \exp (\pm a)$:

Where the target space $\mathcal{A}^{w / 2}$ is the space of unsigned arrow diagrams modulo

($Z^{w / 2}$ is a reduction of the much-studied $Z^{w}[B N D, B N]$).
The Euler Trick. How best do non-commutative algebra with exponentials? Logarithms are from hell as $e^{f} e^{g}=e^{\operatorname{bch}(f, g)}$, but Euler's from heaven: Let E be the derivation $E f:=(\operatorname{deg} f) f\left(=x f^{\prime}\right.$, in $\mathbb{Q} \llbracket x \|)$ and let $\tilde{E} Z:=Z^{-1} E Z\left(=x(\log Z)^{\prime}\right.$ in same $)$. If $\operatorname{deg} x=1$ then $\tilde{E} e^{x}=x$ and if $F=e^{f}$ and $G=e^{g}$, then $\tilde{E}(F G)$ is $(F G)^{-1}((E F) G+F(E G))=G^{-1}(\tilde{E} F) G+\tilde{E} G=e^{-\mathrm{ad} g}(\tilde{E} F)+\tilde{E} G$.
Scatter and Glow. Apply \tilde{E} to $Z(K)$. $E Z$ is shown:

Tail scattering. The algebra $\mathbb{Q} \llbracket b_{i} \rrbracket\left\langle a_{i j}\right\rangle$ modulo $\left[a_{i j}, a_{k l}\right]=0$ (loc), $\left[a_{i j}, a_{i k}\right]=$ 0 (TC), and $\left[a_{i k}, a_{j k}\right]=-\left[a_{i j}, a_{j k}\right]=$ $b_{j} a_{i k}-b_{i} a_{j k}(\mathrm{CH}$ and $\overrightarrow{4 \mathrm{~T}})$, acts on $V=$ $\mathbb{Q} \llbracket b_{i} \mathbb{Z}\left\langle x_{i}=a_{i \infty}\right\rangle$ by $\left[a_{i j}, x_{i}\right]=0,\left[a_{i j}, x_{j}\right]=$
 $b_{i} x_{j}-b_{j} x_{i}$. Hence $e^{\text {ad } a_{i j}} x_{i}=x_{i}, e^{\text {ad } a_{i j}} x_{j}=$ $e^{b_{i}} x_{j}+\frac{b_{j}}{b_{i}}\left(1-e^{b_{i}}\right) x_{i}$. Renaming $\bar{x}_{i}=x_{i} / b_{i}, T_{i}=e^{b_{i}}$, get $\left[e^{\text {ad } a_{i j}}\right]_{\bar{x}_{i}, \bar{x}_{j}}=\left(\begin{array}{cc}1 & 1-T_{i} \\ 0 & T_{i}\end{array}\right)$. Alternatively,

$$
{ }_{y_{i}}^{\substack{y_{j}}} \stackrel{{ }^{2}}{\longrightarrow} \underset{x_{j}}{\longrightarrow} \longrightarrow \begin{aligned}
& \bar{y}_{i}=\bar{x}_{i} \\
& x_{i}
\end{aligned}
$$

Linear Control Theory.
If $\binom{y}{y_{n}}=\left(\begin{array}{ll}\Xi & \phi \\ \theta & \alpha\end{array}\right)\binom{x}{x_{n}}$, and we further impose $x_{n}=y_{n}$, then $y=B x$ where $B=\Xi+\frac{\phi \theta}{1-\alpha}$. This fully explains
 the Gassner formulas and the GGA formula!

All that remains now is to replace TC by something more interesting: with $\epsilon^{2}=0$,

$$
\left[a_{i j}, a_{i k}\right]=\epsilon\left(c_{j} a_{i k}-c_{k} a_{i j}\right) .
$$

Many further changes are also necessary, and the algebra is a lot more complicated and revolves around "quantization of Lie bialgebras" [EK, En]. But the spirit is right.
References.
[BN] D. Bar-Natan, Balloons and Hoops and their Universal Finite Type Invariant, BF Theory, and an Ultimate Alexander Invariant, $\omega \varepsilon \beta / \mathrm{KBH}$, arXiv:1308.1721.
[BND] D. Bar-Natan and Z. Dancso, Finite Type Invariants of W-Knotted Objects I, II, IV, $\omega \varepsilon \beta / W K O 1$, $\omega \varepsilon \beta / \mathrm{WKO} 2, \omega \varepsilon \beta / \mathrm{WKO} 4$, arXiv:1405.1956, arXiv:1405.1955, arXiv:1511.05624.
[BNG] D. Bar-Natan and S. Garoufalidis, On the Melvin-Morton-Rozansky conjecture, Invent. Math. 125 (1996) 103133.
[BNS] D. Bar-Natan and S. Selmani, Meta-Monoids, MetaBicrossed Products, and the Alexander Polynomial, J. of Knot Theory and its Ramifications 22-10 (2013), arXiv:1302.5689.
[CT] D. Cimasoni and V. Turaev, A Lagrangian Representation of Tangles, Topology 44 (2005) 747-767, arXiv:math.GT/0406269.
[En] B. Enriquez, A Cohomological Construction of Quantization Functors of Lie Bialgebras, Adv. in Math. 197-2 (2005) 430-479, arXiv:math/0212325.
[EK] P. Etingof and D. Kazhdan, Quantization of Lie Bialgebras, I, Selecta Mathematica 2 (1996) 1-41, arXiv:q-alg/9506005.
[GST] R. E. Gompf, M. Scharlemann, and A. Thompson, Fibered Knots and Potential Counterexamples to the Property $2 R$ and Slice-Ribbon Conjectures, Geom. and Top. 14 (2010) 2305-2347, arXiv:1103.1601.
[GPV] M. Goussarov, M. Polyak, and O. Viro, Finite type invariants of classical and virtual knots, Topology 39 (2000) 1045-1068, arXiv:math.GT/9810073.
[KLW] P. Kirk, C. Livingston, and Z. Wang, The Gassner Representation for String Links, Comm. Cont. Math. 3 (2001) 87-136, arXiv:math/9806035.
[LD] J. Y. Le Dimet, Enlacements d'Intervalles et Représentation de Gassner, Comment. Math. Helv. 67 (1992) 306-315.
[MM] P. M. Melvin and H. R. Morton, The coloured Jones function, Commun. Math. Phys. 169 (1995) 501-520.
[PV] M. Polyak and O. Viro, Gauss Diagram Formulas for Vassiliev Invariants, Inter. Math. Res. Notices 11 (1994) 445-453.
[Ro] L. Rozansky, A contribution of the trivial flat connection to the Jones polynomial and Witten's invariant of 3d manifolds, I, Comm. Math. Phys. 175-2 (1996) 275-296, arXiv:hep-th/9401061.

<< KnotTheory

Loading KnotTheory` version
Read more at http://katlas.org/wiki/KnotTheory.

GD[g_GD] := g;
GD[L_] := GD@@ PD[L] /.
$\mathbf{x}\left[i_{-}, j_{-}, k_{-}, l_{-}\right]: \operatorname{If}[$ Positive@@ $\mathrm{X}[i, j, k, 1]$,
$\left.\mathrm{Ap}_{1, i}, \mathrm{Am}_{j, i}\right]$;
$\operatorname{Draw[g_ GD]:=} \operatorname{Module}[\{\mathrm{n}=$ Max@Cases[g,_Integer, $\infty]\}$,
Graphics[[
Line $[\{\{0,0\},\{n+1,0\}\}]$,
List @ 9 /. (ah_) $)_{i_{-}, j_{-}} \rightarrow\{$
Arrow[BezierCurve[\{\{i, 0\}, $\{i+j, \operatorname{Abs}[j-i]\} / 2$, \{j, 0\}\}],
Text[ah /. $\{\operatorname{Ap} \rightarrow "+", A m \rightarrow "-"\},\{i, 0.3\}]\}$, Table[Text[i, \{i, -0.5\}], \{i, n\}]\}]]
Draw /@ GD/@ AllKnots@\{3,5\} Some Gauss Diagrams
KnotTheory::loading: Loading precomputed data in PD4Knots`.


```
{GD[Am4,1,Am6,3,Am2,5], GD [AP 1,4,Ap 5,8,Am3,6,Am7,2],
    GD [Am6,1,Am8,3,Am10,5,Am2,7,Am4,9],
    GD [Am4,1,Am
```

CF[$\left.g_{-} G D\right]:=\operatorname{Sort}\left[\quad V_{2}\right.$ Definition
g /. Thread[Sort@Cases [g, _Integer, ∞] \rightarrow
Range[2 Length[g]]]];
$\operatorname{PV}\left[F_{-} G D, g_{-} G D\right] / ;$ Length $[F]>$ Length $[g]:=0$;
$\operatorname{PV}\left[F_{-} G D, g_{-} G D\right] /$; Length $[F]<$ Length $[g]:=$ Sum [
$\operatorname{PV}[F, y],\{y, \operatorname{Subsets}[g,\{$ Length[F]\}]\}];
$\operatorname{PV}\left[F_{-} G D, g_{-} G D\right] / ;$ Length $[F]==$ Length $[g]:=\operatorname{If}[$
$\mathrm{CF}[F]==\mathbf{C F}[g / \mathrm{Ap} \mid \mathrm{Am} \rightarrow \mathrm{A}],(-1)^{\left.\operatorname{Count}\left[g, \mathrm{Am}_{--}\right], 0\right] ;}$
$\mathrm{V}_{2}\left[g_{-}\right]:=\mathrm{V}_{2}[g]=\operatorname{PV}\left[\mathrm{GD}\left[\mathrm{A}_{3,1}, \mathbf{A}_{2,4}\right], \operatorname{GD}[g]\right]$;
Format[Knot[n_, $\left.k_{-}\right]$]:= n_{k};
Table $\left[K \rightarrow V_{2}[K]\right.$, $\{K$, AllKnots @ $\left.\{3,7\}\}\right]$
$\left\{3_{1} \rightarrow 1,4_{1} \rightarrow-1,5_{1} \rightarrow 3,5_{2} \rightarrow 2,6_{1} \rightarrow-2,6_{2} \rightarrow-1,6_{3} \rightarrow 1\right.$,
$\left.7_{1} \rightarrow 6,7_{2} \rightarrow 3,73 \rightarrow 5,7_{4} \rightarrow 4,75 \rightarrow 4,76 \rightarrow 1,77 \rightarrow-1\right\}$
$\operatorname{PV}\left[F 1_{-}+F 2_{-}, g_{-}\right]:=\operatorname{PV}[F 1, g]+\operatorname{PV}[F 2, g] ; \quad V_{3}$ Definition
$\operatorname{PV}\left[C_{-} * F_{-} G D, g_{-}\right]:=c \operatorname{PV}[F, g]$;
$\rho_{k_{-}}\left[g_{-}\right]:=g / . i_{-}$Integer $: \rightarrow \operatorname{Mod}[i-k, 2$ Length@ $g, 1]$;
$F_{3}=\sum_{\mathrm{k}=0}^{5}\left(3 \rho_{\mathrm{k}} @ G D\left[\mathrm{~A}_{1,5}, \mathrm{~A}_{4,2}, \mathrm{~A}_{6,3}\right]+2 \rho_{\mathrm{k}} @ G D\left[\mathrm{~A}_{1,4}, \mathrm{~A}_{5,2}, \mathrm{~A}_{3}, 6\right]\right) ;$
$\mathrm{V}_{3}\left[K_{-}\right]:=\mathrm{V}_{3}[K]=\mathrm{PV}\left[\mathrm{F}_{3}, \mathrm{GD} @ K\right] / 6 ;$
$\operatorname{PV}\left[F_{-} G D, g_{-} G D\right] / ;$ Length $[F]>$ Length $[g]:=0$;
$\operatorname{PV}\left[F_{-} G D, g_{-} G D\right] / ;$ Length $[F]<$ Length $[g]:=$ Sum $[$
$\operatorname{PV}[F, y],\{y, \operatorname{Subsets}[g,\{$ Length[F]\}]\}];
$\operatorname{PV}\left[F_{-} G D, g_{-} G D\right] / ;$ Length $[F]==$ Length $[g]:=\operatorname{If}[$
$\mathrm{CF}[F]===\mathrm{CF}[g / \mathrm{Ap} \mid \mathrm{Am} \rightarrow \mathrm{A}],(-1)^{\left.\operatorname{Count}\left[g, \mathrm{Am}_{-}\right], 0\right] ;}$
$\mathrm{V}_{2}\left[g_{-}\right]:=\mathrm{V}_{2}[g]=\operatorname{PV}\left[G D\left[\mathbf{A}_{3,1}, \mathbf{A}_{2,4}\right], \mathrm{GD}[g]\right] ;$
Format [Knot[n_, $\left.\left.\mathrm{k}_{-}\right]\right]:=\mathrm{n}_{\mathrm{k}}$;
Table $\left[K \rightarrow V_{2}[K],\{K, A l l K n o t s @\{3,7\}\}\right]$
$\left\{3_{1} \rightarrow 1,4_{1} \rightarrow-1,5_{1} \rightarrow 3,5_{2} \rightarrow 2,6_{1} \rightarrow-2,6_{2} \rightarrow-1,6_{3} \rightarrow 1\right.$,
$\left.7_{1} \rightarrow 6,7_{2} \rightarrow 3,73 \rightarrow 5,7_{4} \rightarrow 4,75 \rightarrow 4,76 \rightarrow 1,77 \rightarrow-1\right\}$
$\operatorname{PV}\left[F 1_{-}+F 2_{-}, g_{-}\right]:=\operatorname{PV}[F 1, g]+\operatorname{PV}[F 2, g] ; \quad V_{3}$ Definition
$\operatorname{PV}\left[C_{-} * F_{-} G D, g_{-}\right]:=c \operatorname{PV}[F, g]$;
$\rho_{k_{-}}\left[g_{-}\right]:=g / . i_{-}$Integer $: \rightarrow \operatorname{Mod}[i-k, 2$ Length@ $g, 1]$;
$F_{3}=\sum_{k=0}^{5}\left(3 \rho_{k} @ G D\left[A_{1,5}, A_{4,2}, A_{6,3}\right]+2 \rho_{k} @ G D\left[A_{1,4}, A_{5,2}, A_{3,6}\right]\right) ;$
$\mathrm{V}_{3}\left[K_{-}\right]:=\mathrm{V}_{3}[K]=\operatorname{PV}\left[\mathrm{F}_{3}, \mathrm{GD} @ K\right] / 6$;

Gauss Diagram Utilities
Computing V_{2}

Table[K $\rightarrow \mathrm{V}_{3}[\mathrm{~K}],\{\mathrm{K}$, AllKnots @ $\left.\{3,7\}\}\right]$
Computing V_{3}
$\left\{3_{1} \rightarrow-1,4_{1} \rightarrow 0,5_{1} \rightarrow-5,5_{2} \rightarrow-3,6_{1} \rightarrow 1,6_{2} \rightarrow 1,6_{3} \rightarrow 0\right.$,

Histogram3D [
Willerton's Fish Table $\left[\left\{\mathrm{V}_{2}[\mathrm{~K}], \mathrm{V}_{3}[\mathrm{~K}]\right\},\{\mathrm{K}, \mathrm{AllKnots} @\{3,10\}\}\right]$, \{1\}]

$G\left[\lambda_{-}\right]_{a_{-}, b_{-}}:=\partial_{t_{a}, h_{b}} \lambda_{i} \quad$ Gassner Utilities
$\mathrm{G}\left[\lambda_{-}\right]_{a_{-}, b_{-}}:=\partial_{\mathrm{ta}_{a}, \mathrm{hb}_{\mathrm{b}}} \lambda_{;} \quad$ Gassner Utilities
G /: Factor $\left[G\left[\lambda_{-}\right]\right]:=$ G[Collect[$\lambda, h_{-}, \operatorname{Collect}\left[\#, t_{-}\right.$, Factor] $\left.\left.\&\right]\right]$;
Format@ $\gamma_{-} G:=$ Module $\left[\left\{S=\right.\right.$ Union@Cases $\left.\left[\gamma,(h \mid t) a_{-}: \rightarrow a, \infty\right]\right\}$, Table[$\left.\gamma_{a, b},\{a, S\},\{b, S\}\right] / /$ MatrixForm] ;

The Gassner Program
V_{2} Definition
G $/: \operatorname{G}\left[\lambda 1_{-}\right] \mathbf{G}\left[\lambda 2_{-}\right]:=\mathrm{G}[\lambda 1+\lambda 2]$;
$, \theta, \epsilon, \phi, \psi, \Xi, \mu\}$,

$$
\left.7_{1} \rightarrow-14,7_{2} \rightarrow-6,7_{3} \rightarrow 11,7_{4} \rightarrow 8,7_{5} \rightarrow-8,76 \rightarrow-2,7_{7} \rightarrow-1\right\}
$$

$\left(\begin{array}{ccc}\alpha & \beta & \theta \\ \gamma & \delta & \epsilon \\ \phi & \psi & \Xi\end{array}\right)=\left(\begin{array}{ccc}\partial_{\mathrm{t}_{a}, \mathrm{~h}_{a}} \lambda & \partial_{\mathrm{t}_{a}, \mathrm{~h}_{b}} \lambda & \partial_{\mathrm{t}_{a}} \lambda \\ \partial_{\mathrm{t}_{b}, \mathrm{~h}_{a}} \lambda & \partial_{\mathrm{t}_{b}, \mathrm{~h}_{b}} \lambda & \partial_{\mathrm{t}_{b}} \lambda \\ \partial_{\mathrm{h}_{a}} \lambda & \partial_{\mathrm{h}_{b}} \lambda & \lambda\end{array}\right) / .(\mathrm{t} \mid \mathrm{h})_{a \mid b} \rightarrow 0 ;$
$\mu=1-\beta$;
$\mathbf{G}\left[\operatorname{Tr}\left[\binom{\mathbf{t}_{c}}{1}^{\top} \cdot\left(\begin{array}{cc}\gamma+\alpha \delta / \mu & \epsilon+\delta \theta / \mu \\ \phi+\alpha \psi / \mu & \boxed{U}+\psi \theta / \mu\end{array}\right) \cdot\binom{\mathbf{h}_{c}}{1}\right]\right] / . \mathbf{T}_{a \mid b} \rightarrow \mathbf{T}_{c} / /$ Factor];
$R p_{a_{-}, b_{-}}:=G\left[\operatorname{Tr}\left[\binom{t_{a}}{t_{b}}^{\top} \cdot\left(\begin{array}{cc}1 & 1-T_{a} \\ 0 & T_{a}\end{array}\right) \cdot\binom{h_{a}}{h_{b}}\right]\right] ;$
$\mathrm{Rm}_{a_{-}, b_{-}}:=\mathrm{Rp}_{a, b} / . \mathrm{T}_{a} \rightarrow 1 / \mathrm{T}_{a} ;$
GG[$\left.g_{-} G D, k_{-}, F_{-}, B B_{-}\right]:=\quad$ The Gauss-Gassner-Program
Module [$\{\mathrm{n}=2$ Length @ $g+$ Length @ $B B, y$, cuts, rr, $\gamma 0, \gamma\}$,
$\gamma 0=G\left[t_{n+1} h_{n+1}\right]$ Times @@ $g / .\{A p \rightarrow R p, A m \rightarrow R m\} ;$
$\gamma 0 *=G\left[\operatorname{Sum}\left[\beta_{\mathrm{a}, \mathrm{b}} \mathrm{t}_{\mathrm{a}} \mathrm{h}_{\mathrm{b}},\{\mathrm{a}, B B\},\{\mathrm{b}, B B\}\right]\right] ;$
Sum [$\gamma=\gamma 0$;
cuts = Cases $[y, \quad$ Integer, $\infty] \cup\{n+1\}$;
rr = Thread [cuts \rightarrow Range [Length@cuts]];
Do[If[! MemberQ[cuts, j], $\left.\left.\gamma=\gamma / / m_{j, j+1 \rightarrow j+1}\right],\{j, n\}\right] ;$
[y /. rr, $\left.\gamma / .\left(V_{-}\right)_{a_{-}}: \rightarrow V_{a / . r r}\right]$,

GG[g_GD, $\left.k_{-}, F_{-}\right]:=\operatorname{GG}[g, k, F,\{ \}] ;$

Computing V_{2}
Loading KnotTheory ${ }^{\text {© }}$

FA $\left[\left\{x_{-}\right\}, \gamma_{-}\right]:=$Simplify $[\quad$ The Alexander Functional Switch[x, Ap__ 1, Am_, -1]* Switch $\left[x,-1,2, \frac{\gamma_{2,2} \gamma_{3,3}-\gamma_{2,3} \gamma_{3,2}}{\gamma_{3,3}+\gamma_{1,3} \gamma_{3,2}-\gamma_{1,2} \gamma_{3,3}}\right.$,
$\left.\left.n^{2,1}, \frac{\gamma_{1,3} \gamma_{3,2}-\gamma_{1,2} \gamma_{3,3}}{\gamma_{3,2}-\gamma_{2,3} \gamma_{3,2}+\gamma_{2,2} \gamma_{3,3}}\right] / . T_{-} \rightarrow T\right]$;
GGA $\left[K_{-}, b b_{---}\right]:=\mathrm{GG}[\mathrm{GD} @ K,\{1\}, \mathrm{FA}, \mathrm{bb}]$;

| Simplify @With[\{K = Knot[4, 1]\},
 Example: 4_{1}
 \{GGA[K], Alexander[K][T], $\left.\left.T \partial_{T} \log [A l e x a n d e r[K][T]]\right\}\right]$ | |
| :---: | :---: |
| $\left\{\frac{T(-3+2 \mathrm{~T})}{1-3 \mathrm{~T}+\mathrm{T}^{2}}, 3-\frac{1}{T}-\mathrm{T}, \frac{-1+\mathrm{T}^{2}}{1-3 \mathrm{~T}+\mathrm{T}^{2}}\right\}$ | |
| Table [| Testing for up to 7 crossings |
| $K \rightarrow$ Simplify[GGA [K] - T $\partial_{T} \log [A l e x a n d e r[K][T]]$], \{K, AllKnots@ $\{3,7\}\}]$ | |

Draw /@ $\left\{\right.$ R3L $=G D\left[A p_{2,5}, A p_{3,8}, A p_{6,9}\right]$, $\left.\mathrm{R} 3 \mathrm{R}=\mathrm{GD}\left[\mathrm{Ap}_{5,8}, \mathrm{AP} \mathrm{P}_{2,9}, \mathrm{AP} \mathrm{P}_{3}, 6\right]\right\}$

Simplify
GGA $[$ R3L,$\{1,4,7,10\}]==\operatorname{GGA}[\operatorname{R3R},\{1,4,7,10\}] /$. $\left.\beta_{10, b_{-}}: 1-\beta_{1, b}-\beta_{4, b}-\beta_{7, b}\right]$
$\left\{3_{1} \rightarrow-1,4_{1} \rightarrow 1,5_{1} \rightarrow-2,5_{2} \rightarrow-2,6_{1} \rightarrow 0,6_{2} \rightarrow 0,6_{3} \rightarrow 0\right.$,
$\left.7_{1} \rightarrow-3,7_{2} \rightarrow-3,7_{3} \rightarrow 4,7_{4} \rightarrow 4,7_{5} \rightarrow-3,76 \rightarrow-1,7_{7} \rightarrow 2\right\}$
GG[GD@Knot[4, 1], \{1, 2\}, F] /. F[y_List, $\left.\gamma_{-} G\right]: F[$ Column@y, $\gamma]$
Example: Degree 2 Gauss-Gassner for 4_{1}

Video and more at http://www.math.toronto.edu/~drorbn/Talks/NCSU-1604/

Abstract. I will describe the general "expansions" machine whose inputs are topics in topology (and more) and whose outputs are problems in algebra. There are many inputs the machine can take, and many outputs it produces, but I will concentrate on just one input/output pair. When fed with a certain class of knotted 2-dimensional objects in 4dimensional space, it outputs the Kashiwara-Vergne Problem (1978 ω / KV, solved Alekseev-Meinrenken $2006 \omega / \mathrm{AM}$, elucidated Alekseev-Torossian 2008-2012 $\omega /$ AT), a problem about convolutions on Lie groups and Lie algebras.
The Kashiwara-Vergne Conjecture. There exist two series F and G in the completed free Lie algebra $F L$ in generators x and y so that
$x+y-\log e^{y} e^{x}=\left(1-e^{-\operatorname{ad} x}\right) F+\left(e^{\operatorname{ad} y}-1\right) G \quad$ in $F L$ and so that with $z=\log e^{x} e^{y}$,
$\operatorname{tr}(\operatorname{ad} x) \partial_{x} F+\operatorname{tr}(\operatorname{ad} y) \partial_{y} G \quad$ in cyclic words
$=\frac{1}{2} \operatorname{tr}\left(\frac{\operatorname{ad} x}{e^{\operatorname{ad} x}-1}+\frac{\operatorname{ad} y}{e^{\operatorname{ad} y}-1}-\frac{\operatorname{ad} z}{e^{\operatorname{ad} z}-1}-1\right)$ Implies the loosely-stated convolutions statement: Convolutions of invariant functions on a Lie group agree with convolutions of invariant functions on its Lie algebra.
The Machine. Let G be a group, $\mathcal{K}=\mathbb{Q} G=\left\{\sum a_{i} g_{i}: a_{i} \in\right.$ $\left.\mathbb{Q}, g_{i} \in G\right\}$ its group-ring, $\mathcal{I}=\left\{\sum a_{i} g_{i}: \sum a_{i}=0\right\} \subset \mathcal{K}$ its augmentation ideal. Let

$$
\mathcal{A}=\operatorname{gr} \mathcal{K}:=\widehat{\bigoplus}_{m \geq 0} \mathcal{I}^{m} / \mathcal{I}^{m+1}
$$

P.S. $\left(\mathcal{K} / \mathcal{I}^{m+1}\right)^{*}$ is Vassiliev / finite-type / polynomial in-

Note that \mathcal{A} inherits a product from G.
Definition. A linear $Z: \mathcal{K} \rightarrow \mathcal{A}$ is an "expansion" if for any $\gamma \in \mathcal{I}^{m}, Z(\gamma)=\left(0, \ldots, 0, \gamma / \mathcal{I}^{m+1}, *, \ldots\right)$, and a "homomorphic expansion" if in addition it preserves the product.
Example. Let $\mathcal{K}=C^{\infty}\left(\mathbb{R}^{n}\right)$ and $\mathcal{I}=\{f: f(0)=0\}$. Then $\mathcal{I}^{m}=\left\{f: f\right.$ vanishes like $\left.|x|^{m}\right\}$ so $\mathcal{I}^{m} / \mathcal{I}^{m+1}$ is degree m homogeneous polynomials and $\mathcal{A}=\{$ power series $\}$. The Taylor series is a homomorphic expansion!

In the finitely presented case, finding Z amounts to solving a system of equations in a graded space.
Theorem (with Zsuzsanna Dancso, ω / WKO). There is a bijection between the set of homomorphic expansions for $w \mathcal{K}$ and the set of solutions of the Kashiwara-Vergne problem. This is the tip of a major iceberg!

Dancso, ω / ZD

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Leiden-1601/
 in terms of a very simple minded map $\not \mathscr{H}$ from n-component v-w. Equally well, it is $\mathscr{\not}: v B_{n} \rightarrow w B_{n+1}$. Better, it is tangles to $(n+1)$-component w-tangles. It is possible that you all $\mathcal{K}: v T_{n} \rightarrow(n v+1 w) T$ or $\mathcal{K}: v B_{n} \rightarrow(n v+1 w) B$. know this already. Possibly my talk will be very short - it will Claims. be as long as it is necessary to describe \mathcal{K} and say a few more words, and if this is little, so be it.

All you need is $\mathscr{K} \ldots \bullet$ What is its domain? - What is its target? - Why should one care?

Virtual Knots. Virtual knots are the algebraic structure underlying the Reidemeister presentation of ordinary knots, without the topology. Locally they are knot diagrams modulo the Reidemeister relations; globally, who cares? So,
$v T=\mathrm{CA}\langle \%, \lambda: R 1, R 2, R 3\rangle \quad \mathrm{CA}=$ "Circuit Algebra"

No! Note that also

1. \mathcal{K} is well defined.
2. On u-links, $Ж$ "factors".

3. \nVdash does not respect $O C$.
4. $\mathscr{\not}$ recovers Manturov's $V G$ and $\mu: V G(K)=\pi_{1}(\nVdash(K)), \mu=$ $\mathscr{F} \circ \phi=\phi / / \mathcal{W}$.
Even better, $\mathscr{\nsim}$ pulls back any invariant of 2-component w-knots to an invariant of virtual knots. in particular, there is a wheelvalued "non-commutative" invariant ω as in $[\mathrm{BN}]$ and DBN : Talks: Hamilton-1412 (next page).
Likely, the various "2-variable Alexander polynomials" for virtual knots arise in this way.
Proof of 1.

Everything slides out!
Proof of 2. The net "red flow" into every face is 0 , so the red arrows can be paired. They form cycles that can hover off the picture.
No proof of 3. Well, there simply is no proof that $O C$ is respected, and it's easy to come up with counterexamples.
Proof of 4. A simple verification, except my conventions are off. . .

References.

[BN] D. Bar-Natan, Balloons and Hoops and their Universal Finite Type Invariant, BF Theory, and an Ultimate Alexander Invariant, Acta Mathematica Vietnamica 40-2 (2015) 271-329, arXiv:1308.1721.
[BGHNW] H. U. Boden, A. I. Gaudreau, E. Harper, A. J. Nicas, and L. White, Virtual Knot Groups and Almost Classical Knots, arXiv:1506.01726.
[Ma] V. O. Manturov, On Invariants of Virtual Links, Acta Applicandae Mathematica 72-3 (2002) 295-309.

Prejudices should always be re-evaluated!

Video and more at http://www.math.toronto.edu/~drorbn/Talks/MoscowByWeb-1511/

Abstract. Much as we can understand 3-dimensional objects by staring at their pictures and x-ray images and slices in 2dimensions, so can we understand 4-dimensional objects by staring at their pictures and x-ray images and slices in 3dimensions, capitalizing on the fact that we understand 3dimensions pretty well. So we will spend some time staring at and understanding various 2-dimensional views of a 3dimensional elephant, and then even more simply, various 2dimensional views of some 3-dimensional knots. This achieved, we'll take the leap and visualize some 4 -dimensional knots by their various traces in 3-dimensional space, and if we'll still have time, we'll prove that these knots are really knotted.

2-Knots / 4D Knots. Formally, "a differentiable embedding of S^{2} in \mathbb{R}^{4} modulo differentiable deformations of such".

Some Unknots

Thistlethwaite's unknot

Scharein's relaxation

Haken's unknot

3-Colourings. Colour the arcs of a broken arc diagram in RGB so that every crossing is either mono-chromatic or trichromatic. Let $\lambda(K)$ be the number of such 3-colourings that K has.
Example. $\lambda(\bigcirc)=3$ while $\lambda(\mathcal{S})=9$; so $\bigcirc \neq \mathscr{G}$. Riddle. Is $\lambda(K)$ always a power of 3 ?
 Proof sketch. It is enough to show that for each Reidemeister move, there is an end-colours-preserving bijection between the colourings of the two sides. E.g.:

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Cornell-150925/. Similar talks at .../CUMC-1307/, .../CUMC-1307/

Theorem. Every 2-knot can be represented by a "broken surface diagram" made of the following basic ingredients,

\ldots and any two representations of the same knot differ by a sequence of the following "Roseman moves":

A Stronger Invariant. There is an assigment of groups to knots / 2-knots as follows. Put an arrow "under" every un-broken curve / surface in a broken curve / surface diagram and label it with the name of a group generator. Then mod out by relations as below.

Facts. The resulting "Fundamental group" $\pi_{1}(K)$ of a knot / 2knot K is a very strong but not very computable invariant of K. Though it has computable projections; e.g., for any finite G, count the homomorphisms from $\pi_{1}(K)$ to G.
Exercise. Show that $\left|\operatorname{Hom}\left(\pi_{1}(K) \rightarrow S_{3}\right)\right|=\lambda(K)+3$.

Satoh's Conjecture. (Satoh, \longrightarrow "simple long knotted 2D tube in 4D"
Virtual Knot Presentations of
Ribbon Torus-Knots, J. Knot Theory and its Ramifications 9 (2000) 531-542). Two long wknot diagrams represent via the map δ the same simple long 2D knotted tube in 4D iff they differ
 by a sequence of R-moves as above and the "w-moves" VR1-

VR3, D and OC listed below:

Some knot theory books.

- Colin C. Adams, The Knot Book, an Elementary Introduction to the Mathematical Theory of Knots, American Mathematical Society, 2004.
- Meike Akveld and Andrew Jobbings, Knots Unravelled, from Strings to Mathematics, Arbelos 2011.
- J. Scott Carter and Masahico Saito, Knotted Surfaces and Their Diagrams, American Mathematical Society, 1997.
- Peter Cromwell, Knots and Links, Cambridge University Press, 2004.
- W.B. Raymond Lickorish, An Introduction to Knot Theory, Springer 1997.

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Cornell-150925/. Similar talks at .../CUMC-1307/, . . ./CUMC-1307/

四品品Dror Bar－Natan：Talks：LesDiablerets－1508： $\omega \varepsilon \beta:=h t t p: / / w w w . m a t h . t o r o n t o . e d u / \sim d r o r b n / T a l k s / L e s D i a b l e r e t s-1508 /$

Work in Progress on Polynomial Time Knot Polynomials，A Abstrant．The value of things is inversely correlated with their Meta－Associativity $\quad\left(\begin{array}{llll}\alpha_{11} & \alpha_{12} & \alpha_{13} & \theta_{1} \\ \alpha_{21} & \alpha_{22} & \alpha_{23} & \theta_{2}\end{array}\right)$ Runs． computational complexity．＂Real time＂machines，such as our brains，only run linear time algorithms，and there＇s still a lot we don＇t know．Anything we learn about things doable in linear time is truly va－ luable．Polynomial time we can in－practice run，even if we have to wait；these things are still valuable．Exponential time we can play with，but just a little，and exponential things must be beautiful or philosophically compelling to deserve attention．Values further diminish and the aesthetic－or－philosophical bar fur－ ther rises as we go further slower，or un－computable，or ZFC－style intrinsically infinite，or large－cardinalish，or beyond．
I will explain some things I know about polynomial time knot polynomials and explain where there＇s more，within reach．
 are also definable properties）．

Faster is better，leaner is meaner！
Theorem 1．\exists ！an invariant z_{0} ：\｛pure framed S－component tangles $\} \rightarrow \Gamma_{0}(S):=R \times M_{S \times S}(R)$ ，where $R=R_{S}=\mathbb{Z}\left(\left(T_{a}\right)_{a \in S}\right)$ is the ring of rational functions in S variables，intertwining
\(\left(\begin{array}{c|l}\omega_{1} \& S_{1}

\hline S_{1} \& A_{1}\end{array}, \left.\frac{\omega_{2}}{} S_{2} S_{2} \right\rvert\, A_{2}\right) \xrightarrow{\sqcup} \xrightarrow{\omega_{1} \omega_{2}}\)| S_{1} | S_{2} |
| :---: | :---: |
| S_{1} | A_{1} |
| | 0 |
| S_{2} | 0 |
| | A_{2} |,

$\left.\begin{array}{c|ccc}\omega & a & b & S \\ \hline a & \alpha & \beta & \theta \\ b & \gamma & \delta & \epsilon \\ S & \phi & \psi & \Xi \\ T_{a}, T_{b} \rightarrow T_{c} \\ \mu:=1-\beta\end{array}\right)\left(\begin{array}{c|ccc}\mu \omega & c & S \\ \hline c & \gamma+\alpha \delta / \mu & \epsilon+\delta \theta / \mu \\ S & \phi+\alpha \psi / \mu & \Xi+\psi \theta / \mu\end{array}\right)$,

In Addition • The matrix part is just a stitching formula for Burau／Gassner［LD，KLW，CT］．
－$K \mapsto \omega$ is Alexander，mod units．
－$L \mapsto(\omega, A) \mapsto \omega \operatorname{det}^{\prime}(A-I) /\left(1-T^{\prime}\right)$ is the MVA，mod units．
－The fastest Alexander algorithm I know．
－There are also formulas for strand deletion， reversal，and doubling．

－Every step along the computation is the invariant of something．
－Extends to and more naturally defined on v / w－tangles．
－Fits in one column，including propaganda \＆implementation．
Implementation key idea：

$\left.\mathrm{r}[\mu=1-\beta) \omega,\left\{\mathrm{t}_{\mathrm{c}}, 1\right\} \cdot\binom{\gamma+\alpha \delta / \mu \epsilon+\delta \theta / \mu}{+\alpha \psi / \mu \varepsilon+\psi \theta / \mu} \cdot\left\{\mathrm{h}_{\mathrm{c}}, 1\right]\right]$
1．$\left\{\mathbb{T}_{a} \rightarrow \mathbf{T}_{c}, \mathbf{T}_{b} \rightarrow \mathrm{~T}_{c}\right\} / /$ rcollect $]$ ；
$M=\operatorname{Prepend}\left[\mathrm{M}, \mathrm{t}_{\|} \& / @ \mathrm{~s}\right] / /$ Transpose ；
$M=\operatorname{Prepend}[M, \operatorname{Pr}$
$M / /$ MatrixForm］；
Meta－Associativity
$\zeta=\Gamma\left[\omega, \quad\left\{t_{1}, t_{2}, t_{3}, t_{s}\right\} .\left(\begin{array}{cccc}\alpha_{11} & \alpha_{12} & \alpha_{13} & \theta_{1} \\ \alpha_{21} & \alpha_{22} & \alpha_{23} & \theta_{2} \\ \alpha_{31} & \alpha_{32} & \alpha_{33} & \theta_{3} \\ \phi_{1} & \phi_{2} & \phi_{3} & \Xi\end{array}\right) \cdot\left\{h_{1}, h_{2}, h_{3}, h_{s}\right\}\right] ;$

$\left\{\mathrm{Rm}_{51} \mathrm{Rm}_{62} \mathrm{Rp}_{34} / / \mathrm{m}_{14 \rightarrow 1} / / \mathrm{m}_{25 \rightarrow 2} / / \mathrm{m}_{36 \rightarrow 3}\right.$ ，
$\left.\mathrm{Rp}_{61} \mathrm{Rm}_{24} \mathrm{Rm}_{35} / / \mathrm{m}_{14 \rightarrow 1} / / \mathrm{m}_{25 \rightarrow 2} / / \mathrm{m}_{36 \rightarrow 3}\right\}$
$\square \pi_{4}^{2}-\frac{1}{4}$

Do $\left[z=z / / m_{1 k \rightarrow 1}, \quad\{k, 2,16\}\right] ;$
\mathbf{z}
$\left(\begin{array}{cc}11-\frac{1}{T_{1}^{3}}+\frac{4}{T_{1}^{2}}-\frac{8}{T_{1}}-8 \mathrm{~T}_{1}+4 \mathrm{~T}_{1}^{2}-\mathrm{T}_{1}^{3} & \mathrm{~h}_{1} \\ \mathrm{t}_{1} & 1\end{array}\right)$

Closed Components．The Halacheva trace tr_{c} satisfies $m_{c}^{a b} / / \operatorname{tr}_{c}=$ $m_{c}^{b a} / / \mathrm{tr}_{c}$ and computes the MVA for all links in the atlas，but its domain is not understood：

| ω | c | S | | | | |
|---|---|---|---|---|---|---|
| c | α | θ |
| S | ψ | Ξ |$\xrightarrow{\mu:=1-\alpha}$| tr_{c} | $\mu \omega$ | S |
| :--- | :--- | :---: |
| S | $\Xi+\psi \theta / \mu$ | |

$\operatorname{tr}_{\mathrm{c}_{-}}\left[\mathrm{F}\left[\omega_{-}, \lambda_{-}\right]\right]:=\operatorname{Module}[\{\alpha, \theta, \psi, \Xi\}$,
$\left(\begin{array}{c}\alpha \\ \psi \\ \psi \\ \mathrm{\Xi}\end{array}\right)=\left(\begin{array}{cc}\partial_{\mathrm{t}_{\mathrm{c}}, \mathrm{he}_{\mathrm{c}}} \lambda & \partial_{\mathrm{t}_{\mathrm{t}}} \lambda \\ \partial_{\mathrm{h}_{\mathrm{c}}} \lambda & \lambda\end{array}\right) / \cdot(\mathrm{t} \mid \mathrm{h})_{\mathrm{c}} \rightarrow 0 ;$
$\Gamma[\omega(1-\alpha), \Xi+\psi * \theta /(1-\alpha)] / /$ rcollect $] ;$
$\Gamma[\omega(1-\alpha), \Xi+\psi * \theta /(1-\alpha)] / /$ rCollect $] ;$
$\left(\zeta / / \mathrm{m}_{12 \rightarrow 1} / / \operatorname{tr}_{1}\right)=\left(5 / / \mathrm{m}_{21 \rightarrow 1} / / \operatorname{tr}_{1}\right)$

$c l_{2}$ ：ribbon

Halacheva

example
Weaknesses．－$m_{c}^{a b}$ and tr_{c} are non－linear．－The product ωA is always Laurent，but my current proof takes induction with expo－ nentially many conditions．－I still don＇t understand tr_{c} ，＂unita－ rity＂，the algebra for ribbon knots．Where does it come from？

Let $\mathcal{I}:=\langle 久-X\rangle$ ．Then $\mathcal{A}^{v}:=\Pi I^{n} / I^{n+1}=$＂universal $\mathcal{U}(D \mathfrak{g})^{\otimes S "}=$

Fine print：No sources no sinks，AS vertices，internally acyclic，deg＝（\＃vertices）$/ 2$ ．
Likely Theorem．［EK，En］There exists a homomorphic expan－ sion（universal finite type invariant）$Z: v T \rightarrow \mathcal{A}^{v}$ ．（issues suppressed） Too hard！Let＇s look for＂meta－monoid＂quotients．

Video and more at http：／／www．math．toronto．edu／～drorbn／Talks／LesDiablerets－1508／
momorphic universal finite type invariant Z^{w} of pure w-tangles. $z^{w}:=\log Z^{w}$ takes values in $F L(S)^{S} \times C W(S)$.
z is computable. z of the Borromean tangle, to degree $5[\mathrm{BN}]$:

Proposition [BN]. Modulo all relations that universally hold for the 2D non-Abelian Lie algebra and after some changes-ofvariable, z^{w} reduces to z_{0}. $[u, v]=b_{u} v-b_{v} u$ Back to v - the 2D "Jones Quotient".

Contains the Jones and Alexander polynomials,

References.
[ADO] Y. Akutsu, T. Deguchi, and T. Ohtsuki, Invariants of Colored Links, J. of Knot Theory and its Ramifications 1-2 (1992) 161-184.
[BN] D. Bar-Natan, Balloons and Hoops and their Universal Finite Type Invariant, BF Theory, and an Ultimate Alexander Invariant, $\omega \varepsilon \beta / \mathrm{KBH}$, arXiv:1308.1721.
[BND] D. Bar-Natan and Z. Dancso, Finite Type Invariants of W-Knotted Objects I-II, $\omega ๔ \beta / \mathrm{WKO} 1, \omega \varepsilon \beta / \mathrm{WKO} 2$, arXiv:1405.1956, arXiv:1405.1955.
[BNS] D. Bar-Natan and S. Selmani, Meta-Monoids, Meta-Bicrossed Products, and the Alexander Polynomial, J. of Knot Theory and its Ramifications 22-10 (2013), arXiv:1302.5689.
[CT] D. Cimasoni and V. Turaev, A Lagrangian Representation of Tangles, Topology 44 (2005) 747-767, arXiv:math.GT/0406269.
[En] B. Enriquez, A Cohomological Construction of Quantization Functors of Lie Bialgebras, Adv. in Math. 197-2 (2005) 430-479, arXiv:math/0212325.
[EK] P. Etingof and D. Kazhdan, Quantization of Lie Bialgebras, I, Selecta Mathematica 2 (1996) 1-41, arXiv:q-alg/9506005.
[GST] R. E. Gompf, M. Scharlemann, and A. Thompson, Fibered Knots and Potential Counterexamples to the Property 2 R and Slice-Ribbon Conjectures, Geom. and Top. 14 (2010) 2305-2347, arXiv:1103.1601.
[KLW] P. Kirk, C. Livingston, and Z. Wang, The Gassner Representation for String Links, Comm. Cont. Math. 3 (2001) 87-136, arXiv:math/9806035.
[LD] J. Y. Le Dimet, Enlacements d'Intervalles et Représentation de Gassner, Comment. Math. Helv. 67 (1992) 306-315.
Ne Help Needed!
injections) \rightarrow (sets) (think " $M(S)$ is quantum G^{S} ", for G a group) along with natural operations $*: M\left(S_{1}\right) \times M\left(S_{2}\right) \rightarrow M\left(S_{1} \sqcup S_{2}\right)$ whenever $S_{1} \cap S_{2}=\emptyset$ and $m_{c}^{a b}: M(S) \rightarrow M((S \backslash\{a, b\}) \sqcup\{c\})$ whenever $a \neq b \in S$ and $c \notin S \backslash\{a, b\}$, such that

$$
\text { meta-associativity: } \quad m_{a}^{a b} / / m_{a}^{a c}=m_{b}^{b c} / / m_{a}^{a b}
$$

and, with $\epsilon_{b}=M(S \hookrightarrow S \sqcup\{b\})$,

$$
\text { meta-locality: } \quad m_{c}^{a b} / / m_{f}^{d e}=m_{f}^{d e} / / m_{c}^{a b}
$$

$$
\text { meta-unit: } \quad \epsilon_{b} / / m_{a}^{a b}=I d=\epsilon_{b} / / m_{a}^{b a}
$$

${ }_{6}$ Claim. Pure virtual tangles $P T$ form a meta-monoid.
Theorem. $S \mapsto \Gamma_{0}(S)$ is a meta-monoid and $z_{0}: P T \rightarrow \Gamma_{0}$ is a morphism of meta-monoids.
Strong Conviction. There exists an extension of Γ_{0} to a bigger meta-monoid $\Gamma_{01}(S)=\Gamma_{0}(S) \times \Gamma_{1}(S)$, along with an extension of z_{0} to $z_{01}: P T \rightarrow \Gamma_{01}$, with

$$
\left.\Gamma_{1}(S)=V \oplus V^{\otimes 2} \oplus V^{\otimes 3} \oplus \mathcal{S}^{2}(V)^{\otimes 2} \quad \text { (with } V:=R_{S}\langle S\rangle\right)
$$

Furthermore, upon reducing to a single variable everything is polynomial size and polynomial time.
Furthermore, Γ_{01} is given using a "meta-2-cocycle $\rho_{c}^{a b}$ over Γ_{0} ": In addition to $m_{c}^{a b} \rightarrow m_{0 c}^{a b}$, there are R_{S}-linear $m_{1 c}^{a b}: \Gamma_{1}(S \sqcup$ $\{a, b\}) \rightarrow \Gamma_{1}(S \sqcup\{c\})$, a meta-right-action $\alpha^{a b}: \Gamma_{1}(S) \times \Gamma_{0}(S) \rightarrow$ $\Gamma_{1}(S) R_{S}$-linear in the first variable, and a first order differential operator (over $\left.R_{S}\right) \rho_{c}^{a b}: \Gamma_{0}(S \sqcup\{a, b\}) \rightarrow \Gamma_{1}(S \sqcup\{c\})$ such that

$$
\left(\zeta_{0}, \zeta_{1}\right) / / m_{c}^{a b}=\left(\zeta_{0} / / m_{0 c}^{a b},\left(\zeta_{1}, \zeta_{0}\right) / / \alpha^{a b} / / m_{1 c}^{a b}+\zeta_{0} / / \rho_{c}^{a b}\right)
$$

What's done? The braid part, with still-ugly formulas.
What's missing? A lot of concept- and detail-sensitive work towards $m_{1 c}^{a b}, \alpha^{a b}$, and $\rho_{c}^{a b}$. The "ribbon element".

A bit about ribbon knots. A "ribbon knot" is a knot that can be presented as the boundary of a disk that has "ribbon singularities", but no "clasp singularities". A "slice knot" is a knot in $S^{3}=\partial B^{4}$ which is the boundary of a non-singular disk in B^{4}. Every ribbon knots is clearly slice, yet,
Conjecture. Some slice knots are not ribbon.
Fox-Milnor. The Alexander polynomial of a ribbon knot is always of the form $A(t)=f(t) f(1 / t)$.
(also for slice)

[^4]
$$
P A^{\prime \prime}=P A^{2} / 1 c_{0}
$$
 and the rest is (hared) calculations, which lad to a simple rational function result.

So with $\underbrace{b_{i}:=\gamma^{\gamma^{i}}}_{0-\infty} \underbrace{c_{j}:=Q_{j} \quad f_{i}=0 \rightarrow O}_{1-c o}$,
$(P A V / 2 C O) / 2 D \subset$

$$
\begin{aligned}
& \hat{R}_{s} \oplus M_{s \times s}\left(\hat{R}_{s}\right) \oplus \hat{R}_{s} Q_{i} \oplus \delta \hat{R}_{s} \dot{\psi}_{K} \oplus \hat{R}_{S} Q_{i} \psi_{k}^{j} \otimes \delta \hat{R}_{s} \psi_{j}^{i} \psi_{l}^{k} \\
& =V_{S}+V_{S}^{\otimes 2}+V_{s}+V_{s}^{\otimes 2}+V_{s}^{\otimes 3}+\left(S^{2}\left(V_{S}\right)\right)^{\otimes 2}
\end{aligned}
$$

[The product law is awful, but experience shows that things simplify....]
stitching is clearly possible, but I still dort have explicit formulas.

Proposition The element $R_{i j}$ given below solves the YB equation
$R_{12} R_{13} R_{23}=R_{23} R_{13} R_{12}$
in $A^{2} / 2 c o / 2 D$!
$R_{j k}=e^{j-k} e^{\rho}$, with

$$
\begin{aligned}
\rho= & -\left.\phi_{2}\left(b_{j}\right)\right|_{\left.c \rightarrow\right|^{k}} ^{j} \\
& +\left.\left.\frac{\phi_{2}\left(b_{j}\right)}{b_{j}}\right|_{c \rightarrow 1} ^{j}\right|^{k} \\
& +\left.\left.\frac{\phi_{1}\left(b_{j}\right) \phi_{2}\left(b_{k}\right)}{b_{k} \phi_{1}\left(b_{k}\right)}\right|_{c \rightarrow 1} ^{j}\right|^{k}
\end{aligned}
$$

$-\frac{\phi_{2}\left(b_{j}\right)}{b_{j}^{2}} \delta \underbrace{j}$

$$
-\frac{\phi_{1}\left(b_{j}\right) \phi_{2}\left(b_{k}\right)}{b_{j} b_{k} \phi_{1}\left(b_{k}\right)} \delta{ }^{j} \longrightarrow 1^{k}
$$

Where $\phi_{1}(x)=e^{-x}-1$ and $\phi_{2}(x)=\frac{(x+2) e^{-x}-2+x}{2 x}$

Loading, initializing variables, setting default degree to 6 .
(The Mathematica packages FreeLie ‘ and AwCalculus ' are at $\omega \varepsilon \beta / \mathrm{WKO} 4$). path = "C:/drorbn/AcademicPensieve/";
SetDirectory [path <> "2015-08/LesDiablerets-1508"];
Get[path <> "Projects/WKO4/FreeLie.m"];
Get[path <> "Projects/WKO4/AwCalculus.m"];
x = LW@ "x"; y = LW@ "y"; u = LW@ "u";
\$SeriesShowDegree $=6$;

FreeLie` implements / extends
$\{*,+, * *, \$$ SeriesShowDegree, 〈〉, f, झ, ad, Ad, adSeries, AllCyclicWords, AllLyndonWords, AllWords, Arbitrator, ASeries, AW, b, BCH, BooleanSequence, BracketForm, BS, CC, Crop, Cw, CW, CWS, CWSeries, D, Deg, DegreeScale, DerivationSeries, div, DK, DKS, DKSeries, EulerE, Exp, Inverse, j, J, JA, LieDerivation, LieMorphism, LieSeries, LS, LW, LyndonFactorization, Morphism, New, RandomCWSeries, Randomizer, RandomLieSeries, RC, SeriesSolve, Support, t, tb, TopBracketForm, tr, UndeterminedCoefficients, α Map, $\Gamma, L, \Lambda, \sigma, \hbar, \leftharpoondown,-\}$.

Freelie` is in the public domain. Dror Bar-Natan is committed to support it within reason until July 15, 2022. This is version 150814.

AwCalculus` implements / extends
$\{*, * *, \equiv, \mathrm{dA}, \mathrm{dc}, \mathrm{deg}, \mathrm{dm}, \mathrm{dS}, \mathrm{d} \Delta, \mathrm{d} \eta, \mathrm{d} \sigma, \mathrm{El}, \mathrm{ES}, \mathrm{hA}, \mathrm{hm}, \mathrm{hS}, \mathrm{h} \Delta, \mathrm{h} \eta$,
$h \sigma$, RandomElSeries, RandomEsSeries, $t A, t h a, t m, t S, t \Delta, t \eta, t \sigma, \Gamma, \Lambda\}$.
AwCalculus is in the public domain. Dror Bar-Natan is committed to support it within reason until July 15, 2022. This is version 150814.

BCH[x, y] (* Can raise degree to 22 *)
LS $\left[\bar{x}+\bar{y}, \frac{\overline{x y}}{2}, \frac{1}{12} \overline{x \overline{x y}}+\frac{1}{12} \overline{\overline{x y} y}, \frac{1}{24} \overline{x \overline{x y} y}\right.$,
$-\frac{1}{720} \overline{x \overline{x \overline{x Y}}}+\frac{1}{180} \overline{x \overline{x Y y}}+\frac{1}{180} \overline{x \overline{\overline{X Y} y}}+\frac{1}{120} \overline{\overline{x y} \overline{X Y Y}}+$

$\left.\frac{1}{240} \overline{x \overline{x y} \overline{x y}}+\frac{1}{720} \overline{x \overline{\overline{x y y}} \overline{x y}}-\overline{\frac{x \overline{\overline{\overline{x y y} y}}}{1440}}, \ldots\right]$
KV Direct.
$\{F=\operatorname{LS}[\{x, y\}, F s], G=\operatorname{LS}[\{x, y\}, G s]\} ; \operatorname{Fs}[" y "]=1 / 2$;
SeriesSolve $[\{F, G\}$,
$\hbar^{-1}(L S[x+y]-B C H[y, x] \equiv F-G-A d[-x][F]+A d[y][G]) \bigwedge$
$\operatorname{div}_{\mathrm{x}}[F]+\operatorname{div}_{\mathrm{y}}[\mathrm{G}] \equiv$
$\frac{1}{2} \operatorname{tr}_{u}\left[\right.$ adSeries $\left[\frac{a d}{e^{\text {ad }}-1}, x\right][u]+\operatorname{adSeries}\left[\frac{a d}{e^{\text {ad }}-1}, y\right][u]-$ adSeries $\left.\left.\left[\frac{a d}{e^{a d}-1}, \mathrm{BCH}[x, y]\right][u]\right]\right]$;
$\{F, G\}$ (* Can raise degree to 13 *)
$\left\{\operatorname{LS}\left[\frac{7}{2}, \frac{\overline{x y}}{6}, \frac{1}{24} \overline{\mathrm{xy} y},-\frac{1}{180} \overline{\overline{x \times \overline{x y}}}+\frac{1}{80} \overline{\overline{x \overline{x Y}}}+\frac{1}{360} \overline{\overline{\mathrm{XY} y} y}\right.\right.$,

 $\left.\frac{\overline{x \overline{x y} \overline{x y}}}{3360}+\frac{\overline{x / \overline{\overline{x y} y} y}}{6720}+\frac{\overline{\overline{x y} \overline{\overline{x y} y}}}{1260}+\frac{\overline{\overline{x / \overline{x y}} \overline{x y}}}{1680}-\frac{\overline{\overline{\overline{x y} y} y}}{10080}, \ldots\right]$, $L S\left[0, \frac{\overline{x y}}{12}, \frac{1}{24} \overline{\mathrm{xY} y},-\frac{1}{360} \overline{\mathrm{x} \overline{\mathrm{xy}}}+\frac{1}{120} \overline{\mathrm{xYy}}+\frac{1}{180} \overline{\overline{\mathrm{xY} y} y}\right.$, $-\frac{1}{720} \overline{x \overline{x \overline{x y}}}+\frac{1}{240} \overline{x \overline{x y y} y}+\frac{1}{240} \overline{\overline{x y} \overline{x y}}+\frac{1}{720} \overline{\overline{x y y}} \overline{x y}-$

Meaningless calculations.

```
{b[F,G], tr m}[F]
```

$\left\{\operatorname{LS}\left[0,0,-\frac{1}{24} \overline{\overline{x Y Y}},-\frac{1}{48} \overline{\overline{x Y Y} y}, \frac{1}{720} \overline{x \overline{x Y y}}-\frac{1}{240} \sqrt{\overline{x \overline{x Y Y}}}-\right.\right.$
$\frac{\overline{x y} \overline{\overline{x y}}}{1440}-\frac{1}{720} \overline{\overline{x \overline{x y}} \overline{x y}}-\frac{1}{360} \overline{\overline{\mathrm{Xy} y} y}, \overline{\frac{x \overline{\overline{x y y}}}{1440}}-$
$\left.\frac{1}{480} \overline{x \overline{\overline{x Y y} y}}-\frac{1}{288} \overline{\overline{x y} \overline{\overline{x Y y} y}}-\frac{7 \overline{\overline{x_{\overline{x y}} \overline{x y}}} \frac{\sqrt{\overline{\overline{x y y} y}}}{2880}}{2880}, \ldots\right]$,
CWS $\left[-\frac{\bar{Y}}{6}, \frac{\overline{Y Y}}{24}, \frac{\overline{X X Y}}{180}+\frac{\overline{X Y Y}}{80}-\frac{\overline{Y Y Y}}{360},-\frac{\overline{X X Y Y}}{180}+\frac{\overline{X Y X Y}}{240}-\frac{\overline{X Y Y Y}}{240}-\frac{\overline{Y Y Y Y}}{1440}\right.$,

(Also implemented: ∂_{λ} and derivations in general, $\mathrm{tb}, e^{\partial_{\lambda}}$ and morphisms in general, div, j, Drinfel'd-Kohno, etc.)

The [BND] "vertex" equations.

$\alpha=\operatorname{LS}[\{\mathbf{x}, \mathrm{y}\}, \alpha \mathrm{s}] ; \beta=\operatorname{LS}[\{\mathbf{x}, \mathrm{y}\}, \beta \mathrm{s}] ;$
$\gamma=\operatorname{CWS}[\{x, y\}, \gamma s] ;$
$\mathrm{V}=\mathrm{Es}[\langle\mathrm{x} \rightarrow \alpha, \mathrm{y} \rightarrow \beta\rangle, \gamma]$;
$\kappa=\operatorname{CWS}[\{\mathbf{x}\}, \kappa s] ; \operatorname{Cap}=\operatorname{Es}[\langle\mathbf{x} \rightarrow \mathrm{LS}[0]\rangle, k] ;$
$\operatorname{Rs}\left[a_{-}, b_{-}\right]:=\operatorname{Es}[\langle\mathrm{a} \rightarrow \mathrm{LS}[0], \mathrm{b} \rightarrow$ LS[LW@a], $\mathrm{CWS}[0]] ;$
$\operatorname{R4Eqn}=\mathrm{V} * *(\operatorname{Rs}[\mathrm{x}, \mathrm{z}] / / \mathrm{d}[\mathrm{x}, \mathrm{x}, \mathrm{y}]) \equiv \operatorname{Rs}[\mathrm{y}, \mathrm{z}] * * \operatorname{Rs}[\mathrm{x}, \mathrm{z}] * * \mathrm{~V}$;
UnitarityEqn =
(V** (V // dA) $\equiv \operatorname{Es}[\langle x \rightarrow \mathrm{LS}[0], \mathrm{y} \rightarrow \mathrm{LS}[0]\rangle, \mathrm{CWS}[0]])$;
CapEqn $=((\mathrm{V} * *(\operatorname{Cap} / / \mathrm{d} \Delta[\mathbf{x}, \mathrm{x}, \mathrm{y}]) / / \mathrm{dc}[\mathrm{x}] / / \mathrm{dc}[\mathrm{y}]) \equiv$
(Cap (Cap // d $\sigma[\mathbf{x}, \mathrm{y}]) / / \mathrm{dc}[\mathrm{x}] / / \mathrm{dc}[\mathrm{y}])$);
$\beta s[" x "]=1 / 2 ; \beta s[" y "]=0$;
SeriesSolve $[\{\alpha, \beta, \gamma, \kappa\}$,
(\hbar^{-1} R4Eqn) \wedge UnitarityEqn \wedge CapEqn];
\{V, K\}
SeriesSolve::ArbitrarilySetting: In degree 1 arbitrarily setting $\{\kappa s[x] \rightarrow 0\}$.
SeriesSolve::ArbitrarilySetting: In degree 3 arbitrarily setting $\{\alpha s[x, y, y] \rightarrow 0\}$.
SeriesSolve::ArbitrarilySetting: In degree 5 arbitrarily setting $\{\alpha s[x, x, x, y, y] \rightarrow 0\}$.
General:.:stop:
Further output of SeriesSolve::ArbitrarilySetting will be suppressed during this calculation. >>

$$
\begin{aligned}
& \operatorname{CWS}\left[0,-\frac{\overline{X Y}}{48}, 0, \frac{\overline{X X X Y}}{2880}+\frac{\overline{X X Y Y}}{2880}+\frac{\overline{X Y X Y}}{5760}+\frac{\overline{X Y Y Y}}{2880}, 0\right. \text {, }
\end{aligned}
$$

Video and more at http://www.math.toronto.edu/~drorbn/Talks/LesDiablerets-1508/

From V to F to KV following [AT].
$\log F=\Lambda[V] \llbracket 1 \rrbracket / / \operatorname{do}[\{x, y\} \rightarrow\{y, x\}] ;$ $\log F / /$ EulerE // adSeries $\left[\frac{\mathrm{e}^{a d}-1}{a d}, \log F, \mathrm{tb}\right]$
$\left\langle\bar{x} \rightarrow \operatorname{LS}\left[\frac{\bar{y}}{2}, \frac{\overline{x y}}{6}, \frac{1}{24} \overline{\overline{x y} y},-\frac{1}{180} \overline{x \overline{x \overline{x y}}}+\frac{1}{80} \overline{x \overline{x y y}}+\frac{1}{360} \overline{\overline{x y y} y}\right.\right.$, $-\frac{1}{720} \overline{x \overline{x y y}}+\frac{1}{240} \overline{x \overline{\widetilde{x y y} y}}+\frac{1}{240} \overline{\overline{x y} \overline{x y y}}+\frac{1}{720} \overline{\overline{x y y}} \overline{x y}-$

 $\bar{y} \rightarrow \operatorname{LS}\left[0, \frac{\overline{x y}}{12}, \frac{1}{24} \overline{\overline{x y} y},-\frac{1}{360} \overline{x \overline{x y y}}+\frac{1}{120} \overline{x \overline{x y y}}+\frac{1}{180} \overline{\overline{x y y} y}\right.$, $-\frac{1}{720} \overline{x \overline{x Y y}}+\frac{1}{240} \overline{x \overline{\overline{x Y y} y}}+\frac{1}{240} \overline{\overline{x y} \overline{x y}}+\frac{1}{720} \overline{\overline{x y y}} \overline{x y}-$

$\Phi s[2,1]=\Phi s[3,1]=\Phi s[3,2]=0$; Solving for an associator Φ. $\Phi s[3,1,2]=1 / 24 ; \Phi=\operatorname{DKS}[3, \Phi s]$;
SeriesSolve[Φ,
$\left(\Phi^{\sigma[3,2,1]} \equiv-\Phi\right) \wedge$
$\left.\left(\Phi * * \Phi^{\sigma[1,23,4]} * * \Phi^{\sigma[2,3,4]} \equiv \Phi^{\sigma[12,3,4]} * * \Phi^{\sigma[1,2,34]}\right)\right]$;
玉 (* Can raise degree to 10 *)
SeriesSolve::ArbitrarilySetting: In degree 3 arbitrarily setting $\{\Phi s[3,1,1,2] \rightarrow 0\}$.
SeriesSolve::ArbitrarilySetting: In degree 5 arbitrarily setting $\{\Phi S[3,1,1,1,1,2] \rightarrow 0\}$.

The "buckle" Z_{B}, from Φ.
R = DKS [t[1, 2] /2]; $\mathrm{Z}_{\mathrm{B}}=(-\Phi)^{\sigma[13,2,4]} * * \Phi^{\sigma[1,3,2]} * * \mathrm{R}^{\sigma[2,3]} * *(-\Phi)^{\sigma[1,2,3]} * *$
$\Phi^{\sigma[12,3,4]} ;$
$Z_{B} @\{4\}$

```
DKS [\frac{\mp@subsup{t}{23}{}}{2}},-\frac{1}{12}\overline{\mp@subsup{t}{13}{}\mp@subsup{t}{23}{}}-\frac{1}{24}\overline{\mp@subsup{t}{14}{}\mp@subsup{t}{24}{}}+\frac{1}{24}\overline{\mp@subsup{t}{14}{}\mp@subsup{t}{34}{}}+\frac{1}{12}\overline{\mp@subsup{t}{24}{}\mp@subsup{t}{34}{}}
0, }\overline{\overline{\overline{\mp@subsup{t}{13}{}\mp@subsup{t}{23}{}}\mp@subsup{t}{23}{}\mp@subsup{t}{23}{}}
    \overline{\frac{\mp@subsup{t}{14}{}\mp@subsup{t}{34}{}\mp@subsup{t}{34}{}}{t}\mp@subsup{t}{24}{}}}-\frac{7\overline{\mp@subsup{t}{14}{}\mp@subsup{t}{34}{}\mp@subsup{t}{34}{}}\mp@subsup{t}{34}{}}{5760}-\overline{\overline{\mp@subsup{t}{24}{}\mp@subsup{t}{34}{}\mp@subsup{t}{34}{}}\mp@subsup{t}{34}{}
```



```
    \frac{1}{720}\overline{\mp@subsup{t}{13}{}\overline{\mp@subsup{t}{13}{}\overline{\mp@subsup{t}{13}{}\mp@subsup{t}{23}{}}}}-\frac{7\overline{\mp@subsup{t}{14}{}\overline{\mp@subsup{t}{14}{\primet24}\mp@subsup{t}{24}{}}}}{5760}}+\frac{7\overline{\mp@subsup{t}{14}{}\overline{\mp@subsup{t}{14}{\primet34}}\mp@subsup{t}{34}{}}}{5760}
    \overline{\frac{\mp@subsup{t}{14}{}\overline{\mp@subsup{t}{24}{}\mp@subsup{t}{34}{}}\mp@subsup{t}{34}{}}{5760}}+\overline{\frac{\mp@subsup{t}{14}{}\overline{\mp@subsup{t}{14}{}+\mp@subsup{t}{14}{}\mp@subsup{t}{24}{}}}{1440}}-\overline{\frac{\mp@subsup{t}{14}{}\overline{\mp@subsup{t}{14}{}\mp@subsup{t}{14}{}\mp@subsup{t}{34}{}}}{1440}}-\frac{1}{960}\overline{\mp@subsup{t}{14}{}\overline{\mp@subsup{t}{14}{}\mp@subsup{t}{24}{}\mp@subsup{t}{34}{}}}+
    \overline{\mp@subsup{t}{14}{}\overline{\mp@subsup{t}{24}{}+\overline{\mp@subsup{t}{24}{\primet}}}}5\mp@code{5760}}-\frac{1}{960}\overline{\mp@subsup{t}{24}{}\overline{\mp@subsup{t}{24}{}\mp@subsup{t}{34}{}\mp@subsup{t}{34}{}}}-\overline{\frac{\mp@subsup{t}{24}{}\overline{\mp@subsup{t}{24}{}+\mp@subsup{t}{24}{}\mp@subsup{t}{34}{}}}{5760}},\ldots.
```

V from Z_{B}, following [AET, BND].
(El[$\left.\mathrm{Z}_{\mathrm{B}} / / \alpha \operatorname{Map}[1,2,3,4], \operatorname{CWS}[0]\right] / / \Gamma / / \mathrm{t} \eta^{1} / / \mathrm{t} \eta^{3} / /$ $\left.\mathrm{h} \eta^{2} / / \mathrm{h} \eta^{4} / / \mathrm{h} \sigma[\{3\} \rightarrow\{2\}] / / \mathrm{t} \sigma[\{2,4\} \rightarrow\{1,2\}]\right) \mathbb{L}$
11]

The Borromean tangle.
$\operatorname{Rs}\left[a_{-}, b_{-}\right]:=\operatorname{Es}[\langle\mathrm{a} \rightarrow \mathrm{LS}[0], \mathrm{b} \rightarrow \mathrm{LS}[L W @ a]\rangle, \operatorname{CWS}[0]] ;$
iRs[a_, b_] := Es[〈a \rightarrow LS[0], $b \rightarrow-L S[L W @ a]\rangle, C W S[0]] ;$ $\zeta=\operatorname{iRs}[r, 6] \operatorname{Rs}[2,4] \operatorname{iRs}[g, 9] \operatorname{Rs}[5,7] \operatorname{iRs}[b, 3] \operatorname{Rs}[8,1]$;

Do $[\zeta=\zeta / / \operatorname{dm}[r, k, r],\{k, 1,3\}] ;$ Do $[\zeta=\zeta / / \operatorname{dm}[g, k, g],\{k, 4,6\}] ;$ Do $[\zeta=\zeta / / \mathrm{dm}[\mathrm{b}, \mathrm{k}, \mathrm{b}]$, $\{\mathbf{k}, 7,9\}]$;
 $\left\{\zeta \llbracket 1 \rrbracket_{r} @\{5\}, \zeta \llbracket 2 \rrbracket @\{5\}\right\} / /$ Print

References.
[AT] A. Alekseev and C. Torossian, The Kashiwara-Vergne conjecture and Drinfeld's associators, Annals of Mathematics 175 (2012) 415463, arXiv:0802.4300.
[AET] A. Alekseev, B. Enriquez, and C. Torossian, Drinfeld's associators, braid groups and an explicit solution of the Kashiwara-Vergne equations, Publications Mathématiques de L'IHES, 112-1 (2010) 143-189, arXiv:0903.4067
[BND] D. Bar-Natan and Z. Dancso, Finite Type Invariants of W-Knotted Objects I-IV, $\omega \varepsilon \beta / \mathrm{WKO} 1, \omega \varepsilon \beta / \mathrm{WKO} 2$, $\omega \varepsilon \beta / \mathrm{WKO} 3$, $\omega \varepsilon \beta / \mathrm{WKO} 4, \quad$ and $\operatorname{arXiv}: 1405.1956$, arXiv:1405.1955, arXiv: not.yet $\times 2$.

Video and more at http://www.math.toronto.edu/~drorbn/Talks/LesDiablerets-1508/

Recall. $\mathcal{K}=\{$ knots $\}, \mathcal{A}:=\operatorname{gr\mathcal {A}}=\mathcal{D} /$ rels $=$

Seek $Z: \mathcal{K} \rightarrow \hat{\mathcal{A}}$ such that if K is n-singular, $Z(K)=D_{k}+\ldots$

Theorem. Given a parametrized knot γ in \mathbb{R}^{3}, up to renormalizing the "framing anomaly",

$$
Z(\gamma)=\sum_{D \in \mathcal{D}} \frac{C(D) D}{|\operatorname{Aut}(D)|} \int_{C_{D}\left(\mathbb{R}^{3}, \gamma\right)} \bigwedge_{e \in E(D)} \phi_{e}^{*} \omega \in \mathcal{A}
$$

is an expansion. Here \mathcal{D} is the set of all "Feynman diagrams", $E(D)$ is the set of internal edges (and chords) of $D, C_{D}\left(\mathbb{R}^{3}, \gamma\right)$ is the configuration space of placements of D on/around γ, $\phi: C_{D}\left(\mathbb{R}^{3}, \gamma\right) \rightarrow\left(S^{2}\right)^{E(D)}$ is the "direction of the edges" map, and ω is a volume form on S^{2}.
$\langle D, K\rangle_{\text {相 }}:=\binom{$ The signed Stonehenge }{ pairing of D and $K}:$

The
Gaussian linking number

The generating function of all cosmic coincidences:

$$
Z(K):=\lim _{N \rightarrow \infty} \sum_{3 \text {-valent } D} \frac{\langle D, K\rangle_{\pi} D}{2^{c} c!\binom{N}{e}} \in \mathcal{A}
$$

Claim. It all comes from the Chern-Simons-Witten theory,

$$
\int_{A \in \Omega^{1}\left(\mathbb{R}^{3}, \mathfrak{g}\right)}^{\mathcal{D} A \operatorname{tr}_{R} h o l_{\gamma}(A) \exp \left[\frac{i k}{4 \pi} \int_{\mathbb{R}^{3}} \operatorname{tr}\left(A \wedge d A+\frac{2}{3} A \wedge A \wedge A\right)\right], ~ ;, ~}
$$

 where $\Omega^{1}\left(\mathbb{R}^{3}, \mathfrak{g}\right)$ is the space of all \mathfrak{g}-valued 1-forms on \mathbb{R}^{3} (really, connections), k is some large constant, R is some representation of g and tr_{R} is trace in R, and $\operatorname{hol}_{\gamma}(A)$ is the holonomy of A along γ.

Witten's Quantum field theory and the Jones polynomial, Axelrod-Singer's Chern-Simons perturbation theory I-II, D. Thurston's arXiv:math.QA/9901110, Polyak's arXiv:math.GT/0406251, and my videotaped 2014 class $\omega /$ AKT. Gaussian Integration. $\left(\lambda_{i j}\right)$ is a symmetic positive definite matrix and ($\lambda^{i j}$) is its inverse, The Fourier Transform.
and $\left(\lambda_{i j k}\right)$ are the coefficients of some cubic form. Denote by $\left(x^{i}\right)_{i=1}^{n}$ the coordinates of \mathbb{R}^{n}, let $\left(t_{i}\right)_{i=1}^{n}$ be a set of "dual" variables, and let ∂^{i} denote $\frac{\partial}{\partial t_{i}}$. Also let $C:=\frac{(2 \pi)^{n / 2}}{\operatorname{det}\left(\lambda_{i j}\right)}$. Then

$$
=C \sum_{\substack{\text { unmarked Feynman } \\ \text { diagrams } D}} \frac{\epsilon^{m(D)} \mathcal{E}(D)}{|\operatorname{Aut}(D)|}
$$

Claim. The number of pairings that produce a given unmarked Feynman diagram D is $\frac{6^{m} m!2^{l} l!}{|\operatorname{Aut}(D)|}$.

$$
\begin{aligned}
& \int_{\mathbb{R}^{n}} e^{-\frac{1}{2} \lambda_{i j} x^{i} x^{j}+\frac{\epsilon}{6} \lambda_{i j k} x^{i} x^{j} x^{k}}=\sum_{m \geq 0} \frac{\epsilon^{m}}{6^{m} m!} \int_{\mathbb{R}^{n}}\left(\lambda_{i j k} x^{i} x^{j} x^{k}\right)^{m} e^{-\frac{1}{2} \lambda_{i j} x^{i} x^{j}} \\
& =\left.\sum_{m \geq 0} \frac{C \epsilon^{m}}{6^{m} m!}\left(\lambda_{i j k} \partial^{i} \partial^{j} \partial^{k}\right)^{m} e^{\frac{1}{2} \lambda^{\alpha \beta \beta} t_{\alpha} t_{\beta}}\right|_{t_{\alpha}=0}=\sum_{\substack{m, l \geq 0 \\
3 m=2 l}} \frac{C \epsilon^{m}}{6^{m} m!2^{l} l!}\left(\lambda_{i j k} \partial^{i} \partial^{j} \partial^{k}\right)^{m}\left(\lambda^{\alpha \beta} t_{\alpha} t_{\beta}\right)^{l}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{\substack{m, l \geq 0 \\
3 m=2 l}} \frac{C \epsilon^{m}}{6^{m} m!2^{l} l!} \sum_{\substack{m \text {-vertex fully marked } \\
\text { Feynman diagrams } D}} \mathcal{E}(D)
\end{aligned}
$$

$(F: V \rightarrow \mathbb{C}) \Rightarrow\left(\tilde{f}: V^{*} \rightarrow \mathbb{C}\right)$
via $\tilde{F}(\varphi):=\int_{V} f(v) e^{-i\langle\varphi, v\rangle} d v$. Some facts:

- $\tilde{f}(0)=\int_{V} f(v) d v$.
- $\frac{\partial}{\partial \varphi_{i}} \tilde{f} \sim \widetilde{v^{i}} f$.
- $\left(\widetilde{e^{Q / 2}}\right) \sim e^{Q^{-1} / 2}$, where Q is quadratic, $Q(v)=\langle L v, v\rangle$ for $L: V \rightarrow V^{*}$, and $Q^{-1}(\varphi):=\left\langle\varphi, L^{-1} \varphi\right\rangle$. (This is the key point in the proof of the Fourier inversion formula!)
Examples.

Monsters left to Slay.

- Convergence.
- Proof of invariance.
- The framing anomaly.
- Universallity.
- d^{-1} doesn't really exist, FaddeevPopov, determinants, ghosts, Berezin integration.
- Assembly.

Proof of the Claim. The group $G_{m, l}:=\left[\left(S_{3}\right)^{m} \rtimes S_{m}\right] \times\left[\left(S_{2}\right)^{l} \rtimes S_{l}\right]$ acts on the set of pairings, the action is transitive on the set of pairings P that produce a given D, and the stabilizer of any given P is $\operatorname{Aut}(D)$.

Dror Bar-Natan: Talks: Louvain-1506:

Knotted Trivalent Graphs, Tetrahedra and Associators

Goal: Z: \{knots \}-> \{chord diagrams \}/4T so that

Modulo the relation(s): (\square) $A \rightarrow A$

Claim. With $\Phi:=Z(\Delta)$, the above relation becomes equivalent to the Drinfel'd's pentagon of the theory of quasi Hopf algebras.
Proof.

Need a new relation:

Easy, powerful operations:

Using operations, KTG is generated by ribbon twists and the tetrahedron :
Extend to Knotted Trivalent Graphs (KTG’s):

$=(\Phi \otimes 1)(1 \otimes \Delta \otimes 1)(\Phi)(1 \otimes \Phi) \in \mathcal{A}\left(\uparrow_{4}\right)$

Ribbon Knots and Algebraic Knot Theory.

Abstract. We will repeat the 3D story of the previous 3 talks The Finite Type Story. one dimension up, in 4D. Surprisingly, there's more room in 4D, and things get easier, at least when we restrict our attention to "w-knots", or to "simply-knotted 2 -knots". But even then there are intricacies, and we try to go beyond simply-knotted, we are completely confused.

$\underset{a b}{\neq} \rightarrow ン-X \sim \underset{a}{\sim} \quad \underset{a}{\mid}$

The Bracket-Rise Theorem. \mathcal{A}^{w} is isomorphic to

Corollaries. (1) Only wheels and isolated arrows persist:
$\mathcal{F}^{w}\left(\uparrow_{n}\right) \cong \mathcal{U}\left(F L(n)_{t b}^{n} \ltimes C W(n)\right) \quad$ and $\quad \zeta:=\log Z \in F L(n)^{n} \times C W(n)$
has completely explicit formulas using natural $F L / C W$ operations [BN]. (2) Related to f.d. Lie algebras!

Low Algebra. With $\left(x_{i}\right)$ and $\left(\varphi^{j}\right)$ dual bases of \mathfrak{g} and \mathfrak{g}^{*} and with $\left[x_{i}, x_{j}\right]=\sum b_{i j}^{k} x_{k}$, we have $\mathcal{A}^{w} \rightarrow \mathcal{U}$ via

The Double Inflation Procedure δ.

A Big Open Problem. δ maps w-knots onto simple 2-knots. To what extent is it a bijection? What other relations are required? In other words, find a simple description of simple 2-knots. Kawauchi [Ka] may already know the answer.
w-Jacobi diagrams and \mathcal{A}. $\mathcal{A}^{w}(Y \uparrow) \cong \mathcal{A}^{w}(\uparrow \uparrow \uparrow)$ is

Knot-Theoretic statement (simplified). There exists a homomorphic expansion Z for trivalent w-tangles. In particular, Z should respect $R 4$.
 Diagrammatic statement (simplified). Let $R=\exp \hat{A} \in \mathcal{A}^{w}(\uparrow \uparrow)$. There exist $V \in \mathcal{A}^{w}(\uparrow \uparrow)$ so that:

Algebraic statement (simplified). With $r \in \mathfrak{g}^{*} \otimes \mathfrak{g}$ the identity element and with $R=e^{r} \in \hat{\mathcal{U}}(I \mathfrak{g}) \otimes \hat{\mathcal{U}}(\mathfrak{g})$ there exist $\left.V \in \hat{\mathcal{U}}(I g)\right)^{\otimes 2}$ so that $V(\Delta \otimes$ 1) $(R)=R^{13} R^{23} V$ in $\hat{\mathcal{U}}(I \mathfrak{g})^{\otimes 2} \otimes \hat{\mathcal{U}}(\mathfrak{g})$

Unitary statement (simplified). There exists a unitary tangential differential operator V defined on $\operatorname{Fun}\left(\mathfrak{g}_{x} \times \mathfrak{g}_{y}\right)$ so that $V \widehat{e^{x+y}}=\widehat{e^{x}} \widehat{e^{y}} V$ (allowing $\hat{\mathcal{U}}(\mathrm{g})$-valued functions)
Group-Algebra statement (simplified). For every $\phi, \psi \in \operatorname{Fun}(\mathfrak{g})^{G}$ (with small support), the following holds in $\hat{\mathcal{U}}(\mathrm{g})$:

$$
\iint_{\mathfrak{g} \times \mathfrak{g}} \phi(x) \psi(y) e^{x+y}=\iint_{\mathfrak{g} \times \mathfrak{g}} \phi(x) \psi(y) e^{x} e^{y}
$$

(shhh, this is Duflo)
Unitary \Longrightarrow Group-Algebra. $\iint e^{x+y} \phi(x) \psi(y)=\left\langle 1, e^{x+y} \phi(x) \psi(y)\right\rangle=$ $\left\langle V 1, V e^{x+y} \phi(x) \psi(y)\right\rangle=\left\langle 1, e^{x} e^{y} V \phi(x) \psi(y)\right\rangle=\left\langle 1, e^{x} e^{y} \phi(x) \psi(y)\right\rangle=$ $\iint e^{x} e^{y} \phi(x) \psi(y)$.
Convolutions statement (Kashiwara-Vergne, simplified). Convolutions of invariant functions on a Lie group agree with convolutions of invariant functions on its Lie algebra. More accurately, let G be a finite dimensional Lie group and let g be its Lie algebra, and let $\Phi: \operatorname{Fun}(G) \rightarrow \operatorname{Fun}(g)$ be given by $\Phi(f)(x):=f(\exp x)$. Then if $f, g \in \operatorname{Fun}(G)$ are Ad-invariant and supported near the identity, then $\Phi(f) \star \Phi(g)=\Phi(f \star g)$.
Convolutions and Group Algebras (ignoring all Jacobians). If G is finite, A is an algebra, $\tau: G \rightarrow A$ is multiplicative then $(\operatorname{Fun}(G), \star) \rightarrow(A, \cdot)$ via $L: f \mapsto \sum f(a) \tau(a)$. For Lie (G, \mathfrak{g}),

with $L_{0} \psi=\int \psi(x) e^{x} d x \in \hat{\mathcal{S}}(\mathfrak{g})$ and $L_{1} \Phi^{-1} \psi=\int \psi(x) e^{x} \in \hat{\mathcal{U}}(\mathfrak{g})$. Given $\psi_{i} \in \operatorname{Fun}(\mathrm{~g})$ compare $\Phi^{-1}\left(\psi_{1}\right) \star \Phi^{-1}\left(\psi_{2}\right)$ and $\Phi^{-1}\left(\psi_{1} \star \psi_{2}\right)$ in $\hat{\mathcal{U}}(\mathfrak{g})$:
\star in $G: \iint \psi_{1}(x) \psi_{2}(y) e^{x} e^{y} \quad \star$ in $\mathfrak{g}: \iint \psi_{1}(x) \psi_{2}(y) e^{x+y}$
$u \leftrightarrow w$ The diagram on the right explains the relationship between associators and solutions of the Kashiwara-Vergne problem.

The Full
2-Knot Story

Question. Does it all extend to arbitrary 2-knots (not necessarily "simple")? To arbitrary codimension- 2 knots?
BF Following [CR]. $A \in \Omega^{1}\left(M=\mathbb{R}^{4}, \mathfrak{g}\right), B \in \Omega^{2}\left(M, \mathfrak{g}^{*}\right)$,

$$
S(A, B):=\int_{M}\left\langle B, F_{A}\right\rangle
$$

With $\kappa:\left(S=\mathbb{R}^{2}\right) \rightarrow M, \beta \in \Omega^{0}(S, \mathfrak{g}), \alpha \in \Omega^{1}\left(S, \mathfrak{g}^{*}\right)$, set
 $O(A, B, \kappa):=\int \mathcal{D} \beta \mathcal{D} \alpha \exp \left(\frac{i}{\hbar} \int_{S}\left\langle\beta, d_{\kappa^{*} A} \alpha+\kappa^{*} B\right\rangle\right)$. The $\overline{\mathrm{B}} \overline{\mathrm{F}}$ Feynman Rules. For an edge \bar{e}, let $\bar{\Phi}_{e}$ be its ${ }^{\prime}$ direction, in S^{3} or S^{1}. Let ω_{3} and ω_{1} be volume forms on S^{3} and S_{1}. Then
 Cattaneo (modulo some IHX-like relations).

See also [Wa]

Issues. - Signs don't quite work out, and BF seems to reproduce only "half" of the wheels invariant on simple 2-knots.

- There are many more configuration space integrals than BF Feynman diagrams and than just trees and wheels.
- I don't know how to define / analyze "finite type" for general 2-knots.
- I don't know how to reduce $Z_{B F}$ to combinatorics / algebra.

References.
AT] A. Alekseev and C. Torossian, The Kashiwara-Vergne conjecture and Drinfeld's associators, Annals of Mathematics 175 (2012) 415-463, arXiv:0802.4300.
BN] D. Bar-Natan, Balloons and Hoops and their Universal Finite Type Invariant, BF Theory, and an Ultimate Alexander Invariant, ω / KBH, arXiv:1308.1721.
[BND1] D. Bar-Natan and Z. Dancso, Finite Type Invariants of W-Knotted Objects I: W-Knots and the Alexander Polynomial, $\omega / \mathrm{WKO} 1$, arXiv:1405.1956.
[BND2] D. Bar-Natan and Z. Dancso, Finite Type Invariants of WKnotted Objects II: Tangles and the Kashiwara-Vergne Problem, $\omega / \mathrm{WKO} 2$, arXiv:1405.1955.
[CS] J. S. Carter and M. Saito, Knotted surfaces and their diagrams, Math. Surv. and Mono. 55, Amer. Math. Soc., Providence 1998.
[CR] A. S. Cattaneo and C. A. Rossi, Wilson Surfaces and Higher Dimensional Knot Invariants, Commun. in Math. Phys. 256-3 (2005) 513-537, arXiv:math-ph/0210037.
[KV] M. Kashiwara and M. Vergne, The Campbell-Hausdorff Formula and Invariant Hyperfunctions, Invent. Math. 47 (1978) 249-272.
[Ka] A. Kawauchi, A Chord Diagram of a Ribbon Surface-Link, http://www.sci.osaka-cu.ac.jp/~kawauchi/.
[Wa] T. Watanabe, Configuration Space Integrals for Long n-Knots, the Alexander Polynomial and Knot Space Cohomology, Alg. and Geom. Top. 7 (2007) 47-92, arXiv:math/0609742.

"God created the knots, all else in topology is the work of mortals."
Leopold Kronecker (modified)
www.katlas.org
The Knot 1 tha

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Louvain-1506/

Abstract. The commutator of two elements x and y in a group G is $x y x^{-1} y^{-1}$. That is, x followed by y followed by the inverse of x followed by the inverse of y. In my talk I will tell you how commutators are related to the following four riddles:

1. Can you send a secure message to a person you have never communicated with before (neither privately nor publicly), using a messenger you do not trust?
2. Can you hang a picture on a string on the wall using n nails, so that if you remove any one of them, the picture will fall?
3. Can you draw an n-component link (a knot made of n nonintersecting circles) so that if you remove any one of those n components, the remaining ($n-1$) will fall apart?
4. Can you solve the quintic in radicals? Is there a formula for the zeros of a degree 5 polynomial in terms of its coefficients, using only the operations on a scientific calculator?

Definition. The commutator of two elements x and y in a group G is $[x, y]:=x y x^{-1} y^{-1}$.
Example 1. In $S_{3},[(12),(23)]=(12)(23)(12)^{-1}(23)^{-1}=(123)$ and in general in $S_{\geq 3}$,

$$
[(i j),(j k)]=(i j k) .
$$

Example 2. In $S_{\geq 4}$,

$$
[(i j k),(j k l)]=(i j k)(j k l)(i j k)^{-1}(j k l)^{-1}=(i l)(j k) .
$$

Example 3. In $S_{\geq 5}$,
$[(i j k),(k l m)]=(i j k)(k l m)(i j k)^{-1}(k l m)^{-1}=(j k m)$.
Example 4. So, in fact, in S_{5}, (123) = $[(412),(253)]=[[(341),(152)],[(125),(543)]]=$ [[[(234), (451)], [(315), (542)]], [[(312), (245)], [(154), (423)]]] = [[[[(123), (354)], [(245), (531)]], [[(231), (145)], [(154), (432)]]], [[[(431), (152)], [(124), (435)]], [[(215), (534)], [(142), (253)]]]].

Solving the Quadratic, $a x^{2}+b x+c=0: \delta=\sqrt{\Delta} ; \Delta=b^{2}-4 a c$; $r=\frac{\delta-b}{2 a}$.
Solving the Cubic, $a x^{3}+b x^{2}+c x+d=0: \Delta=27 a^{2} d^{2}-18 a b c d+$ $4 a c^{3}+4 b^{3} d-b^{2} c^{2} ; \delta=\sqrt{\Delta} ; \Gamma=27 a^{2} d-9 a b c+3 \sqrt{3} a \delta+2 b^{3} ;$ $\gamma=\sqrt[3]{\frac{\Gamma}{2}} ; r=-\frac{\frac{b^{2}-3 a c}{\gamma}+b+\gamma}{3 a}$.
Solving the Quartic, $a x^{4}+b x^{3}+c x^{2}+d x+e=0: \Delta_{0}=$ $12 a e-3 b d+c^{2} ; \Delta_{1}=-72 a c e+27 a d^{2}+27 b^{2} e-9 b c d+2 c^{3}$; $\Delta_{2}=\frac{1}{27}\left(\Delta_{1}^{2}-4 \Delta_{0}^{3}\right) ; u=\frac{8 a c-3 b^{2}}{8 a^{2}} ; v=\frac{8 a^{2} d-4 a b c+b^{3}}{8 a^{3}} ; \delta_{2}=\sqrt{\Delta_{2}} ;$
$Q=\frac{1}{2}\left(3 \sqrt{3} \delta_{2}+\Delta_{1}\right) ; q=\sqrt[3]{Q} ; S=\frac{\frac{\Delta_{0}}{q}+q}{12 a}-\frac{u}{6} ; s=\sqrt{S}$; $\Gamma=-\frac{v}{s}-4 S-2 u ; \gamma=\sqrt{\Gamma} ; r=-\frac{b}{4 a}+\frac{\gamma}{2}+s$.

Theorem. The is no general formula, using only the basic arithmetic operations and taking roots, for the solution of the quintic equation $a x^{5}+b x^{4}+c x^{3}+d x^{2}+e x+f=0$.
Key Point. The "persistent root" of a closed path (path lift, in topological language) may not be closed, yet the persistent root of a commutators of closed paths is always closed.
Proof. Suppose there was a formula, and consider the corresponding "composition of machines" picture:

Now if $\gamma_{1}^{(1)}, \gamma_{2}^{(1)}, \ldots, \gamma_{16}^{(1)}$, are paths in X_{0} that induce permutations of the roots and we set $\gamma_{1}^{(2)}:=\left[\gamma_{1}^{(1)}, \gamma_{2}^{(1)}\right], \gamma_{2}^{(2)}:=\left[\gamma_{3}^{(1)}, \gamma_{4}^{(1)}\right], \ldots$, $\gamma_{8}^{(2)}:=\left[\gamma_{15}^{(1)}, \gamma_{16}^{(1)}\right], \gamma_{1}^{(3)}:=\left[\gamma_{1}^{(2)}, \gamma_{2}^{(2)}\right], \ldots, \gamma_{4}^{(3)}:=\left[\gamma_{7}^{(2)}, \gamma_{8}^{(2)}\right], \gamma_{1}^{(4)}:=\left[\gamma_{1}^{(3)}, \gamma_{2}^{(3)}\right], \gamma_{2}^{(4)}:=\left[\gamma_{3}^{(3)}, \gamma_{4}^{(3)}\right]$, and finally $\gamma^{(5)}:=\left[\gamma_{1}^{(4)}, \gamma_{2}^{(4)}\right]$ (all of those, commutators of "long paths"; I don't know the word "homotopy"), then $\gamma^{(5)} / / C / / P_{1} / / R_{1} / / \cdots / / R_{4}$ is a closed path. Indeed,

- In X_{0}, none of the paths is necessarily closed.
- After C, all of the paths are closed.
- After P_{1}, all of the paths are still closed.
- After R_{1}, the $\gamma^{(1)}$'s may open up, but the $\gamma^{(2)}$'s remain closed.
- At the end, after $R_{4}, \gamma^{(4)}$'s may open up, but $\gamma^{(5)}$ remains closed.

V.I. Arnold

But if the paths are chosen as in Example 4, $\gamma^{(5)} / / C / / P_{1} / / R_{1} / / \cdots / / R_{4}$ is not a closed path.

References. V.I. Arnold, 1960s, hard to locate.
V.B. Alekseev, Abel's Theorem in Problems and Solutions, Based on the Lecture of Professor V.I. Arnold, Kluwer 2004.
A. Khovanskii, Topological Galois Theory, Solvability and Unsolvability of Equations in Finite Terms, Springer 2014.
B. Katz, Short Proof of Abel's Theorem that 5th Degree Polynomial Equations Cannot be Solved, YouTube video,
 http://youtu.be/RhpVSV6iCko.

Video and more at http://www.math.toronto.edu/~drorbn/Talks/CMU-1504/ and at http://www.math.toronto.edu/~drorbn/Talks/Sydney-1708

Abstract．It is insufficiently well known that the good old Taylor expansion has a comple－ tely algebraic characterization，which generali－ zes to arbitrary groups（and even far beyond）． Thus one may ask：Does the braid group have a Taylor expansion？（Yes，using iterated inte－ grals and／or associators）．Do braids on a torus （＂elliptic braids＂）have Taylor expansions？（Yes，

When does a group have a Taylor expansion？回宸回 Pure Braids．Take $G=P B_{n}=\pi_{1}\left(C_{n}=\mathbb{C}^{n} \backslash\right.$ diags $)$ ．It is generated by the love－behind－the－bars braids $\sigma_{i j}$ ， modulo＂Reidemeister moves＂．I is generated by $\left\{\sigma_{i j}-1\right\}$ and \mathcal{A} by $\left\{t_{i j}\right\}$ ，the clas－ ses of the $\sigma_{i j}-1$ in $\mathcal{A}_{1}=I / I^{2}$ ． Reidemeister becomes $\left[t_{i j}+t_{i k}, t_{j k}\right]=0$ and $\left[t_{i j}, t_{k l}\right]=0$ ．
 using more sophisticated iterated integrals／associators）．Do vir tual braids have Taylor expansions？（No，yet for nearby objects the deep answer is Probably Yes）．Do groups of flying rings（braid groups one dimension up）have Taylor expansions？（Yes，easily， yet the link to TQFT is yet to be fully explored）．
Disclaimer．I＇m asked to talk in a meeting on＂iterated integrals＂， and that＇s my best．Many of you may think it all trivial．Sorry．
Expansions for Groups．Let G be a group， $\mathcal{K}=\mathbb{Q} G=$ $\left\{\sum a_{i} g_{i}: a_{i} \in \mathbb{Q}, g_{i} \in G\right\}$ its group－ring， $\mathcal{I}=\left\{\sum a_{i} g_{i}: \sum a_{i}=0\right\}$ its augmentation ideal．Let

$$
\mathcal{A}=\operatorname{gr} \mathcal{K}:=\widehat{\bigoplus}_{m \geq 0} I^{m} / I^{m+1}
$$

P．S．$\left(\mathcal{K} / I^{m+1}\right)^{*}$ is Vassiliev／finite－
Theorem．For $\gamma:[0,1] \rightarrow$ C_{n} ，with z_{i} its i th coordi－ nate，the iterated integral $Z(\gamma)=\sum_{m \geq 0} \prod_{\alpha=1}^{m} \frac{t_{i_{\alpha} j_{\alpha}}}{2 \pi i} d \log \left(z_{i_{\alpha}}-z_{j_{\alpha}}\right)$,

$$
0<t_{1}<\ldots<t_{m}<1
$$

Note that \mathcal{A} inherits a product from G ． Definition．A linear $Z: \mathcal{K} \rightarrow \mathcal{A}$ is an ＂expansion＂if for any $\gamma \in I^{m}, Z(\gamma)=$ $\left(0, \ldots, 0, \gamma / I^{m+1}, *, \ldots\right)$ ，a＂multiplicati－ ve expansion＂if in addition it preserves the product，and a＂Taylor expansion＂if
 it also preserves the co－product，induced from the diagonal map $G \rightarrow G \times G$ ．
Example．Let $\mathcal{K}=C^{\infty}\left(\mathbb{R}^{n}\right)$ and $\mathcal{I}=\{f: f(0)=0\}$ ．Then $I^{m}=\left\{f: f\right.$ vanishes like $\left.|x|^{m}\right\}$ so I^{m} / I^{m+1} degree m homoge－ neous polynomials and $\mathcal{A}=$ \｛power series $\}$ ．The Taylor series is the unique Taylor expansion！
Comment．Unlike lower central series constructions，this genera－ lizes effortlessly to arbitrary algebraic structures．

Elliptic Braids．$P B_{n}^{1}:=\pi_{1}\left(C_{n}^{1}\right)$ is generated by $\sigma_{i j}, X_{i}, Y_{j}$ ，wi－ th $P B_{n}$ relations and $\left(X_{i}, X_{j}\right)=1=\left(Y_{i}, Y_{j}\right),\left(X_{i}, Y_{j}\right)=\sigma_{i j}^{-1}$ ， $\left(X_{i} X_{j}, \sigma_{i j}\right)=1=\left(Y_{i} Y_{j}, \sigma_{i j}\right)$ ，and ΠX_{i} and ΠY_{j} are central．［Bez］ implies $\mathcal{A}\left(P B_{n}^{1}\right)=\left\langle x_{i}, y_{j}\right\rangle /\left(\left[x_{i}, x_{j}\right]=\left[y_{i}, y_{j}\right]=\left[x_{i}+x_{j},\left[x_{i}, y_{j}\right]\right]=\right.$ $\left.\left[y_{i}+y_{j},\left[x_{i}, y_{j}\right]\right]=\left[x_{i}, \sum y_{j}\right]=\left[y_{j}, \sum x_{i}\right]=0,\left[x_{i}, y_{j}\right]=\left[x_{j}, y_{i}\right]\right)$ ， and［CEE］construct a Taylor expansion using sophisticated ite－ rated integrals．［En2］relates this to Elliptic Associators．

Virtual Braids．$P v B_{n}$ is given by the＂braids for dummies＂presentation：
$\left\langle\sigma_{i j} \mid \sigma_{i j} \sigma_{i k} \sigma_{j k}=\sigma_{j k} \sigma_{i k} \sigma_{i j}, \sigma_{i j} \sigma_{k l}=\sigma_{k l} \sigma_{i j}\right\rangle$ （every quantum invariant extends to $P \vee B_{n}$ ！）．
By［Lee］， $\mathcal{A}\left(P v B_{n}\right)$ is
$\left\langle a_{i j} \mid\left[a_{i j}, a_{i k}\right]+\left[a_{i j}, a_{j k}\right]+\left[a_{i k}, a_{j k}\right]=0=\left[a_{i j}, a_{k l}\right]\right\rangle$
Theorem［Lee］．While quadratic，$P v B_{n}$ does not have a Taylor expansion．
Comment．By the tough theory of quantization of so－ lutions of the classical Young－Baxter equation［EK，Peter Lee En1］，$P T_{n}$ does have a Taylor expansion．But $P T_{n}$ is not a group．

［BP］B．Berceanu and S．Papadima，Universal Representations of Braid and Braid－Permutation Groups，J．of Knot Theory and its Ramifications 18－7 （2009）973－983，arXiv：0708．0634．
［Bez］R．Bezrukavnikov，Koszul DG－Algebras Arising from Configuration Spa－ ces，Geom．Func．Anal．4－2（1994）119－135．
［CEE］D．Calaque，B．Enriquez，and P．Etingof，Universal KZB Equations I： The Elliptic Case，Prog．in Math． 269 （2009）165－266，arXiv：math／0702670．
［CR］A．S．Cattaneo and C．A．Rossi，Wilson Surfaces and Higher Dimen－ sional Knot Invariants，Commun．in Math．Phys．256－3（2005）513－537， arXiv：math－ph／0210037．
［En1］B．Enriquez，A Cohomological Construction of Quantization Functors of Lie Bialgebras，Adv．in Math．197－2（2005）430－479，arXiv：math／0212325．
［En2］B．Enriquez，Elliptic Associators，Selecta Mathematica 20 （2014）491－ 584，arXiv：1003．1012．
［EK］P．Etingof and D．Kazhdan，Quantization of Lie Bialgebras，I，Selecta Mathematica 2 （1996）1－41，arXiv：q－alg／9506005．
［Lee］P．Lee，The Pure Virtual Braid Group Is Quadratic，Selecta Mathematica 19－2（2013）461－508，arXiv：1110．2356．

Abstract. I will describe a computable, non-commutative invariant of tangles with values in wheels, almost generalize it to some balloons, and then tell you why I care. Spoilers: tangles are you know what, wheels are linear combinations of cyclic words in some alphabet, balloons are 2 -knots, and one reason I care is because quantum field theory predicts more than I can actually get (but also less).
Why I like "non-commutative"? With $F A\left(x_{i}\right)$ the free associative non-commutative algebra,

$$
\operatorname{dim} \mathbb{Q}[x, y]_{d} \sim d \ll 2^{d} \sim \operatorname{dim} F A(x, y)_{d}
$$

Why I like "computable"?

- Because I'm weird.
- Note that π_{1} isn't computable.

Preliminaries from Algebra. $F L\left(x_{i}\right)$ denotes the free Lie algebra in $\left(x_{i}\right)$; $F L\left(x_{i}\right)=$ (binary trees with AS vertices and coloured leafs)/(IHX relations). There an obvious map $F A\left(F L\left(x_{i}\right)\right) \rightarrow F A\left(x_{i}\right)$ defined by $[a, b] \rightarrow a b-b a$, which in itself, is IHX.

$C W\left(x_{i}\right)$ denotes the vector space of cyclic words in $\left(x_{i}\right): C W\left(x_{i}\right)=$ $F A\left(x_{i}\right) /\left(x_{i} w=w x_{i}\right)$. There an obvious map $C W\left(F L\left(x_{i}\right)\right) \rightarrow$ $C W\left(x_{i}\right)$. In fact, connected uni-trivalent 2-in-1-out graphs with univalents with colours in $\{1, \ldots, n\}$, modulo AS and IHX, is precisely $C W\left(x_{i}\right)$:

Most important. $e^{x}=\sum \frac{x^{d}}{d!}$ and $e^{x+y}=e^{x} e^{y}$.
Preliminaries from Knot Theory.

Theorem. ω, the connected part of the procedure below, is an invariant of S-component tangles with values in $C W(S)$:

 ω is practically computable! For the Borromean tangle, to degree 5, the result is:

Proof of Invariance.

Indeed,

(thanks, Ester Dalvit)

- ω is really the second part of a (trees,wheels)-valued Further invariant $\zeta=(\lambda, \omega)$. The tree part λ is just a repa- Facts ckaging of the Milnor μ-invariants.
- On u-tangles, ζ is equivalent to the trees\&wheels part of the Kontsevich integral, except it is computable and is defined with no need for a choice of parenthesization.
- On long/round u-knots, ω is equivalent to the Alexander polynomial.
- The multivariable Alexander polynomial (and Levine's factorization thereof [Le]) is contained in the Abelianization of
ζ [BNS].
- ω vanishes on braids.
- Related to / extends Farber's [Fa]?
- Should be summed and categorified.

Does ω extend
to balloons?

- Extends to v and descends to w : meaning, ζ satisfies ω also satisfies so ω 's "true domain" is

- Agrees with BN-Dancso [BND1, BND2] and with [BN].
- ζ, ω are universal finite type invariants.
- Using \nless : $v \mathcal{K}_{n} \rightarrow w \mathcal{K}_{n+1}$, defines a strong invariant of $v-$ tangles / long v-knots.
(K K in $\mathrm{ET}_{\mathrm{E}} \mathrm{X}: \omega \in \beta /$ zhe)

A Big Open Problem. δ maps w-knots onto simple 2-knots. To what extent is it a bijection? What other relations are required? In other words, find a simple description of simple 2-knots.

Question. Does it all extend to arbitrary 2-knots (not necessarily "simple")? To arbitrary codimension- 2 knots? BF Following [CR]. $A \in \Omega^{1}\left(M=\mathbb{R}^{4}, \mathfrak{g}\right), B \in \Omega^{2}\left(M, \mathfrak{g}^{*}\right)$,

$$
S(A, B):=\int_{M}\left\langle B, F_{A}\right\rangle
$$

With $\kappa:\left(S=\mathbb{R}^{2}\right) \rightarrow M, \beta \in \Omega^{0}(S, \mathfrak{g}), \alpha \in \Omega^{1}\left(S, \mathfrak{g}^{*}\right)$, set $O(A, B, \kappa):=\int \mathcal{D} \beta \mathcal{D} \alpha \exp \left(\frac{i}{\hbar} \int_{S}\left\langle\beta, d_{\kappa^{*} A} \alpha+\kappa^{*} B\right\rangle\right)$. The BF Feynman Rules. For an edge e, let Φ_{e} be its direction, in S^{3} or S^{1}. Let ω_{3} and ω_{1} be volume forms on S^{3} and S_{1}. Then

Cattaneo
 (modulo some IHX-like relations).

See also [Wa]

Issues. - Signs don't quite work out, and BF seems to reproduce only "half" of the wheels invariant on simple 2-knots.

- There are many more configuration space integrals than BF Feynman diagrams and than just trees and wheels.
- I don't know how to define / analyze "finite type" for general 2-knots.
- I don't know how to reduce $Z_{B F}$ to combinatorics / algebra.

References.
[BN] D. Bar-Natan, Balloons and Hoops and their Universal Finite Type Invariant, BF Theory, and an Ultimate Alexander Invariant, $\omega \varepsilon \beta / \mathrm{KBH}$, arXiv:1308.1721.
[BND1] D. Bar-Natan and Z. Dancso, Finite Type Invariants of WKnotted Objects I: W-Knots and the Alexander Polynomial, $\omega \varepsilon \beta / \mathrm{WKO1}$, arXiv:1405.1956.
[BND2] D. Bar-Natan and Z. Dancso, Finite Type Invariants of W-Knotted Objects II: Tangles and the Kashiwara-Vergne Problem, $\omega \approx \beta / \mathrm{WKO} 2$, arXiv:1405.1955.
[BNS] D. Bar-Natan and S. Selmani, Meta-Monoids, Meta-Bicrossed Products, and the Alexander Polynomial, J. of Knot Theory and its Ramifications 22-10 (2013), arXiv:1302.5689.
[CS] J. S. Carter and M. Saito, Knotted surfaces and their diagrams, Math. Surv. and Mono. 55, Amer. Math. Soc., Providence 1998.
[CR] A. S. Cattaneo and C. A. Rossi, Wilson Surfaces and Higher Dimensional Knot Invariants, Commun. in Math. Phys. 256-3 (2005) 513-537, arXiv:math-ph/0210037.
[Fa] M. Farber, Noncommutative Rational Functions and Boundary Links, Math. Ann. 293 (1992) 543-568.
[Le] J. Levine, A Factorization of the Conway Polynomial, Comment. Math. Helv. 74 (1999) 27-53, arXiv:q-alg/9711007.
[Wa] T. Watanabe, Configuration Space Integrals for Long n-Knots, the Alexander Polynomial and Knot Space Cohomology, Alg. and Geom. Top. 7 (2007) 47-92, arXiv:math/0609742.
"God created the knots, all else in topology is the work of mortals."
Leopold Kronecker (modified)

Abstract. I will describe my former student's Jonathan Zung work on finite type invariants of "doodles", plane curves modulo the second Reidemeister move but not modulo the third. We use a definition of "finite type" different from Arnold's
 and more along the lines of Goussarov's "Interdependent Modifications", and come to a conjectural combinatorial description of the set of all such invariants. We then describe how to construct many such invariants (though perhaps not all) using a certain class of 2-dimensional "configuration space integrals".

An unfinished project!

Prior Art. Arnold [Ar] first studied doodles within his study of plane curves and the "strangeness" St invariant. Vassiliev [Va1, Va2] defined finite type invariants in a differ- Merkov and Vassiliev ent way, and Merkov [Me] proved that they separate doodles.

Def. V is of type n if it vanishes on $\mathcal{K}_{n+1} . \quad\left(\mathcal{K}_{0} / \mathcal{K}_{n+1}\right)^{\star} \leadsto \mathcal{K}_{n} / \mathcal{K}_{n+1}$ Knots in 3D.

2-Knots in 4D.

Goals. • Describe $\mathcal{A}_{n}:=\mathcal{K}_{n} / \mathcal{K}_{n+1}$ using diagrams/relations. \bullet Get many or all finite type invariants of doodles using configurations space integrals. • Do these come from a TQFT? • See if \mathcal{A}_{n} has a "Lie theoretic" (tensors/relations) meaning. - See if/how Arnold's St and the Merkov invariants integrate in.

Easy

Chord Diagrams and an Upper Bound on $\mathcal{K}_{n} / \mathcal{K}_{n+1}$
The Rayman Principle. $\bar{\prime} \overline{\mathcal{K}}_{n} / \overline{\mathcal{K}}_{n+1}$,

Rayman by Ubisoft

"joins are irrelevant"

The ' Subdivision Relations. $\overline{\text { In }} \overline{\mathcal{K}_{n}} \overline{\mathcal{K}}_{n} / \overline{\mathcal{K}}_{n+1}^{-}$,

Figure 3. A non-trivial 1-doodle and its arrow diagram

Feynman Diagrams and a Lower Bound on $\left(\mathcal{K}_{0} / \mathcal{K}_{n+1}\right)^{*}$.
Féynman Dià "skeleton line" at the bottom. A magenta "arrow diagram" (directed pairing of skeleton points) on top, with a magenta dot at the middle of each arrow. A green directed graph on top, with 2-in 1 -out antisymmetric green vertices, with arbitrary number of green edges starting at the magenta dots, and with some green edges terminating at distinct blue skeleton points. The degree is the total valency of the magenta dots.

)
The " "Partition Function" $\bar{Z} \bar{Z}$.

$$
K \mapsto Z(K):=\sum_{\substack{\text { revennan } \\ \text { diagrans }}} \sum_{C(D)} \Phi_{D}^{*}\left(\omega_{1}^{\wedge e(D)}\right) \in \mathcal{A}^{t}:=\langle D\rangle /(\partial \text {-relations }) .
$$

Theorem (90%). Z is an invariant of doodles.
∂-relations. STU, IHX, Foot Swap (FS), Arrow Exchange (AE), and Combinatorial R2 (CR2):

CR2:

(may be relaxed?)

$$
\overline{\omega_{1}}: \overline{v o l} \cdot\left(\overline{S^{1}} \overline{)}\right.
$$

Summary Diagram.
 that it is enough to restrict to the green-less part of \mathcal{A}^{t} - to "Gauss Diagram Formulas".

- We haven't clarified the relationship with Merkov's [Me].
- A few further configuration space integrals can be written beyond those that we have used. We don't know what to do with those, if anything.
- We don't know the relationship, if any, with algebra.
- We don't know the relationship, if any, with quantum field theory.
- We don't know how to do similar things with 2-knots.

References. The root, of course, is [Ar]. Further references on doodles include [Kh, FT, Me, Ta, Va1, Va2]. On Goussarov finite-type: [Go, BN].
[Ar] V.I. Arnold, Topological Invariants of Plane Curves and Caustics, American Mathematical Society, 1994.
[BN] D. Bar-Natan, Bracelets and the Goussarov filtration of the space of knots, Invariants of knots and 3-manifolds (Kyoto 2001), Geometry and Topology Monographs 4 1-12, arXiv:math.GT/0111267.
[FT] R. Fenn and P. Taylor, Introducing Doodles, in Topology of Low-Dimensional Manifolds, Proceedings of the Second Sussex Conference, 1977, Springer 1979.

[Go] M. Goussarov, Interdependent modifications of links and invariants of finite degree, Topology 37-3 (1998) 595-602.
[Kh] M. Khovanov, Doodle Groups, Trans. Amer. Math. Soc. 349-6 (1997) 2297-2315.
[Me] A.B. Merkov, Vassiliev Invariants Classify Plane Curves and Doodles, Sbornik: Mathematics 194-9 (2003) 1301.
[Ta] S. Tabachnikov, Invariants of Smooth Triple Point Free Plane Curves, Jour. of Knot Theory and its Ramifications 5-4 (1996) 531-552.
[Va1] V.A. Vassiliev, On Finite Order Invariants of Triple Point Free Plane Curves, 1999 preprint, arXiv:1407.7227.
[Va2] V.A. Vassiliev, Invariants of Ornaments, Adv. in Soviet Math. 21 (1994) 225-262.

Abstract. To break a week of deep thinking with a nice colourful light dessert, we will present the Kolmogorov-Arnold solution of Hilbert's 13th problem with lots of computer-generated rainbowpainted 3D pictures.
In short, Hilbert asked if a certain specific function of three variables can be written as a multiple (yet finite) composition of continuous functions of just two variables. Kolmogorov and Arnold showed him silly (ok, it took about 60 years, so it was a bit tricky) by showing that any continuous function f of any finite number of variables is a finite composition of continuous functions of a single variable and several instances of the binary function "+" (addition). For $f(x, y)=x y$, this may be $x y=\exp (\log x+\log y)$. For $f(x, y, z)=x^{y} / z$, this may be $\exp (\exp (\log y+\log \log x)+(-\log z))$. What might it be for (say) the real part of the Riemann zeta function?

$\frac{1}{3} \operatorname{Re}(\zeta(x+i y))$ on $[0,1] \times[13,17]$

Fix an irrational $\lambda>0$, say $\lambda=(\sqrt{5}-1) / 2$. All
functions are continuous.
Theorem. There exist five $\phi_{i}:[0,1] \rightarrow[0,1](1 \leq$ $i \leq 5)$ so that for every $f:[0,1] \times[0,1] \rightarrow \mathbb{R}$ there exists a $g:[0,1+\lambda] \rightarrow \mathbb{R}$ so that

$$
f(x, y)=\sum_{i=1}^{5} g\left(\phi_{i}(x)+\lambda \phi_{i}(y)\right)
$$

for every $x, y \in[0,1]$.
Step 1. If $\epsilon>0$ and $f:[0,1] \times[0,1] \rightarrow \mathbb{R}$, then there exists $\phi:[0,1] \rightarrow[0,1]$ and $g:[0,1+\lambda] \rightarrow \mathbb{R}$ so that $|f(x, y)-g(\phi(x)+\lambda \phi(y))|<\epsilon$ on at least 98% of the area of $[0,1] \times[0,1]$.

Dessert: Hilbert's 13th Problem, in Full Colour (Page 2)

Step 2. There exists $\phi:[0,1] \rightarrow[0,1]$ so that for every $\epsilon>0$ and every $f:[0,1] \times[0,1] \rightarrow \mathbb{R}$ there exists a $g:[0,1+\lambda] \rightarrow \mathbb{R}$ so that $|f(x, y)-g(\phi(x)+\lambda \phi(y))|<\epsilon$ on a set of area at least $1-\epsilon$ in $[0,1] \times[0,1]$.

Step 3. There exist $\phi_{i}:[0,1] \rightarrow[0,1](1 \leq i \leq 5)$ so that for every $\epsilon>0$ and every $f:[0,1] \times[0,1] \rightarrow \mathbb{R}$ there exists a $g:[0,1+\lambda] \rightarrow \mathbb{R}$ so that

$$
\left|f(x, y)-\sum_{i=1}^{5} g\left(\phi_{i}(x)+\lambda \phi_{i}(y)\right)\right|<\left(\frac{2}{3}+\epsilon\right)\|f\|_{\infty}
$$

for every $x, y \in[0,1]$.
The key. "Shift the chocolates"...

Step 4. We are done.
The key. Learn from the artillery!
Set $T g:=\sum_{i=1}^{5} g\left(\phi_{i}(x)+\lambda \phi_{i}(y)\right), f_{1}:=f, M:=\|f\|$, and iterate "shooting and adjusting". Find g_{1} with $\left\|g_{1}\right\| \leq M$ and $\left\|f_{2}:=f_{1}-T g_{1}\right\| \leq \frac{3}{4} M$. Find g_{2} with $\left\|g_{2}\right\| \leq \frac{3}{4} M$ and $\left\|f_{3}:=f_{2}-T g_{2}\right\| \leq\left(\frac{3}{4}\right)^{2} M$. Find g_{3} with $\left\|g_{3}\right\| \leq\left(\frac{3}{4}\right)^{2} M$ and $\left\|f_{4}:=f_{3}-T g_{3}\right\| \leq\left(\frac{3}{4}\right)^{3} M$. Continue to eternity. When done, set $g=\sum g_{k}$ and note that $f=T g$ as required.
Exercise 1. Do the m-dimensional case.
Exercise 2. Do \mathbb{R}^{m} instead of just I^{m}.

.. then iterate.
Propaganda. I love handouts! - I have nothing to hide and you can take what you want, forwards, backwards, here and at home. - What doesn't fit on one sheet can't be done in one hour. - It takes learning and many hours and a few pennies. The audience's worth it! - There's real math in the handout viewer!

(ㄱ) Dror Bar-Natan: Talks: Treehouse-1410:
The 17 Tiling Patterns: Gotta catch 'em all!

Video, handout, links at http://drorbn.net/Treehouse

Treehouse Talks, Friday October 17, 2014, Beeton Auditorium, Toronto Reference Library, 789 Yonge Street, 6:30PM

Abstract. My goal is to get you hooked, captured and unreleased until you find all 17 in real life, around you.
We all know know that the plane can be filled in different periodic manners: floor tiles are often square but sometimes hexagonal, bricks are often laid in an interlaced pattern, fabrics often carry interesting patterns. A little less known is that there are precisely 17 symmetry patterns for tiling the plane; not one more, not one less. It is even less known how easy these 17 are to identify in the patterns around you, how fun it is, how common some are, and how rare some others seem to be.

Gotta catch 'em all!

Reading. An excellent book on the subject is The Symmetries of Things by J. H. Conway, H. Burgiel, and C. Goodman-Strauss, CRC Press, 2008. Another nice text is Classical Tessellations and Three-Manifolds by J. M. Montesinos, Springer-Verlag, 1987.
Question. In what ways can you make $\$ 2$ change, using coins denominated $\frac{1}{2}, \frac{2}{3}, \frac{3}{4}$,
 $\frac{4}{5}, \frac{5}{6}$, etc.?
Answer. $2=\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=\frac{2}{3}+\frac{2}{3}+\frac{2}{3}=\frac{3}{4}+\frac{3}{4}+\frac{1}{2}=\frac{5}{6}+\frac{2}{3}+\frac{1}{2}$, and that's it.

Theorem. There are precisely 17 patterns with which to tile the plane, no more, no less. They are all made of combinations of the 10 basic features, $2,3,4,6, \not, \$, 4, \phi, \mathrm{M}$, and G, as follows:

| \checkmark | Dror's | Conway's | crystailo | \checkmark | Dror's | Conway's | crystalio
 -graphic |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 2222 | 2222 | p2 | | 33 | $3 * 3$ | p31m |
| | 333 | 333 | p3 | | 222 | 2*22 | cmm |
| | 442 | 442 | p4 | | 22M | 22* | pmg |
| | 632 | 632 | p6 | | MM | ** | pm |
| | 2222 | *2222 | pmm | | MG | $*_{0}$ | cm |
| | \$\$\$ | *333 | p3m1 | | GG | OO | pg |
| | 442 | *442 | p 4 m | | 22G | 220 | pgg |
| | \$\$2 | *632 | p6m | | \emptyset | 0 | p1 |
| | 42 | $4 * 2$ | p4g | | - Dror Ba | -Natan, Oc | tober 2014 |

Tilings worksheet. Classify the following pictures according to the following possibilities: $2222=2222,333=333,442=442$,
 $22 \mathrm{G}=22 \mathrm{o}$, and $\emptyset=0$ (the pictures come in \{context, pattern\} pairs).

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Treehouse-1410/

Dror Bar-Natan: Talks: ClassroomAdventures-1408:

The 17 Worlds of Planar Ants
$\omega:=$ http://www.math.toronto.edu/~drorbn/Talks/ClassroomAdventures-1408

got my first digital camera and set out to take pictures of my kids and of symmetric patterns in the plane $(\omega /$ Tilings). There are exactly 17 of those, no more, no less. It is an addicting challenge to walk around

Lou Kauffman's Tie

Goal. Get you hooked!

$\frac{T_{x}}{7_{x}}$
 Books.

 Things \leqslant Tessellations and Three
Manifolds N_{2}^{2}
 looking at buildings, brick walls, people's ties, fabrics, what's not, and to try figure out which of the 17 is each one.

- What would history look like if we were living on Venus? - What do the ants on Lou Kauffman's tie think?

The Renaissance Story

$\omega /$ Longtin

The Lake Merrit Story
The Venus Story

- J. H. Conway,
H. Burgiel, and C. Goodman-Strauss, The Symmetries of Things, CRC Press, 2008.
- J. M. Montesinos, Classical Tessellations and Three-Manifolds, Springer-Verlag, 1987.
 Claim. Exactly 10 "features" are possible.
Claim. Exactly 10 "features" are po
They are M, G, $2,3,4,6, \overline{2}, \overline{3}, \overline{4}$, and $\overline{6}$.

Theorem. There are exactly 17 "tilings" of the plane: $\emptyset=0, \mathrm{MM}=* *, \mathrm{MG}=* \circ, \mathrm{GG}=\circ$, $2222=$ $2222,333=333,442=442,632=632, \overline{2} \overline{2} \overline{2} \overline{2}=* 2222$, $\overline{3} \overline{3} \overline{3}=* 333, \overline{4} \overline{4} \overline{2}=* 442, \overline{6} \overline{3} \overline{2}=* 632,4 \overline{2}=4 * 2,3 \overline{3}=$ $3 * 3,2 \overline{2} \overline{2}=2 * 22,22 \mathrm{M}=22 *, 22 \mathrm{G}=22$ 。. 18 ??

The 230 Worlds of Spacial Monkeys (The 219 worlds of Monkeys that Can't Tell their Left from their Right) $\omega /$ Crys, $\omega /$ CFHT

Brian Sanderson's Pattern Recognition Algorithm

Is the maximum rotation order $1,2,3,4$ or $6 ?$ Is there a mirror (m)? Is there an indecomposable glide reflection (g)? Is there a rotation axis on a mirror? Is there a rotation axis not on a mirror?

The Racha Cafe Story

$\omega /$ Sanderson

4*2 p4g D4 $\overline{2}$
p4m D442

Note: Every pattern is identified according to three systems of notation, as in the example below:

442: The Conway-Thurston notation, as used in my tilings page.
p4: The International Union of Crystallography notation.
S442: The Montesinos notation, as in his book Classical Tesselations and Three Manifolds
scalar)-valued extension of the Alexander polynnomial to tangles, then say that everything extends to virtual tangles, then roughly to simply knotted balloons and hoops in 4D, then the target space extends to (free Lie algebras plus cyclic words), and the result is a universal finite type of the knotted objects in its domain. Taking a cue from the BF topological quantum field theory, everything should extend (with some modifications) to arbitrary codimension-2 knots in arbitrary dimension and in particular, to arbitrary 2-knots in 4D. But what is really going on is still a mystery.

Why Tangles?

- Finitely presented.
(meta-associativity: $m_{a}^{a b} / / m_{a}^{a c}=m_{b}^{b c} / / m_{a}^{a b}$)
- Divide and conquer proofs and computations.
- "Algebraic Knot Theory": If K is ribbon,
$Z(K) \in\left\{c l_{2}(Z): c l_{1}(Z)=1\right\}$.
(Genus and crossing number are also definable properties).

Theorem 1. \exists ! an invariant γ : \{pure framed S-component tangles $\} \rightarrow R \times M_{S \times S}(R)$, where $R=R_{S}=\mathbb{Z}\left(\left(T_{a}\right)_{a \in S}\right)$ is the ring of rational functions in S variables, intertwining

1. \(\left($$
\begin{array}{c|l|l}\omega_{1} & S_{1} \\
\hline S_{1} & A_{1}\end{array}
$$, \frac{\omega_{2}}{} S_{2} \begin{array}{l}S_{2}

A_{2}\end{array}\right) \xrightarrow{\sqcup}\)| $\omega_{1} \omega_{2}$ | S_{1} | S_{2} |
| :---: | :---: | :---: |
| S_{1} | A_{1} | 0 |
| S_{2} | 0 | A_{2} | ,

2. | ω | a | b | S |
| :---: | :---: | :---: | :---: |
| a | α | β | θ |
| b | γ | δ | ϵ |
| S | ϕ | ψ | Ξ |\(\xrightarrow[\mu:=1-\beta]{m_{c}^{a b}}\left(\begin{array}{c|ccc}\mu \omega \& c \& S

\hline c \& \gamma+\alpha \delta / \mu \& \epsilon+\delta \theta / \mu

S \& \phi+\alpha \psi / \mu \& \Xi+\psi \theta / \mu\end{array}\right)_{T_{a}, T_{b} \rightarrow T_{c}}\)

In Addition, • This is really "just" a stitching formula for Burau/Gassner [LD, KLW, CT].

- $L \mapsto \omega$ is Alexander, mod units.
- $L \mapsto(\omega, A) \mapsto \omega \operatorname{det}^{\prime}(A-I) /\left(1-T^{\prime}\right)$ is the MVA, mod units.
- The "fastest" Alexander algorithm.
- There are also formulas for strand deletion,
 reversal, and doubling.
- Every step along the computation is the invariant of something.
- Extends to and more naturally defined on v / w-tangles.
- Fits in one column, including propaganda \& implementation.

Implementation key idea:

$\gamma=\Gamma\left[\omega,\left\{t_{1}, t_{2}, t_{3}, t_{s}\right\} \cdot\left(\begin{array}{cccc}\alpha_{21} & \alpha_{22} & \alpha_{23} & \theta_{2} \\ \alpha_{31} & \alpha_{32} & \alpha_{33} & \theta_{3} \\ \phi_{1} & \phi_{2} & \phi_{3} & \Xi\end{array}\right) \cdot\left\{h_{1}, h_{2}, h_{3}, h_{s}\right\}\right] ;$
$\left(\gamma / / m_{12 \rightarrow 1} / / m_{13 \rightarrow 1}\right)=\left(\gamma / / m_{23 \rightarrow 2} / / m_{12 \rightarrow 1}\right) \quad \square$ True_ _ R3 \quad. 1 divide and conquer! $\gamma=\operatorname{Rm}_{12,1} \operatorname{Rm}_{27} \operatorname{Rm}_{83} \operatorname{Rm}_{4,11} \operatorname{Rp}_{16,5} \operatorname{Rp}_{6,13} \operatorname{Rp}_{14,9} \mathrm{Rp}_{10,15} ;$ $\begin{array}{lc}\mathrm{D} \circ\left[\gamma=\gamma / / \mathrm{m}_{1 \mathrm{k} \rightarrow 1},\right. & \{\mathrm{k}, 2,16\}] ; \\ \gamma & \square+++++\square\end{array}$
 Weaknesses, $\bullet m_{c}^{a b}$ is non-linear.

- The product ωA is always Laurent, but proving this takes induction with exponentially many conditions.

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Oberwolfach-1405/

If $\bar{X} \overline{\text { is }}$ a $\overline{\text { space }} \overline{-} \bar{\pi}_{1}(\bar{X})$ is a group, $\pi_{2}(X)$ is an Abelian group, and π_{1} acts on π_{2}.
Proposition. The generators generate.

$K / / t^{u x}$:

Definition. $l_{x u}$ is the linking number of hoop x with balloon u. For $x \in H, \sigma_{x}:=\prod_{u \in T} T_{u}^{l_{x u}} \in R=R_{T}=\mathbb{Z}\left(\left(T_{a}\right)_{a \in T}\right)$, the ring of rational functions in T variables.
Theorem 2 [BNS]. ヨ! an invariant $\beta: w \mathcal{K}^{b h}(H ; T) \rightarrow R \times$ $M_{T \times H}(R)$, intertwining

1. $\left(\begin{array}{c|c|c|c}\omega_{1} & H_{1} \\ \hline T_{1} & A_{1}\end{array}, \frac{\omega_{2}}{} \begin{array}{l}T_{2} \\ \hline T_{2}\end{array} A_{2}, ~ \sqcup ~\left[\begin{array}{c|cc}\omega_{1} \omega_{2} & H_{1} & H_{2} \\ \hline T_{1} & A_{1} & 0 \\ T_{2} & 0 & A_{2}\end{array}\right.\right.$,
2. | ω | H |
| :---: | :---: |
| u | α |
| | β |
| T | Ξ |\(\xrightarrow{t m_{w}^{u v}}\left(\begin{array}{c|c}\omega \& H

\hline w \& \alpha+\beta

T \& \Xi\end{array}\right)_{T_{u}, T_{v} \rightarrow T_{w}}\),

3. $\left.$| ω | x | y | H |
| :---: | :---: | :---: | :---: |
| T | α | β | Ξ |$\xrightarrow{h m_{z}^{x y}} \xrightarrow{\omega} \right\rvert\,$| $\omega+\sigma_{x} \beta$ | Ξ | |
| :---: | :---: | :---: |
| T | α | |
| | | |
4. $\left.$| ω | x | H |
| :---: | :---: | :---: |
| T | α | θ |
| T | ϕ | Ξ |\(\xrightarrow[v:=1+\alpha]{t h a^{u x}} \quad \begin{gathered}v \omega

u\end{gathered} \right\rvert\,\)| $\sigma_{x} \alpha / v$ | $\sigma_{x} \theta / v$ |
| :---: | :---: |,

and satisfying $\left(\epsilon_{x} ; \epsilon_{u} ; \rho_{u x}^{ \pm}\right) \xrightarrow{\beta}\left(\begin{array}{c|c}1 & x \\ \hline & \end{array} ; \frac{1}{u}\left|c ; \frac{1}{u}\right| \begin{array}{c|c} \pm \pm 1 \\ \hline \pm\end{array}\right)$. Proposition. If T is a u-tangle and $\beta(\delta T)=(\omega, A)$, then $\gamma(T)=(\omega, \sigma-A)$, where $\sigma=\operatorname{diag}\left(\sigma_{a}\right)_{a \in S}$. Under this, $m_{c}^{a b} \leftrightarrow$ $t h a^{a b} / / t m_{c}^{a b} / / h m_{c}^{a b}$.

References

[BN] D. Bar-Natan, Balloons and Hoops and their Universal Finite Type Invariant, BF Theory, and an Ultimate Alexander Invariant, $\omega \varepsilon \beta / \mathrm{KBH}$, arXiv:1308.1721.
[BND] D. Bar-Natan and Z. Dancso, Finite Type Invariants of W-Knotted Objects I-II, $\omega \varepsilon \beta / \mathrm{WKO} 1, \omega \varepsilon \beta / \mathrm{WKO} 2$, arXiv:1405.1956, arXiv:1405.1955.
[BNS] D. Bar-Natan and S. Selmani, Meta-Monoids, Meta-Bicrossed Products, and the Alexander Polynomial, J. of Knot Theory and its Ramifications 22-10 (2013), arXiv:1302.5689.
[CR] A. S. Cattaneo and C. A. Rossi, Wilson Surfaces and Higher Dimensional Knot Invariants, Commun. in Math. Phys. 256-3 (2005) 513-537, arXiv:math-ph/0210037.
[CT] D. Cimasoni and V. Turaev, A Lagrangian Representation of Tangles, Topology 44 (2005) 747-767, arXiv:math.GT/0406269.
[KLW] P. Kirk, C. Livingston, and Z. Wang, The Gassner Representation for String Links, Comm. Cont. Math. 3 (2001) 87-136, arXiv:math/9806035.
[LD] J. Y. Le Dimet, Enlacements d'Intervalles et Représentation de Gassner, Comment. Math. Helv. 67 (1992) 306-315.

Theorem 3 [BND, BN]. ヨ! a homomorphic expansion, aka a homomorphic universal finite type invariant Z of w-knotted balloons and hoops. $\zeta:=\log Z$ takes values in $F L(T)^{H} \times C W(T)$. ζ is computable! ζ of the Borromean tangle, to degree 5:

Proposition [BN]. Modulo all relations that universally hold for the 2D non-Abelian Lie algebra and after some changes-ofvariable, ζ reduces to β and the

A Big Question. Does it all extend to arbitrary 2-knots (not necessarily "simple")? To arbitrary codimension-2 knots?
BF Following [CR]. $A \in \Omega^{1}\left(M=\mathbb{R}^{4}, \mathfrak{g}\right), B \in \Omega^{2}\left(M, \mathfrak{g}^{*}\right)$,

$$
S(A, B):=\int_{M}\left\langle B, F_{A}\right\rangle
$$

With $\kappa:\left(S=\mathbb{R}^{2}\right) \rightarrow M, \beta \in \Omega^{0}(S, \mathfrak{g}), \alpha \in \Omega^{1}\left(S, \mathfrak{g}^{*}\right)$, set

$$
O(A, B, \kappa):=\int \mathcal{D} \beta \mathcal{D} \alpha \exp \left(\frac{i}{\hbar} \int_{S}\left\langle\beta, d_{\kappa^{*} A} \alpha+\kappa^{*} B\right\rangle\right)
$$

The BF Feynman Rules. For an edge e, let Φ_{e} be its direction, in S^{3} or S^{1}. Let ω_{3} and ω_{1} be volume forms on S^{3} and S_{1}. Then

(modulo some STU- and IHX-like relations).

Issues. - Signs don't quite work out, and BF seems to reproduce only "half" of the wheels invariant.

- There are many more configuration space integrals than BF Feynman diagrams and than just trees and wheels.
- I don't know how to define "finite type" for arbitrary 2-knots.

Gaussian Integration, Determinants, Feynman Diagrams

Gaussian Integration. $\left(\lambda_{i j}\right)$ is a symmetric positive definite matrix and $\left(\lambda^{i j}\right)$ is its inverse, and $\left(\lambda_{i j k}\right)$ are the coefficients of some cubic form. Denote by $\left(x^{i}\right)_{i=1}^{n}$ the coordinates of \mathbb{R}^{n}, let $\left(t_{i}\right)_{i=1}^{n}$ be a set of "dual" variables, and let ∂^{i} denote $\frac{\partial}{\partial t_{i}}$. Also let $C:=\frac{\left(\frac{2 \pi}{n}\right)^{n / 2}}{\operatorname{det}\left(\lambda_{i j}\right)}$. Then

$$
\begin{aligned}
& \int_{\mathbb{R}^{n}} e^{-\frac{1}{2} \lambda_{i j} j^{i} x^{j}+\frac{\delta}{6} \lambda_{i j k} \lambda^{i} x^{j} x^{k}}=\sum_{m \geq 0} \frac{\epsilon^{m}}{6^{m} m!} \int_{\mathbb{R}^{n}}\left(\lambda_{i j k} x^{i} x^{j} x^{k}\right)^{m} e^{-\frac{1}{2} \lambda_{i j} x^{i} x^{j}} \\
& =\left.\sum_{m \geq 0} \frac{C \epsilon^{m}}{6^{m} m!}\left(\lambda_{i j k} \partial^{i} \partial^{j} \partial^{k}\right)^{m} e^{\frac{1}{2} \lambda^{a \beta \beta} t_{a} t_{\beta}}\right|_{t_{a}=0}=\sum_{\substack{m, l \geq 0 \\
3 m=2 l}} \frac{C \epsilon^{m}}{6^{m} m!2^{l} l!}\left(\lambda_{i j k} \partial^{i} \partial^{j} \partial^{k}\right)^{m}\left(\lambda^{\alpha \beta} t_{\alpha} t_{\beta}\right)^{l} \\
& \overbrace{t_{\alpha_{1}} \quad t_{\beta_{1}}}^{\lambda^{\alpha_{1} \beta_{1}}} \\
& \overbrace{t_{\alpha_{2}} \quad t_{\beta_{2}}}^{\lambda^{\alpha_{2} \beta_{2}}} \\
& \overbrace{t_{\alpha_{3}} \quad t_{\beta_{3}}}^{\lambda^{\alpha_{3} \beta_{3}}} \\
& =\sum_{\substack{m, l \geq 0 \\
3 m=2 l}} \frac{C \epsilon^{m}}{6^{m} m!2^{l} l!} \\
& \underbrace{\partial^{i_{1}}\left\langle\partial^{j_{1}}\right.}_{\lambda_{i_{1} j_{1} k_{1}}}\} \partial^{k_{1}} \\
& =\sum_{\substack{m, L \geq 0 \\
3 m=2 l}} \frac{C \epsilon^{m}}{6^{m} m!2^{l} l!} \sum_{\substack{m \text {-vertex fully marked } \\
\text { Feynnman diagrams } D}} \mathcal{E}(D)
\end{aligned}
$$

$$
=C \sum_{\substack{\text { unmarked Feynman } \\ \text { diagrams } D}} \frac{\epsilon^{m(D)} \mathcal{E}(D)}{|\operatorname{Aut}(D)|} .
$$

Claim. The number of pairings that produce a given unmarked Feynman diagram D is $\frac{6^{n} m!!^{2}!!}{|\operatorname{Aut}(D)|}$.

Proof of the Claim. The group $G_{m, l}:=\left[\left(S_{3}\right)^{m} \rtimes S_{m}\right] \times\left[\left(S_{2}\right)^{l} \rtimes S_{l}\right]$ acts on the set of pairings, the action is transitive on the set of pairings P that produce a given D, and the stabilizer of any given P is $\operatorname{Aut}(D)$.

$$
(F: V \rightarrow \mathbb{C}) \Rightarrow\left(\tilde{f}: V^{*} \rightarrow \mathbb{C}\right)
$$

via $\tilde{F}(\varphi):=\int_{V} f(v) e^{-i\langle\varphi, v\rangle} d v$. Some facts:

- $\tilde{f}(0)=\int_{V} f(v) d v$.
- $\frac{\partial}{\partial \varphi_{i}} \tilde{f} \sim \widetilde{v^{i} f}$.
- $\left(\widetilde{e^{Q / 2}}\right) \sim e^{Q^{-1} / 2}$, where Q is quadratic, $Q(v)=\langle L v, v\rangle$ for $L: V \rightarrow V^{*}$, and $Q^{-1}(\varphi):=\left\langle\varphi, L^{-1} \varphi\right\rangle$. (This is the key point in the proof of the Fourier inversion formula!)
Examples.

$|\operatorname{Aut}(D)|=12$

$|\operatorname{Aut}(D)|=8$

Perturbing Determinants. If Q and P are matrices and Q is invertible,

$$
\begin{aligned}
& |Q|^{-1}|Q+\epsilon P|=\left|I+\epsilon Q^{-1} P\right| \\
& \quad=\sum_{k \geq 0} \epsilon^{k} \operatorname{tr}\left(\bigwedge^{k} Q^{-1} P\right) \\
& =\sum_{k \geq 0, \sigma \in S_{k}} \frac{\epsilon^{k}(-)^{\sigma}}{k!} \operatorname{tr}\left(\sigma\left(Q^{-1} P\right)^{\otimes k}\right)
\end{aligned}
$$

Determinants. Now suppose Q and $P_{i}(1 \leq i \leq n)$ are $d \times d$ The Berezin Integral (physics / math language, for-
matrices and Q is invertible. Then

$$
\begin{aligned}
& |Q|^{-1} I_{\epsilon, \lambda_{i j}, \lambda_{i j k}, Q, P_{i}}=|Q|^{-1} \int_{\mathbb{R}^{n}} e^{-\frac{1}{2} \lambda_{i j} j^{i} x^{j}+\frac{\xi}{6} \lambda_{i j} k^{i} x^{i} x^{k}} \operatorname{det}\left(Q+\epsilon x^{i} P_{i}\right) \\
& =\sum_{m, k \geq 0, \sigma \in S_{k}} \frac{C \epsilon^{m+k}(-)^{\sigma}}{6^{m} m!k!} \int_{\mathbb{R}^{n}}\left(\lambda_{i j k} x^{i} x^{j} x^{k}\right)^{m} \operatorname{tr}\left(\sigma\left(x^{i} Q^{-1} P_{i}\right)^{* k}\right) e^{-\frac{1}{2} \lambda_{i j} x^{i} x^{j}} \\
& =\sum_{\substack{\text { fully marked } \\
\text { Feynman diagrams }}} \frac{C \epsilon^{m+k}(-)^{\sigma}}{6^{m} m!k!} \mathcal{E} \\
& =\sum_{\text {Feynman diagrams }} C \epsilon^{m+k}(-)^{k}(-)^{l} \mathcal{E}
\end{aligned}
$$

where l is the number of purple ("Fermion") loops.
Ghosts. Or else, introduce "ghosts" \bar{c}_{a} and c^{b}, write

$$
I_{\epsilon, \lambda_{i j}, \lambda_{i j k}, Q, P_{i}}=\int_{\mathbb{R}^{n}} d x \int_{\overline{\mathbb{R}}^{d} \times \overline{\mathbb{R}}^{d}} e^{-\frac{-1}{2} \lambda_{i j} x^{2} x^{j}+\frac{\xi}{6} \lambda_{i j k} x^{x} x^{j} x^{k}+\bar{c}_{a}\left(Q_{b}^{a}+\epsilon x^{i} P_{i b}^{d}\right)^{b}}
$$

and use "ordinary" perturbation theory.
mulas from Wikipedia: Grassmann integral).
The Berezin Integral is linear on functions of anticommuting variables, and satisfies $\int \theta d \theta=1$, and $\int 1 d \theta=0$, so that $\int \frac{\partial f(\theta)}{\partial \theta} d \theta=0$.
 Berezin Let V be a vector space, $\theta \in V, d \theta \in V^{*}$ s.t. $\langle d \theta, \theta\rangle=1$. Then $f \mapsto$ $\int f d \theta$ is the interior multiplication map $\wedge V \rightarrow \wedge V: \int f d \theta:=$ $i_{d \theta}(f)\left(=\frac{\partial f}{\partial \theta}\right)$.
Multiple integration via "Fubini": $\int f_{1}\left(\theta_{1}\right) \cdots f_{n}\left(\theta_{n}\right) d \theta_{1} \ldots d \theta_{n}:=$ $\left(\int f_{1} d \theta_{1}\right) \cdots\left(\int f_{n} d \theta_{n}\right) . \int f d \theta_{1} \ldots d \theta_{n}:=f / / i_{d \theta_{1}} / / \cdots / / i_{d \theta_{n}}$.
Change of variables. If $\theta_{i}=\theta_{i}\left(\xi_{j}\right)$, both θ_{i} and ξ_{j} are odd, and $J_{i j}:=\partial \theta_{i} / \partial \xi_{j}$, then

$$
\int f\left(\theta_{i}\right) d \theta=\int f\left(\theta_{i}\left(\xi_{j}\right)\right) \operatorname{det}\left(J_{i j}\right)^{-1} d \xi
$$

Given vector spaces $V_{\theta_{i}}$ and $W_{\xi_{j}}, d \theta=\bigwedge d \theta_{i} \in \bigwedge^{\mathrm{top}}\left(V^{*}\right), d \xi=$ $\wedge d \xi_{i} \in \bigwedge^{\mathrm{top}}\left(W^{*}\right)$, and $T: V \rightarrow \bigwedge^{\text {odd }}(W)$. Then T induces a map $T_{*}: \wedge V \rightarrow \wedge W$ and then

$$
\int_{x} f d \theta=\int_{*}\left(T_{*} f\right) \operatorname{det}\left(\frac{\partial\left(T \theta_{i}\right)}{\partial \xi_{j}}\right)^{-1} d \xi
$$

Gaussian integration. For an even matrix A and odd vectors θ, η, $\int e^{\theta^{T} A \eta} d \theta d \eta=\operatorname{det}(A), \quad \int e^{\theta^{T} A \eta+\theta^{T} J+K^{T} \eta} d \theta d \eta=\operatorname{det}(A) e^{-K^{T} A^{-1} J}$.

Dror Bar-Natan: Academic Pensieve: 2014-04: BF2C:
Abstract. I will describe a semi-rigorous reduction of perturbative BF theory (Cattaneo-Rossi [CR]) to computable combinatorics, in the case of ribbon 2 -links. Also, I will explain how and why my approach may or may not work in the non-ribbon case. Weak this result is, and at least partially already known (Watanabe [Wa]). Yet in the ribbon case, the resulting invariant is a universal finite type invariant, a gadget that significantly generalizes and clarifies the Alexander polynomial and that is closely related to the Kashiwara-Vergne problem. I cannot rule out the possibility that the corresponding gadget in the non-ribbon case will be as interesting.
BF Following [CR]. $A \in \Omega^{1}\left(M=\mathbb{R}^{4}, \mathfrak{g}\right), B \in \Omega^{2}\left(M, \mathfrak{g}^{*}\right)$,

$$
S(A, B):=\int_{M}\left\langle B, F_{A}\right\rangle .
$$

With $\kappa:\left(S=\mathbb{R}^{2}\right) \rightarrow M, \beta \in \Omega^{0}(S, \mathfrak{g}), \alpha \in \Omega^{1}\left(S, \mathrm{~g}^{*}\right)$, set
The BF Feynman Rules. For an edge e, let Φ_{e} be its direction, in S^{3} or S^{1}. Let ω_{3} and ω_{1} be volume forms on S^{3} and S_{1}. Then for a 2-link

Cattaneo

Rossi

$$
\left(\kappa_{t}\right)_{t \in T}
$$

is an invariant in $C W(F L(T)) \rightarrow C W(T) / \sim$, "symmetrized cyclic

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Vienna-1402/

Dror Bar-Natan: Academic Pensieve: 2014-04: BF2C:
http://drorbn.net/AcademicPensieve/2014-04/BF2C
Theorem 1 (with Cattaneo, Dalvit (credit, no blame)). In the ribbon case, e^{ζ} can be computed as follows:

Theorem 2. Using Gauss diagrams to represent knots and T component pure tangles, the above formulas define an invariant in $C W(F L(T)) \rightarrow C W(T)$, "cyclic words in T ".

- Agrees with BN-Dancso [BND] and with [BN2]. • In-practice computable! - Vanishes on braids. • Extends to w. - Contains Alexander. • The "missing factor" in Levine's factorization [Le] (the rest of [Le] also fits, hence contains the MVA). • Related to / extends Farber's [Fa]? • Should be summed and categorified.

References.

[Ar] V. I. Arnold, Topological Invariants of Plane Curves and Caustics, University Lecture Series 5, American Mathematical Society 1994.
[BN1] D. Bar-Natan, Bracelets and the Goussarov filtration of the space of knots, Invariants of knots and 3-manifolds (Kyoto 2001), Geometry and Topology Monographs 4 1-12, arXiv:math.GT/0111267.
[BN2] D. Bar-Natan, Balloons and Hoops and their Universal Finite Type Invariant, BF Theory, and an Ultimate Alexander Invariant, http://www.math.toronto.edu/~drorbn/papers/KBH/, arXiv:1308.1721.
[BND] D. Bar-Natan and Z. Dancso, Finite Type Invariants of W Knotted Objects: From Alexander to Kashiwara and Vergne, http://www.math.toronto.edu/~drorbn/papers/WKO/.
[CKS] J. S. Carter, S. Kamada, and M. Saito, Diagrammatic Computations for Quandles and Cocycle Knot Invariants, Contemp. Math. 318 (2003) 51-74.
[CS] J. S. Carter and M. Saito, Knotted surfaces and their diagrams, Mathematical Surveys and Monographs 55, American Mathematical Society, Providence 1998.
[Da] E. Dalvit, http://science.unitn.it/~dalvit/.
[CR] A. S. Cattaneo and C. A. Rossi, Wilson Surfaces and Higher Dimensional Knot Invariants, Commun. in Math. Phys. 256-3 (2005) 513-537, arXiv:math-ph/0210037.
[Fa] M. Farber, Noncommutative Rational Functions and Boundary Links, Math. Ann. 293 (1992) 543-568.
[Le] J. Levine, A Factorization of the Conway Polynomial, Comment. Math. Helv. 74 (1999) 27-53, arXiv:q-alg/9711007.
[Ro] D. Roseman, Reidemeister-Type Moves for Surfaces in Four-Dimensional Space, Knot Theory, Banach Center Publications 42 (1998) 347-380.
[Wa] T. Watanabe, Configuration Space Integrals for Long n-Knots, the Alexander Polynomial and Knot Space Cohomology, Alg. and Geom. Top. 7 (2007) 47-92, arXiv:math/0609742.

Continuing Joost Slingerland. .

http://youtu.be/YCAQVIExVhge
http://youtu.be/mHyTOcfF99o

A Partial Reduction of BF Theory to Combinatorics, 2
 Sketch of Proof. In $4 D$ axial gauge, only "drop down" red propagators, hence in the ribbon
 case, no M-trivalent vertices. S integrals are ± 1 iff "ground pieces" run on nested curves as below, and exponentials arise when several propagators compete for the same double curve. And then the combinatorics is obvious...

Musings
Chern-Simons. When the domain of BF is restricted to ribbon knots, and the target of Chern-Simons is restricted to trees and wheels, they agree. Why?
Is this all? What about the \vee-invariant? (the "true" triple linking number)

Gnots. In 3D, a generic immersion of S^{1} is an embedding, a knot. In 4D, a generic immersion of a surface has finitely-many double points (a gnot?). Perhaps we should be studying these? Finite type. What are finite-type invariants for 2-knots? What would be "chord diagrams"?
Bubble------------
There's an alternative definition of finite type in 3D, due to Goussarov (see [BN1]). The obvious parallel in 4D involves "bubble wraps". Is it any good?
Shielded tangles. In 3 D , one can't zoom in and compute "the Chern-Simons invariant of a tangle". Yet there are well-defined invariants of "shielded tangles", and rules for their compositions What would the 4D analog be?

Will the relationship with the Kashiwara-Vergne problem [BND] necessarily arise here?
Plane curves. Shouldn't we understand integral / finite type invariants of plane curves, in the style of Arnold's J^{+}, J^{-}, and $S t$ [Ar], a bit better?

| | $a(*)$ | $a(\varkappa)$ | $a(\varkappa)$ | ∞ | \bigcirc | Q | Qe | eev $\cdot \cdots$ | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| St | 1 | 0 | 0 | 0 | 0 | 1 | 2 | 3 | \cdots |
| $\mathrm{~J}^{+}$ | 0 | 2 | 0 | 0 | 0 | -2 | -4 | -6 | \cdots |
| $\mathrm{~J}^{-}$ | 0 | 0 | -2 | -1 | 0 | -3 | -6 | -9 | \cdots |

"God created the knots, all else in topology is the work of mortals."

Leopold Kronecker (modified)
www.katlas.org

What happens to a quantum particle on a pendulum at $T=\frac{\pi}{2}$?

Abstract. This subject is the best one-hour introduction I know for the mathematical techniques that appear in quantum mechanics - in one short lecture we start with a meaningful question, visit Schrödinger's equation, operators and exponentiation of operators, Fourier analysis, path integrals, the least action principle, and Gaussian integration, and at the end we land with a meaningful and interesting answer.

Based a lecture given by the author in the "trivial notions" seminar in Harvard on April 29, 1989. This edition, January 10, 2014.

1. The Question

Let the complex valued function $\psi=\psi(t, x)$ be a solution of the Schrödinger equation
$\frac{\partial \psi}{\partial t}=-i\left(-\frac{1}{2} \Delta_{x}+\frac{1}{2} x^{2}\right) \psi \quad$ with $\left.\quad \psi\right|_{t=0}=\psi_{0}$.
What is $\left.\psi\right|_{t=T=\frac{\pi}{2}}$?
In fact, the major part of our discussion will work just as well for the general Schrödinger equation,

$$
\begin{gathered}
\frac{\partial \psi}{\partial t}=-i H \psi, \quad H=-\frac{1}{2} \Delta_{x}+V(x), \\
\left.\psi\right|_{t=0}=\psi_{0}, \quad \operatorname{arbitrary} T
\end{gathered}
$$

where,

- ψ is the "wave function", with $|\psi(t, x)|^{2}$ representing the probability of finding our particle at time t in position x.
- H is the "energy", or the "Hamiltonian".
- $-\frac{1}{2} \Delta_{x}$ is the "kinetic energy".
- $V(x)$ is the "potential energy at x ".

2. The Solution

The equation $\frac{\partial \psi}{\partial t}=-i H \psi$ with $\left.\psi\right|_{t=0}=\psi_{0}$ formally implies

$$
\psi(T, x)=\left(e^{-i T H} \psi_{0}\right)(x)=\left(e^{i \frac{T}{2} \Delta-i T V} \psi_{0}\right)(x) .
$$

By Lemma 3.1 with $n=10^{58}+17$ and setting $x_{n}=x$ we find that $\psi(T, x)$ is

$$
\left(e^{i \frac{T}{2 n} \Delta} e^{-i \frac{T}{n} V} e^{i \frac{T}{2 n} \Delta} e^{-i \frac{T}{n} V} \ldots e^{i \frac{T}{2 n} \Delta} e^{-i \frac{T}{n} V} \psi_{0}\right)\left(x_{n}\right)
$$

Now using Lemmas 3.2 and 3.3 we find that this is: (c denotes the ever-changing universal fixed numerical constant)

$$
\begin{aligned}
& c \int d x_{n-1} e^{\frac{i\left(x_{n}-x_{n-1}\right)^{2}}{2 T / n}} e^{-i \frac{T}{N} V\left(x_{n-1}\right)} \cdots \\
& \int d x_{1} e^{i \frac{\left(x_{2}-x_{1}\right)^{2}}{2 T / n}} e^{-i \frac{T}{N} V\left(x_{1}\right)} \\
& \quad \int d x_{0} e^{i \frac{\left(x_{1}-x_{0}\right)^{2}}{2 T / n}} e^{-i \frac{T}{N} V\left(x_{0}\right)} \psi_{0}\left(x_{0}\right) .
\end{aligned}
$$

Repackaging, we get

$$
\begin{aligned}
& c \int d x_{0} \ldots d x_{n-1} \\
& \exp \left(i \frac{T}{2 n} \sum_{k=1}^{n}\left(\frac{x_{k}-x_{k-1}}{T / n}\right)^{2}-i \frac{T}{n} \sum_{k=0}^{n-1} V\left(x_{k}\right)\right) \\
& \psi_{0}\left(x_{0}\right) .
\end{aligned}
$$

Now comes the novelty. keeping in mind the picture

and replacing Riemann sums by integrals, we can write

$$
\begin{aligned}
& \psi(T, x)=c \int d x_{0} \int_{W_{x_{0} x_{n}}} \mathcal{D} x \\
& \quad \exp \left(i \int_{0}^{T} d t\left(\frac{1}{2} \dot{x}^{2}(t)-V(x(t))\right)\right) \psi_{0}\left(x_{0}\right)
\end{aligned}
$$

where $W_{x_{0} x_{n}}$ denotes the space of paths that begin at x_{0} and end at x_{n},

$$
W_{x_{0} x_{n}}=\left\{x:[0, T] \rightarrow \mathbb{R}: x(0)=x_{0}, x(T)=x_{n}\right\},
$$

and $\mathcal{D} x$ is the formal "path integral measure".
This is a good time to introduce the "action" \mathcal{L} :

$$
\mathcal{L}(x):=\int_{0}^{T} d t\left(\frac{1}{2} \dot{x}^{2}(t)-V(x(t))\right)
$$

With this notation,

$$
\psi(T, x)=c \int d x_{0} \psi_{0}\left(x_{0}\right) \int_{W_{x_{0} x_{n}}} \mathcal{D} x e^{i \mathcal{L}(x)}
$$

Video and more at http://drorbn.net/?title=AKT-14 (Jan 10 and Jan 17 classes)

Łet x_{c} denote the path on which $\mathcal{L}(x)$ attains its minimum value, write $x=x_{c}+x_{q}$ with $x_{q} \in W_{00}$, and get

$$
\psi(T, x)=c \int d x_{0} \psi_{0}\left(x_{0}\right) \int_{W_{00}} \mathcal{D} x_{q} e^{i \mathcal{L}\left(x_{c}+x_{q}\right)} .
$$

In our particular case \mathcal{L} is quadratic in x, and therefore $\mathcal{L}\left(x_{c}+x_{q}\right)=\mathcal{L}\left(x_{c}\right)+\mathcal{L}\left(x_{q}\right)$ (this uses the fact that x_{c} is an extremal of \mathcal{L}, of course). Plugging this into what we already have, we get

$$
\begin{aligned}
\psi(T, x) & =c \int d x_{0} \psi_{0}\left(x_{0}\right) \int_{W_{00}} \mathcal{D} x_{q} e^{i \mathcal{L}\left(x_{c}\right)+i \mathcal{L}\left(x_{q}\right)} \\
& =c \int d x_{0} \psi_{0}\left(x_{0}\right) e^{i \mathcal{L}\left(x_{c}\right)} \int_{W_{00}} \mathcal{D} x_{q} e^{i \mathcal{L}\left(x_{q}\right)} .
\end{aligned}
$$

Now this is excellent news, because the remaining path integral over W_{00} does not depend on x_{0} or x_{n}, and hence it is a constant! Allowing c to change its value from line to line, we get

$$
\psi(T, x)=c \int d x_{0} \psi_{0}\left(x_{0}\right) e^{i \mathcal{L}\left(x_{c}\right)} .
$$

Lemma 3.4 now shows us that $x_{c}(t)=x_{0} \cos t+$ $x_{n} \sin t$. An easy explicit computation gives $\mathcal{L}\left(x_{c}\right)=$ $-x_{0} x_{n}$, and we arrive at our final result,

$$
\psi\left(\frac{\pi}{2}, x\right)=c \int d x_{0} \psi_{0}\left(x_{0}\right) e^{-i x_{0} x_{n}}
$$

Notice that this is precisely the formula for the Fourier transform of ψ_{0} ! That is, the answer to the question in the title of this document is "the particle gets Fourier transformed", whatever that may mean.

3. The Lemmas

Lemma 3.1. For any two matrices A and B,

$$
e^{A+B}=\lim _{n \rightarrow \infty}\left(e^{A / n} e^{B / n}\right)^{n} .
$$

Proof. (sketch) Using Taylor expansions, we see that $e^{\frac{A+B}{n}}$ and $e^{A / n} e^{B / n}$ differ by terms at most proportional to c / n^{2}. Raising to the nth power, the two sides differ by at most $O(1 / n)$, and thus

$$
e^{A+B}=\lim _{n \rightarrow \infty}\left(e^{\frac{A+B}{n}}\right)^{n}=\lim _{n \rightarrow \infty}\left(e^{A / n} e^{B / n}\right)^{n}
$$

as required.

Lemma 3.2.

$$
\left(e^{i t V} \psi_{0}\right)(x)=e^{i t V(x)} \psi_{0}(x)
$$

Lemma 3.3.

$$
\left(e^{i \frac{t}{2} \Delta} \psi_{0}\right)(x)=c \int d x^{\prime} e^{i \frac{\left(x-x^{\prime}\right)^{2}}{2 t}} \psi_{0}\left(x^{\prime}\right)
$$

Proof. In fact, the left hand side of this equality is just a solution $\psi(t, x)$ of Schrödinger's equation with $V=0:$

$$
\frac{\partial \psi}{\partial t}=\frac{i}{2} \Delta_{x} \psi,\left.\quad \psi\right|_{t=0}=\psi_{0} .
$$

Taking the Fourier transform $\tilde{\psi}(t, p)=$ $\frac{1}{\sqrt{2 \pi}} \int e^{-i p x} \psi(t, x) d x$, we get the equation

$$
\frac{\partial \tilde{\psi}}{\partial t}=-i \frac{p^{2}}{2} \tilde{\psi},\left.\quad \tilde{\psi}\right|_{t=0}=\tilde{\psi}_{0}
$$

For a fixed p, this is a simple first order linear differential equation with respect to t, and thus,

$$
\tilde{\psi}(t, p)=e^{-i \frac{t p^{2}}{2}} \tilde{\psi}_{0}(p)
$$

Taking the inverse Fourier transform, which takes products to convolutions and Gaussians to other Gaussians, we get what we wanted to prove.

Lemma 3.4. With the notation of Section 2 and at the specific case of $V(x)=\frac{1}{2} x^{2}$ and $T=\frac{\pi}{2}$, we have

$$
x_{c}(t)=x_{0} \cos t+x_{n} \sin t
$$

Proof. If x_{c} is a critical point of \mathcal{L} on $W_{x_{0} x_{n}}$, then for any $x_{q} \in W_{00}$ there should be no term in $\mathcal{L}\left(x_{c}+\epsilon x_{q}\right)$ which is linear in ϵ. Now recall that

$$
\mathcal{L}(x)=\int_{0}^{T} d t\left(\frac{1}{2} \dot{x}^{2}(t)-V(x(t))\right)
$$

so using $V\left(x_{c}+\epsilon x_{q}\right) \sim V\left(x_{c}\right)+\epsilon x_{q} V^{\prime}\left(x_{c}\right)$ we find that the linear term in ϵ in $\mathcal{L}\left(x_{c}+\epsilon x_{q}\right)$ is

$$
\int_{0}^{T} d t\left(\dot{x}_{c} \dot{x}_{q}-V^{\prime}\left(x_{c}\right) x_{q}\right)
$$

Integrating by parts and using $x_{q}(0)=x_{q}(T)=0$, this becomes

$$
\int_{0}^{T} d t\left(-\ddot{x}_{c}-V^{\prime}\left(x_{c}\right)\right) x_{q} .
$$

For this integral to vanish independently of x_{q}, we must have $-\ddot{x}_{c}-V^{\prime}\left(x_{c}\right) \equiv 0$, or
$\ddot{x}_{c}=-V^{\prime}\left(x_{c}\right)$.

In our particular case this boils down to the equation

$$
\ddot{x}_{c}=-x_{c}, \quad x_{c}(0)=x_{0}, \quad x_{c}(\pi / 2)=x_{n},
$$

whose unique solution is displayed in the statement of this lemma.

Abstract. I will describe a few 2-dimensional knots in 4 dimensional space in detail, then tell you how to make many more, then tell you that I don't really understand my way of making them, yet I can tell at least some of them apart in a colourful way. u-Knots.

The Generators

"the crossing"

The Double Inflation Procedure δ.

in arbitrary planar
ways to make bigger tiles, which can then be composed even further.

"God created the knots, all else in topology is the work of mortals."
Leopold Kronecker (modified) www.katlas.org

Satoh's Conjecture. ($\omega /$ Sat) The "kernel" of the double inflation map δ, mapping w-knot diagrams in the plane to knotted 2D tubes and spheres in 4D, is precisely the moves R2-3, VR1-3, M, CP and OC listed above. In other words, two w-knot diagrams represent via δ the same 2D knot in 4D iff they differ by a sequence of the said moves.

First Isomorphism Thm: $\delta: G \rightarrow H \Rightarrow \operatorname{im} \delta \cong G / \operatorname{ker}(\delta)$ δ is a map from algebra to topology. So a thing in "hard" topology $(\operatorname{im} \delta)$ is the same as a thing in "easy" algebra $(w \mathcal{K})$.
Reidemeister's Theorem.
$u \mathcal{K}:=\mathrm{PA}\langle \rangle /\left\langle/ \rho^{\mathrm{R} 1}\right\rangle$

Proof by a genericity / "shaking" argument

Kurt Reidemeister
3-Colourings. Colour the arcs of a broken arc diagram in RGB so that every crossing is either mono-chromatic or trichromatic; $\lambda(K):=\mid\{3$-colourings $\} \mid$.
Example. $\lambda(O)=3$ while $\lambda(\mathcal{S})=9$; so $\bigcirc \neq \mathcal{G}$. Exercise. Show that the set of colourings of K is a vector space over \mathbb{F}_{3} hence $\lambda(K)$ is always a power of 3 .
Extend λ to $w \mathcal{K}$ by declaring that arcs "don't see" v-xings, and that caps are always "kosher". Then $\lambda(\bullet \bullet)=3 \neq$ $9=\lambda$ (CS 2-knot), so assuming Conjecture, the CS 2 -knot is indeed knotted.

Expansions. Given a "ring" K and an ideal $I \subset K$, set $A:=I^{0} / I^{1} \oplus I^{1} / I^{2} \oplus I^{2} / I^{3} \oplus \cdots$
A homomorphic expansion is a multiplicative $Z: K \rightarrow A$ such that if $\gamma \in I^{m}$, then $Z(\gamma)=\left(0,0, \ldots, 0, \gamma / I^{m+1}, *, *, \ldots\right)$.
Example. Let $K=C^{\infty}\left(\mathbb{R}^{n}\right)$ be smooth functions on \mathbb{R}^{n}, and $I:=\{f \in K: f(0)=0\}$. Then $I^{m}=\left\{f: f\right.$ vanishes as $\left.|x|^{m}\right\}$ and I^{m} / I^{m+1} is \{homogeneous polynomials of degree $\left.m\right\}$ and A is the set of power series. So Z is "a Taylor expansion".
Hence Taylor expansions are vastly general; even knots can be Taylor expanded!

Abstract. On my September 17 Geneva talk ($\omega /$ sep) I de-Action 1 scribed a certain trees-and-wheels-valued invariant ζ of ribbon knotted loops and 2 -spheres in 4 -space, and my October 8 Geneva talk ($\omega /$ oct $)$ describes its reduction to the Alexander $\tilde{\mathcal{A}}^{b h}=\mathbb{Q}$ polynomial. Today I will explain how that same invariant arises completely naturally within the theory of finite type invariants of ribbon knotted loops and 2 -spheres in 4 -space.

My goal is to tell you why such an invariant is expected, yet not to derive the computable formulas.

Dictionary.

$\underset{i}{i} \stackrel{C P}{=} \stackrel{C P}{=}$ $\leftrightarrow \leftrightarrow \Omega=$

blue is never "over"

Let $\mathcal{I}^{n}:=\langle$ pictures with $\geq n$ semi-virts $\rangle \subset \mathcal{K}^{b h}$.
We seek an "expansion"

$$
Z: \mathcal{K}^{b h} \rightarrow \operatorname{gr} \mathcal{K}^{b h}=\widehat{\bigoplus} \mathcal{I}^{n} / \mathcal{I}^{n+1}=: \mathcal{A}^{b h}
$$

satisfying "property U ": if $\gamma \in \mathcal{I}^{n}$, then

$$
Z(\gamma)=\left(0, \ldots, 0, \gamma / \mathcal{I}^{n+1}, *, *, \ldots\right)
$$

$\pi:\left|\begin{array}{ll}{ }_{a}^{c} & d\end{array}\right| \longmapsto a_{a}^{c}$
(then connect using dings or v -xings)

 using TC

Action 2.

R3.

Exercise.

The Bracket-Rise Theorem.

 P̄ㅁoof.

$\mathrm{N}^{\stackrel{1}{=}}$
 $\stackrel{2}{=} \curvearrowright \curvearrowright$ -

Corollaries. (1) Related to Lie algebras! (2) Only trees and wheels persist.

Why? - Just because, and this is vastly more general. - $\left(\mathcal{K}^{b h} / \mathcal{I}^{n+1}\right)^{\star}$ is "finite-type/polynomial invariants".

Theorem. $\mathcal{A}^{b h}$ is a bi-algebra. The space of its primitives is $F L(T)^{H} \times C W(T)$, and $\zeta=\log Z$.

- The Taylor example: Take $\mathcal{K}=C^{\infty}\left(\mathbb{R}^{n}\right), \mathcal{I}=\zeta$ is computable! ζ of the Borromean tangle, to degree 5: $\{f \in \mathcal{K}: f(0)=0\}$. Then $\mathcal{I}^{n}=\left\{f: f\right.$ vanishes like $\left.|x|^{n}\right\}$ so $\mathcal{I}^{n} / \mathcal{I}^{n+1}$ is homogeneous polynomials of degree n and Z is a "Taylor expansion"! (So Taylor expansions are vastly more general than you'd think).
Plan. We'll construct a graded $\tilde{\mathcal{A}}^{b h}$, a surjective graded $\pi: \tilde{\mathcal{A}}^{b h} \rightarrow \mathcal{A}^{b h}$, and a fillteared $\tilde{Z}: \mathcal{K}^{b h} \rightarrow \mathcal{A}^{b h}$ so that $\pi / / \operatorname{gr} \tilde{Z}=I d$ (property U: if $\operatorname{deg} D=n, \tilde{Z}(\pi(D))=$
 $\pi(D)+(\operatorname{deg} \geq n))$. Hence $\bullet \pi$ is an iso-

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Geneva-131024/

Trees and Wheels and Balloons and Hoops $\mathcal{K}^{b h}(T ; H)$. Dror Bar-Natan, Zurich, September 2013
$\omega \varepsilon \beta:=h t t p: / / w w w$. math.toronto.edu/~drorbn/Talks/Zurich-130919

15 Minutes on Algebra

Let T be a finite set of "tail labels" and H a finite set of "head labels". Set

$$
M_{1 / 2}(T ; H):=F L(T)^{H}
$$

" H-labeled lists of elements of the degree-completed free Lie algebra generated by T ".

$$
F L(T)=\left\{2 t_{2}-\frac{1}{2}\left[t_{1},\left[t_{1}, t_{2}\right]\right]+\ldots\right\} /\binom{\text { anti-symmetry }}{\text { Jacobi }}
$$ with the obvious bracket.

$\left.M_{1 / 2}(u, v ; x, y)=\left\{\lambda=\left(x \rightarrow{\underset{y}{x}}_{u}^{v},\left.y \rightarrow\right|_{y} ^{v}-\frac{22}{7}{\underset{y}{v}}_{u}^{v}\right)^{v}\right) \ldots\right\}$
Operations $M_{1 / 2} \rightarrow M_{1 / 2}$.
Tail Multiply $t m_{w}^{u v}$ is $\lambda \mapsto \lambda / /(u, v \rightarrow w)$, satisfies "metaassociativity", $t m_{u}^{u v} / / t m_{u}^{u w}=t m_{v}^{v w} / / t m_{u}^{u v}$.
Head Multiply $h m_{z}^{x y}$ is $\lambda \mapsto(\lambda \backslash\{x, y\}) \cup\left(z \rightarrow \operatorname{bch}\left(\lambda_{x}, \lambda_{y}\right)\right)$, where
$\operatorname{bch}(\alpha, \beta):=\log \left(e^{\alpha} e^{\beta}\right)=\alpha+\beta+\frac{[\alpha, \beta]}{2}+\frac{[\alpha,[\alpha, \beta]]+[[\alpha, \beta], \beta]}{12}+\ldots$ satisfies $\operatorname{bch}(\operatorname{bch}(\alpha, \beta), \gamma)=\log \left(e^{\alpha} e^{\beta} e^{\gamma}\right)=\operatorname{bch}(\alpha, \operatorname{bch}(\beta, \gamma))$ and hence meta-associativity, $h m_{x}^{x y} / / h m_{x}^{x z}=h m_{y}^{y z} / / h m_{x}^{x y}$. Tail by Head Action tha ${ }^{u x}$ is $\lambda \mapsto \lambda / / R C_{u}^{\lambda_{x}}$, where $C_{u}^{-\gamma}: F L \rightarrow F L$ is the substitution $u \rightarrow e^{-\gamma} u e^{\gamma}$, or more precisely,

$$
C_{u}^{-\gamma}: u \rightarrow e^{-\operatorname{ad} \gamma}(u)=u-[\gamma, u]+\frac{1}{2}[\gamma,[\gamma, u]]-\ldots
$$

and $R C_{u}^{\gamma}=\left(C_{u}^{-\gamma}\right)^{-1}$. Then $C_{u}^{\mathrm{bch}(\alpha, \beta)}=C_{u}^{\alpha / / R C_{u}^{-\beta}} / / C_{u}^{\beta}$ hence ${ }^{\text {i }}$ $R C_{u}^{\mathrm{bch}(\alpha, \beta)}=R C_{u}^{\alpha} / / R C_{u}^{\beta / / R C_{u}^{\alpha}}$ hence "meta $u^{x y}=\left(u^{x}\right)^{y "}$,

$$
h m_{z}^{x y} / / t h a^{u z}=t h a^{u x} / / t h a^{u y} / / h m_{z}^{x y}
$$

and $t m_{w}^{u v} / / C_{w}^{\gamma / / t m_{w}^{u v}}=C_{u}^{\gamma / / R C_{v}^{-\gamma}} / / C_{v}^{\gamma} / / t m_{w}^{u v}$ and hence "meta $(u v)^{x}=u^{x} v^{x "}, t m_{w}^{u v} / / t h a^{w x}=t h a^{u x} / / t h a^{v x} / / t m_{w}^{u v}$.
Wheels. Let $M(T ; H):=M_{1 / 2}(T ; H) \times C W(T)$, where $C W(T)$ is the (completed graded) vector space of cyclic words on T, or equaly well, on $F L(T)$:

Operations. On $M(T ; H)$, define $t m_{w}^{u v}$ and $h m_{z}^{x y}$ as before, and tha $a^{u x}$ by adding some J-spice:

$$
(\lambda ; \omega) \mapsto\left(\lambda, \omega+J_{u}\left(\lambda_{x}\right)\right) / / R C_{u}^{\lambda_{x}}
$$

where $J_{u}(\gamma):=\int_{0}^{1} d s \operatorname{div}_{u}\left(\gamma / / R C_{u}^{s \gamma}\right) / / C_{u}^{-s \gamma}$, and

Theorem Blue. All blue identities still hold. Merge Operation. $\left(\lambda_{1} ; \omega_{1}\right) *\left(\lambda_{2} ; \omega_{2}\right):=\left(\lambda_{1} \cup \lambda_{2} ; \omega_{1}+\omega_{2}\right)$. Properties.

- δ injects u-knots into $\mathcal{K}^{b h}$ (likely u-tangles too).
- δ maps v-tangles to $\mathcal{K}^{b h}$; the kernel contains the above and conjecturally (Satoh), that's all.
- Allowing punctures and cuts, δ is onto.

is a group, $\pi_{2}(X)$ is an Abelian group, and π_{1} acts on π_{2}.

Riddle. People often: study $\pi_{1}(X)=\left[S^{1}, X\right]$: and $\pi_{2}(X)=\left[S^{2}, X\right]$.

Why not $\pi_{T}(X):=$

"Meta-Group-Action"

- Associativities: $m_{a}^{a b} / / m_{a}^{a c}=m_{b}^{b c} / / m_{a}^{a b}$, for $m=t m, h m$.
- "(uv) ${ }^{x}=u^{x} v^{x} ": t m_{w}^{u v} / / ~ t h a^{w x}=t h a^{u x} / / t h a^{v x} / / t_{w}^{u v}$,

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Geneva-130917/, .../Toronto-1303/ and at .../Chicago-1303/

Trees and Wheels and Balloons and Hoops: Why I Care

Moral. To construct an M-valued invariant ζ of (v-)tangles, The β quotient is M diviand nearly an invariant on $\mathcal{K}^{b h}$, it is enough to declare ζ onded by all relations that unithe generators, and verify the relations that δ satisfies. versally hold when when \mathfrak{g} is
The Invariant ζ. Set $\zeta\left(\epsilon_{x}\right)=(x \rightarrow 0 ; 0), \zeta\left(\epsilon_{u}\right)=(() ; 0)$, and

$$
\zeta: \quad u \bigcap_{x} \longmapsto\left(\left.\right|_{v_{x}} ^{u} ; 0\right) \quad \stackrel{u}{x} \longmapsto\left(-\left.\right|_{v_{x}} ^{u} ; 0\right)
$$

Theorem. ζ is (log of) the unique homomorphic universal finite type invariant on $\mathcal{K}^{b h}$. (... and is the tip of an iceberg)

Paper in progress with Dancso, $\omega \varepsilon \beta /$ wko
 bra. Let $R=\mathbb{Q} \llbracket\left\{c_{u}\right\}_{u \in T} \rrbracket$ and $[u, v]=c_{u} v c_{v} u$ $L_{\beta}:=R \otimes T$ with central R and with $[\bar{u}, \bar{v}]=\bar{c}_{u} \bar{v}-\bar{c}_{v} \bar{u} \overline{\text { for }}$ $u, v \in T$. Then $F L \rightarrow L_{\beta}$ and $C W \rightarrow R$. Under this,

$$
\mu \rightarrow\left(\left(\lambda_{x}\right) ; \omega\right) \quad \text { with } \lambda_{x}=\sum_{u \in T} \lambda_{u x} u x, \quad \lambda_{u x}, \omega \in R
$$

$\operatorname{bch}(u, v) \rightarrow \frac{c_{u}+c_{v}}{e^{c_{u}+c_{v}}-1}\left(\frac{e^{c_{u}}-1}{c_{u}} u+e^{c_{u}} \frac{e^{c_{v}}-1}{c_{v}} v\right)$,
if $\gamma=\sum \gamma_{v} v$ then with $c_{\gamma}:=\sum \gamma_{v} c_{v}$,
$u / / R C_{u}^{\gamma}=\left(1+c_{u} \gamma_{u} \frac{e^{c_{\gamma}}-1}{c_{\gamma}}\right)^{-1}\left(e^{c_{\gamma}} u-c_{u} \frac{e^{c_{\gamma}}-1}{c_{\gamma}} \sum_{v \neq u} \gamma_{v} v\right)$
$\operatorname{div}_{u} \gamma=c_{u} \gamma_{u}$, and $J_{u}(\gamma)=\log \left(1+\frac{e^{c \gamma-1}}{c_{\gamma}} c_{u} \gamma_{u}\right)$, so ζ is formula-computable to all orders! Can we simplify?
Repackaging. Given $\left(\left(x \rightarrow \lambda_{u x}\right) ; \omega\right)$, set $c_{x}:=\sum_{v} c_{v} \lambda_{v x}$ replace $\lambda_{u x} \rightarrow \alpha_{u x}:=c_{u} \lambda_{u x} \frac{e^{c_{x}}-1}{c_{x}}$ and $\omega \rightarrow e^{\omega}$, use $t_{u}=e^{c_{u}}$ and write $\alpha_{u x}$ as a matrix. Get " β calculus".

Tensorial Interpretation. Let \mathfrak{g} be a finite dimensional Lie algebra (any!). Then there's $\tau: F L(T) \rightarrow \operatorname{Fun}\left(\oplus_{T} \mathfrak{g} \rightarrow \mathfrak{g}\right)$ and $\tau: C W(T) \rightarrow$ Fun $\left(\oplus_{T} \mathfrak{g}\right)$. Together, $\tau: M(T ; H) \rightarrow$ $\operatorname{Fun}\left(\oplus_{T} \mathfrak{g} \rightarrow \oplus_{H} \mathfrak{g}\right)$, and hence

$$
e^{\tau}: M(T ; H) \rightarrow \operatorname{Fun}\left(\oplus_{T} \mathfrak{g} \rightarrow \mathcal{U}^{\otimes H}(\mathfrak{g})\right)
$$

and BF Theory. (See Cattaneo-Rossi,

$$
\text { where } \epsilon:=1+\alpha,\langle\alpha\rangle:=\sum_{v} \alpha_{v} \text {, and }\langle\gamma\rangle:=\sum_{v \neq u} \gamma_{v} \text {, and let }
$$ arXiv:math-ph/0210037) Let A denote a \mathfrak{g} connection on S^{4} with curvature F_{A}, and B a \mathfrak{g}^{*}-valued 2 -form on S^{4}. For a hoop γ_{x}, let $\operatorname{hol}_{\gamma_{x}}(A) \in \mathcal{U}(\mathfrak{g})$ be the holonomy of A along γ_{x}. For a ball γ_{u}, let $\mathcal{O}_{\gamma_{u}}(B) \in \mathfrak{g}^{*}$ be (roughly) the integral of B (transported via A to ∞) on γ_{u}. Loose Conjecture. For $\gamma \in \mathcal{K}(T ; H)$,

$$
\int \mathcal{D} A \mathcal{D} B e^{\int B \wedge F_{A}} \prod_{u} e^{\left.\mathcal{O}_{\gamma_{u}}(B)\right)} \bigotimes_{x} \operatorname{hol}_{\gamma_{x}}(A)=e^{\tau}(\zeta(\gamma))
$$

That is, ζ is a complete evaluation of the BF TQFT.

"God created the knots, all else in topology is the work of mortals."
Leopold Kronecker (modified)

$$
R_{u x}^{+}:=\frac{1}{1}\left|\frac{x}{u}\right| t_{u}-1 \quad R_{u x}^{-}: \left.=\frac{1}{1} \right\rvert\,
$$

On long knots, ω is the Alexander polynomial!
Why happy? An ultimate Alexander inva riant: Manifestly polynomial (time and size) extension of the (multivariable) Alexander polynomial to tangles. Every step of the computation is the computation of the invariant of some topological thing (no fishy Gaus-
 sian elimination). If there should be an Alexander invariant with a computable algebraic categorification, it is this one. See also $\omega \varepsilon \beta /$ regina, $\omega \varepsilon \beta /$ caen, $\omega \varepsilon \beta /$ newton.
May class: $\omega \varepsilon \beta /$ aarhus Paper: $\omega \varepsilon \beta / \mathrm{kbh}$

$$
\begin{aligned}
& \beta \text { Calculus. Let } \beta(T ; H) \text { be } \\
& \left\{\begin{array}{c|cc}
\omega & x & y \\
\hline u & \alpha_{u x} & \alpha_{u y} \\
v & \alpha_{v x} & \alpha_{v y} \\
\vdots & \cdot & \cdot
\end{array}\right. \\
& t m_{w}^{u v}: \begin{array}{c|ccc|c}
\omega & \cdots & & \\
\hline u & \alpha & & \omega & \ldots \\
\hline & & \beta & \mapsto & \alpha+\beta \\
\vdots & \gamma & & \vdots & \gamma
\end{array} \\
& \begin{array}{l|l}
\omega_{1} & H_{1} \\
\hline T_{1} & \alpha_{1}
\end{array} * \begin{array}{l|l}
\omega_{2} & H_{2} \\
\hline T_{2} & \alpha_{2}
\end{array} \\
& =\begin{array}{c|cc}
\omega_{1} \omega_{2} & H_{1} & H_{2} \\
\hline T_{1} & \alpha_{1} & 0 \\
T_{2} & 0 & \alpha_{2}
\end{array} \\
& h m_{z}^{x y}: \begin{array}{c|ccc}
\omega & x & y & \cdots \\
\hline \vdots & \alpha & \beta & \gamma
\end{array} \mapsto \begin{array}{c|cc}
\omega & z & \cdots \\
\hline \vdots & \alpha+\beta+\langle\alpha\rangle \beta & \gamma
\end{array}, \\
& t h a^{u x}: \begin{array}{c|cc}
\omega & x & \cdots \\
u & \alpha & \beta \\
\vdots & \gamma & \delta
\end{array} \quad \begin{array}{c|ccc}
\omega \epsilon & x & \cdots \\
\hline u & \alpha(1+\langle\gamma\rangle / \epsilon) & \beta(1+\langle\gamma\rangle / \epsilon) \\
\hline
\end{array},
\end{aligned}
$$

Meta-Groups, Meta-Bicrossed-Products, and the Alexander Polynomial, 1

Alexander Issues.

- Quick to compute, but computation departs from topology
- Extends to tangles, but at an exponential cost.

Abstract. I will define "meta-groups" and explain how one specific• Hard to categorify.
meta-group, which in itself is a "meta-bicrossed-product", gives rise Idea. Given a group G and two "YB" to an "ultimate Alexander invariant" of tangles, that contains the pairs $R^{ \pm}=\left(g_{o}^{ \pm}, g_{u}^{ \pm}\right) \in G^{2}$, map them Alexander polynomial (multivariable, if you wish), has extremely good composition properties, is evaluated in a topologically meaningful way, and is least-wasteful in a computational sense. If you believe in categorification, that's a wonderful playground.
This work is closely related to work by Le Dimet (Comment. Math. Helv. 67 (1992) 306-315), Kirk, Livingston and Wang (arXiv:math/9806035) and Cimasoni and Turaev (arXiv:math.GT/0406269).

A Standard Alexander Formula. Label the arcs 1 through $(n+1)=1$, make an $n \times n$ matrix as below, delete one row and one column, and compute the determinant:

This Fails! R2 implies that $g_{o}^{ \pm} g_{o}^{\mp}=e=g_{u}^{ \pm} g_{u}^{\mp}$ and then R3 implies that g_{o}^{+}and g_{u}^{+}commute, so the result is a simple counting invariant.
A Group Computer. Given G, can store group elements and perform operations on them:

Also has S_{x} for inversion, e_{x} for unit insertion, d_{x} for register deletion, $\Delta_{x y}^{z}$ for element cloning, ρ_{y}^{x} for renamings, and $\left(D_{1}, D_{2}\right) \mapsto$ $D_{1} \cup D_{2}$ for merging, and many obvious composition axioms relat ing those. $P=\left\{x: g_{1}, y: g_{2}\right\} \Rightarrow P=\left\{d_{y} P\right\} \cup\left\{d_{x} P\right\}$
A Meta-Group. Is a similar "computer", only its internal structure is unknown to us. Namely it is a collection of sets $\left\{G_{\gamma}\right\}$ indexed by all finite sets γ, and a collection of operations $m_{z}^{x y}, S_{x}, e_{x}, d_{x}, \Delta_{x y}^{z}$ (sometimes), ρ_{y}^{x}, and \cup, satisfying the exact same linear properties.
Example 0. The non-meta example, $G_{\gamma}:=G^{\gamma}$.
Example 1. $\quad G_{\gamma}:=M_{\gamma \times \gamma}(\mathbb{Z})$, with simultaneous row and column operations, and "block diagonal" merges. Here if $P=\left(\begin{array}{lll}x: & a & b \\ y: & c & d\end{array}\right)$ then $d_{y} P=(x: a)$ and $d_{x} P=(y: d)$ so $\left\{d_{y} P\right\} \cup\left\{d_{x} P\right\}=\left(\begin{array}{lll}x: & a & 0 \\ y: & 0 & d\end{array}\right) \neq P$. So this G is truly meta. Claim. From a meta-group G and YB elements $R^{ \pm} \in G_{2}$ we can construct a knot/tangle invariant.
Bicrossed Products. If $G=H T$ is a group presented as a product of two of its subgroups, with $H \cap T=\{e\}$, then also $G=T H$ and G is determined by H, T, and the "swap" map $s w^{t h}:(t, h) \mapsto\left(h^{\prime}, t^{\prime}\right)$ defined by $t h=h^{\prime} t^{\prime}$. The map sw satisfies (1) and (2) below; conversely, if $s w: T \times H \rightarrow H \times T$ satisfies (1) and (2) (+ lesser conditions), then (3) defines a group structure on $H \times T$, the "bicrossed product".

Meta-Groups, Meta-Bicrossed-Products, and the Alexander Polynomial, 2

A Meta-Bicrossed-Product is a collection of sets $\beta(\eta, \tau)$ and

$$
\begin{array}{c|cc}
\\
s w_{u x}^{t h}
\end{array}: \begin{array}{c|cc|cc}
\omega & h_{x} & \cdots \\
\hline t_{u} & \alpha & \beta \\
\vdots & \gamma & \delta
\end{array} \quad \begin{gathered}
\omega \epsilon \\
t_{u} \\
\\
\vdots
\end{gathered} \quad \alpha(1+\langle\gamma\rangle / \epsilon) \quad \beta(1+\langle\gamma\rangle / \epsilon),
$$

where $\epsilon:=1+\alpha$ and $\langle c\rangle:=\sum_{i} c_{i}$, and let

$$
R_{a b}^{p}:=\begin{array}{c|cc}
1 & h_{a} & h_{b} \\
\hline t_{a} & 0 & X-1 \\
t_{b} & 0 & 0
\end{array} \quad R_{a b}^{m}:=\begin{array}{c|cc}
1 & h_{a} & h_{b} \\
\hline t_{a} & 0 & X^{-1}-1 \\
t_{b} & 0 & 0
\end{array} .
$$

Theorem. Z^{β} is a tangle invariant (and more). Restricted to

| $\beta=\mathrm{Rm}_{12,1} \mathrm{Rm}_{27} \mathrm{Rm}_{83} \mathrm{Rm}_{4,11} \mathrm{Rp}_{16,5} \mathrm{Rp}_{6,13} \mathrm{Rp}_{14,9} \mathrm{Rp}_{10,15} \quad \square$ | | | | | | | | | 8_{17} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | h_{1} | h_{3} | h_{5} | h_{7} | h_{9} | h_{11} | h_{13} | h_{15} | |
| t_{2} | 0 | 0 | 0 | $-\frac{-1+x}{x}$ | 0 | 0 | 0 | 0 | |
| t_{4} | 0 | 0 | 0 | 0 | 0 | $-\frac{-1+x}{x}$ | 0 | 0 | |
| t_{6} | 0 | 0 | 0 | 0 | 0 | 0 | $-1+\mathrm{X}$ | 0 | |
| t_{8} | 0 | $-\frac{-1+x}{x}$ | 0 | 0 | 0 | 0 | 0 | 0 | |
| t_{10} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $-1+\mathrm{X}$ | |
| t_{12} | $-\frac{-1+x}{x}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| t_{14} | 0 | 0 | 0 | 0 | $-1+\mathrm{X}$ | 0 | 0 | 0 | |
| t_{16} | 0 | 0 | -1+X | 0 | 0 | 0 | 0 | 0 | | knots, the ω part is the Alexander polynomial. On braids, it

is equivalent to the Burau representation. A variant for links contains the multivariable Alexander polynomial.
Why Happy? • Applications to w-knots.

- Everything that I know about the Alexander polynomial can be expressed cleanly in this language (even if without proof), except HF, but including genus, ribbonness, cabling, v-knots, knotted graphs, etc., and there's potential for vast generalizations.
- The least wasteful "Alexander for tangles"

I'm aware of.

- Every step along the computation is the invariant of something.
- Fits on one sheet, including implementation
\& propaganda.

Further meta-monoids. Π (and variants), \mathcal{A} (and quotients), 5
A Partial To Do List. 1. Where does it more simply come from?
2. Remove all the denominators.
3. How do determinants arise in this context?
4. Understand links ("meta-conjugacy classes").
$v T, \ldots$
5. Find the "reality condition".

Further meta-bicrossed-products. Π (and variants), $\overrightarrow{\mathcal{A}}$ (and7. Categorify.
quotients), $M_{0}, M, \mathcal{K}^{b h}, \mathcal{K}^{r b h}, \ldots$
Meta-Lie-algebras. \mathcal{A} (and quotients) $, \mathcal{S}, \ldots$
Meta-Lie-bialgebras. $\overrightarrow{\mathcal{A}}$ (and quotients),
8. Do the same in other natural quotients of the

I don't understand the relationship between gr and H, as it

"God created the knots, all else in
topology is the work of mortals."
Leopold Kronecker (modified)
www.katlas.org The knot 1 thas

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Newton-1301/, see also .../Sheffield-130206/ and .../Regina-1206/

The Problem. Let $G=\left\langle g_{1}, \ldots, g_{\alpha}\right\rangle$ be a subgroup of S_{n}, with $n=O(100)$. Before you die, understand G :

1. Compute $|G|$.
2. Given $\sigma \in S_{n}$, decide if $\sigma \in G$.
3. Write a $\sigma \in G$ in terms of $g_{1}, \ldots, g_{\alpha}$.
4. Produce random elements of G.

The Commutative Analog. Let $V=$ $\operatorname{span}\left(v_{1}, \ldots, v_{\alpha}\right)$ be a subspace of \mathbb{R}^{n}. Before you die, understand V.
Solution: Gaussian Elimination. Prepare an empty table,

l
Space for a vector $u_{4} \in V$, of the form $u_{4}=(0,0,0,1, *, \ldots, *) ; 1:=$ "the pivot".

Non-Commutative Gaussian Elimination and Rubik's Cube

$\mathrm{n}=54$;
$\mathrm{g}_{1}=$ Cycles $[\{\{1,18,45,28\},\{2,27,44,19\},\{3,36,43,10\},\{46,52,54,48\}$, $\{47,49,53,51\}\}] ;$
$\mathrm{g}_{2}=$ Cycles $[\{\{7,16,39,30\},\{8,25,38,21\},\{9,34,37,12\},\{13,15,33,31\}$,
$\begin{aligned} & \{14,24,32,22\}\}] ; \\ g_{3}= & \text { Cycles }[\{\{28,31,34 ;\end{aligned}$
$\mathrm{g}_{3}=$ Cycles $[\{\{28,31,34,48\},\{29,32,35,47\},\{30,33,36,46\},\{37,39,45,43\}$ $g_{4}=$ Cycles $[\{\{1,3,9,7\}$
$\{12,52,18,15\}\}]:\{2,6,8,4\},\{10,54,16,13\},\{11,53,17,14\}$,
$g_{5}=$ Cycles $[\{\{1,13,37,46\},\{4,22,40,49\},\{7,31,43,52\},\{10,12,30,28\}$, $\quad\{11,21,29,19\}\}]$;
$\begin{aligned} g_{6}= & \operatorname{Cycles}[\{\{3,48,39,15\},\{6,51,42,24\},\{9,54,45,33\},\{16,18,36,34\}, \\ & \{17,27,35,25\}\}] ;\end{aligned}$
Claim 4. If two monotone products are equal,

$$
\sigma_{1, j_{1}} \cdots \sigma_{n, j_{n}}=\sigma_{1, j_{1}^{\prime}} \cdots \sigma_{n, j_{n}^{\prime}}
$$

Based on algorithms by

then all the indices that appear in them are equal, $\forall i, j_{i}=j_{i}^{\prime}$.
Claim 5. Let M_{k} denote the set of monotone products in T starting in column k :
$M_{k}:=\left\{\sigma_{k, j_{k}} \cdots \sigma_{n, j_{n}}: \forall i \geq k, j_{i} \geq i\right.$ and $\left.\sigma_{i, j_{i}} \in T\right\}$.
See also Permutation Group Algorithms by A. Seress, Perm Groups by D. Knuth.
then for every $k, M_{k} M_{k} \subset M_{k}$ (and so each M_{k} is a subgroup of G).

Feed $v_{1}, \ldots, v_{\alpha}$ in order. To feed a non-zero v, find its pivotal position i.

1. If box i is empty, put v there.
2. If box i is occupied, find a combination v^{\prime} of v and u_{i} that eliminates the pivot, and feed v^{\prime}.
Non-Commutative Gaussian Elimination
Prepare a mostly-empty table,

Feed $g_{1}, \ldots, g_{\alpha}$ in order. To feed a non-identity σ, find its pivotal position i and let $j:=\sigma(i)$.

1. If box (i, j) is empty, put σ there.
2. If box (i, j) contains $\sigma_{i, j}$, feed $\sigma^{\prime}:=\sigma_{i, j}^{-1} \sigma$.

The Twist. When done, for every occupied (i, j) and (k, l), feed $\sigma_{i, j} \sigma_{k, l}$. Repeat until the table stops changing.
Claim 1. The process stops in our lifetimes, after at most $O\left(n^{6}\right)$ operations. Call the resulting table T.
Claim 2. Every $\sigma_{i, j}$ in T is in G.
Claim 3. Anything fed in T is now a monotone product in T : f was fed $\Rightarrow f \in M_{1}:=\left\{\sigma_{1, j_{1}} \sigma_{2, j_{2}} \cdots \sigma_{n, j_{n}}: \forall i, j_{i} \geq i \& \sigma_{i, j_{i}} \in T\right\}$ §RecursionLimit $=\infty$;

Proof. By backwards induction. Clearly $M_{n} M_{n} \subset$ M_{n}. Now assume that $M_{5} M_{5} \subset M_{5}$ and show that $M_{4} M_{4} \subset M_{4}$. Start with $\sigma_{8, j} M_{4} \subset M_{4}$:

$$
\begin{aligned}
& \sigma_{8, j}\left(\sigma_{4, j_{4}} M_{5}\right) \stackrel{1}{=}\left(\sigma_{8, j} \sigma_{4, j_{4}}\right) M_{5} \stackrel{2}{\subset} M_{4} M_{5} \\
& \stackrel{3}{=} \cup_{j} \sigma_{4, j}\left(M_{5} M_{5}\right) \stackrel{4}{\subset} \cup_{j} \sigma_{4, j} M_{5} \subset M_{4}
\end{aligned}
$$

(1: associativity, 2: thank the twist, 3: associativity and tracing $i_{4}, 4$: induction). Now the general case

$$
\left(\sigma_{4, j_{4}^{\prime}} \sigma_{5, j_{5}^{\prime}} \cdots\right)\left(\sigma_{4, j_{4}} \sigma_{5, j_{5}} \cdots\right)
$$

falls like a chain of dominos.
Theorem. $G=M_{1}$ and we have achieved our goals.
A Demo Program
$\sigma_{-}{ }^{\circ} \tau_{-}:=$PermutationProduct $[\tau, \sigma]$; Feed [Cycles[\{\}]]:=Null;
Feed $\left[\tau_{-}\right]:=\operatorname{Module}[\{i, j, k, 1\}$,
i $=\operatorname{Min}[$ PermutationSupport $[\tau]]$;
j = PermutationReplace [i, τ];
If $\left[\right.$ Head $\left[\sigma_{i, j}\right]==$ Cycles,
Feed [InversePermutation [$\sigma_{i, j}$] $\circ \tau$],

$$
\left(* \text { Else*) } \sigma_{i, j}=\tau ;\right.
$$

For $[k=1, k<n,++k$,

For [l = $k+1, \quad l \leq n, \quad++1$, If $\left[\right.$ Head $\left[\sigma_{\mathrm{k}, 1}\right]===$ Cycles, Feed $\left[\sigma_{i, j} \circ \sigma_{\mathrm{k}, 1}\right]$; Feed $\left[\sigma_{\mathrm{k}, 1} \circ \sigma_{\mathrm{i}, j}\right]$]]]
]] ;

The Results
Homework Problem 1.
Can you do cosets?
Table[Feed [g g_{α}]; $\prod_{i=1}^{\mathrm{n}}\left(1+\right.$ Count[Range[n], j_/; Head[$\sigma_{i, j}$] = Cycles]), \{ $\left.\alpha, 6\right\}$]
Enter
$\{4,16,159993501696000,21119142223872000,43252003274489856000,43252003274489856000\}$

Homework Problem 2.
Can you do categories (groupoids)?

| 7 | 9 | 2 | 5 |
| :---: | :---: | :---: | :---: |
| 1 | 4 | 8 | 3 |
| 6 | 10 | 11 | 12 |
| 13 | 14 | 15 | |

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Cambridge-1301/, see also http://www.math.toronto.edu/~drorbn/Talks/Mathcamp-0907/

Balloons and Hoops and their Universal Finite-Type Invariant,

BF Theory, and an Ultimate Alexander Invariant

Dror Bar-Natan in Oxford, January 2013
Scheme. • Balloons and hoops in \mathbb{R}^{4}, algebraic structure and relations with 3D.

- An ansatz for a "homomorphic" invariant: computable,
 related to finite-type and to BF.
- Reduction to an "ultimate Alexander invariant".

Tangle concatenations $\rightarrow \pi_{1} \ltimes \pi_{2}$

Thus we seek homomorphic invariants of $\mathcal{K}^{b h}$!
Invariant \#0. With Π_{1} denoting "honest π_{1} ", map $\gamma \in \mathcal{K}^{b h}(m, n)$ to the triple $\left(\Pi_{1}\left(\gamma^{c}\right),\left(u_{i}\right),\left(x_{j}\right)\right)$, where the meridian of the balls u_{i} normally generate Π_{1}, and the "longtitudes" x_{j} are some elements of Π_{1}. * acts like $*$, tm acts by "merging" two meridians/generators, $h \mathrm{~m}$ acts by multiplying two longtitudes, and tha ${ }^{u x}$ acts by "conjugating a meridian by a longtitude":

Not computable!
(but nearly)

- δ injects u-Knots into $\mathcal{K}^{b h}$ (likely u-tangles too).
- δ maps v / w-tangles map to $\mathcal{K}^{b h}$; the kernel contains Rei demeister moves and the "overcrossings commute" relation, I and conjecturally, that's all. Allowing punctures and cuts, δ is onto.

- Associativities: $m_{a}^{a b} / / m_{a}^{a c}=m_{b}^{b c} / / m_{a}^{a b}$, for $m=t m, h m$
- Action axiom $t: t m_{w}^{u v} / / t h a^{w x}=t h a^{u x} / / t h a^{v x} / / t m_{w}^{u v}$,
- Action axiom $h: h m_{z}^{x y} / / t h a^{u z}=t h a^{u x} / / t h a^{u y} / / h m_{z}^{x y}$.
- SD Product: $d m_{c}^{a b}:=t h a^{a b} / / t m_{c}^{a b} / / h m_{c}^{a b}$ is associative.
$(\Pi,(u, \ldots),(x, \ldots)) \mapsto\left(\Pi *\langle\bar{u}\rangle /\left(u=x \bar{u} x^{-1}\right),(\bar{u}, \ldots),(x, \ldots)\right)$ Failure \#0. Can we write the x 's as free words in the u 's? If $x=u v$, compute $x / / t h a^{u x}$:

$$
x=u v \rightarrow \bar{u} v=u^{x} v=u^{\bar{u} v} v=u^{u^{x} v} v=u^{u^{u^{x}} v} v=\cdots
$$

The Meta-Group-Action M. Let T be a set of "tail labels" ("balloon colours"), and H a set of "head labels" ("hoop colours"). Let $F L=F L(T)$ and $F A=F A(T)$ be the (completed graded) free Lie and free associative algebras on generators T and let $C W=C W(T)$ be the (completed graded) vector space of cyclic words on T, so there's $\operatorname{tr}: F A \rightarrow C W$. Let $M(T, H):=\left\{\left(\bar{\lambda}=\left(x: \lambda_{x}\right)_{x \in H} ; \omega\right): \lambda_{x} \in F L, \omega \in C W\right\}$ $=\{(x: Y^{u}, y:\left.\right|^{v}-\frac{22}{7} \underbrace{u} ; \underbrace{v}_{v} \sum_{v}^{v}) \ldots\}$ Operations. Set $\left(\bar{\lambda}_{1} ; \omega_{1}\right) *\left(\bar{\lambda}_{2} ; \omega_{2}\right):=\left(\bar{\lambda}_{1} \cup \bar{\lambda}_{2} ; \omega_{1}+\omega_{2}\right)$ and with $\mu=(\bar{\lambda} ; \omega)$ define

Balloons and Hoops and their Universal Finite-Type Invariant, 2

The Meta-Cocycle J. Set $J_{u}(\lambda):=J(1)$ where

$$
\begin{gathered}
J(0)=0, \quad \lambda_{s}=\lambda / / C C_{u}^{s \lambda} \\
\frac{d J(s)}{d s}=\left(J(s) / / \operatorname{der}\left(u \mapsto\left[\lambda_{s}, u\right]\right)\right)+\operatorname{div}_{u} \lambda_{s}
\end{gathered}
$$

and where $\operatorname{div}_{u} \lambda:=\operatorname{tr}\left(u \sigma_{u}(\lambda)\right), \sigma_{u}(v):=\delta_{u v}, \sigma_{u}\left(\left[\lambda_{1}, \lambda_{2}\right]\right):=$ $\iota\left(\lambda_{1}\right) \sigma_{u}\left(\lambda_{2}\right)-\iota\left(\lambda_{2}\right) \sigma_{u}\left(\lambda_{1}\right)$ and ι is the inclusion $F L \hookrightarrow F A$:

Claim. $C C_{u}^{\mathrm{bch}\left(\lambda_{1}, \lambda_{2}\right)}=C C_{u}^{\lambda_{1}} / / C C_{u}^{\lambda_{2} / / C C_{u}^{\lambda_{1}}}$ and
$J_{u}\left(\operatorname{bch}\left(\lambda_{1}, \lambda_{2}\right)\right)=J_{u}\left(\lambda_{1}\right) / / C C_{u}^{\lambda_{2} / / C C_{u}^{\lambda_{1}}}+J_{u}\left(\lambda_{2} / / C C_{u}^{\lambda_{1}}\right)$,
and hence $t m, h m$, and tha form a meta-group-action.
Why ODEs? Q. Find f s.t. $f(x+y)=f(x) f(y)$. A. $\frac{d f(s)}{d s}=\frac{d}{d \epsilon} f(s+\epsilon)=\frac{d}{d \epsilon} f(s) f(\epsilon)=f(s) C$. Now solve this ODE using Picard's theorem or power series.

The β quotient, 2. Let $R=\mathbb{Q} \llbracket\left\{c_{u}\right\}_{u \in T} \rrbracket$ and $L_{\beta}:=R \otimes T$ with central R and with $[u, v]=c_{u} v-c_{v} u$ for $u, v \in T$. Then $F L \rightarrow L_{\beta}$ and $C W \rightarrow R$. Under this,

$$
\begin{aligned}
& \mu \rightarrow(\bar{\lambda} ; \omega) \quad \text { with } \bar{\lambda}=\sum_{x \in H, u \in T} \lambda_{u x} u x, \quad \lambda_{u x}, \omega \in R, \\
& \operatorname{bch}(u, v) \rightarrow \frac{c_{u}+c_{v}}{e^{c_{u}+c_{v}}-1}\left(\frac{e^{c_{u}}-1}{c_{u}} u+e^{c_{u}} \frac{e^{c_{v}}-1}{c_{v}} v\right),
\end{aligned}
$$

if $\lambda=\sum \lambda_{v} v$ then with $c_{\lambda}:=\sum \lambda_{v} c_{v}$,
$u / / C C_{u}^{\lambda}=\left(1+c_{u} \lambda_{u} \frac{e^{c_{\lambda}}-1}{c_{\lambda}}\right)^{-1}\left(e^{c_{\lambda}} u-c_{u} \frac{e^{c_{\lambda}}-1}{c_{\lambda}} \sum_{v \neq u} \lambda_{v} v\right)$
$\operatorname{div}_{u} \lambda=c_{u} \lambda_{u}$, and the ODE for J integrates to

$$
J_{u}(\lambda)=\log \left(1+\frac{e^{c_{\lambda}}-1}{c_{\lambda}} c_{u} \lambda_{u}\right)
$$

so ζ is formula-computable to all orders! Can we simplify?
Repackaging. Given $\left(\left(x: \lambda_{u x}\right) ; \omega\right)$, set $c_{x}:=\sum_{v} c_{v} \lambda_{v x}$, replace $\lambda_{u x} \rightarrow \alpha_{u x}:=c_{u} \lambda_{u x} \frac{e^{c_{x}-1}}{c_{x}}$ and $\omega \rightarrow \log \omega$, use $t_{u}=e^{c_{u}}$ and write $\alpha_{u x}$ as a matrix. Get " β calculus".
The Invariant ζ. Set $\zeta\left(\rho^{ \pm}\right)=\left(\pm u_{x} ; 0\right)$. This at least defines an invariant of $u / v / w$-tangles, and if the topologists will deliver a "Reidemeister" theorem, it is well defined on $\mathcal{K}^{b h}$.

$$
\zeta: \quad{ }_{u} \bigcap_{x} \longmapsto\left(x:+\left.\right|^{u} ; 0\right) \quad \stackrel{x}{u} \longmapsto\left(x:-\left.\right|^{u} ; 0\right)
$$

Theorem. ζ is (the log of) a universal finite type invariant (a homomorphic expansion) of w -tangles.
Tensorial Interpretation. Let \mathfrak{g} be a finite dimensional Lie algebra (any!). Then there's $\tau: F L(T) \rightarrow \operatorname{Fun}\left(\oplus_{T} \mathfrak{g} \rightarrow \mathfrak{g}\right)$ and $\tau: C W(T) \rightarrow \operatorname{Fun}\left(\oplus_{T} \mathfrak{g}\right)$. Together, $\tau: M(T, H) \rightarrow$ $\operatorname{Fun}\left(\oplus_{T} \mathfrak{g} \rightarrow \oplus_{H} \mathfrak{g}\right)$, and hence

$$
e^{\tau}: M(T, H) \rightarrow \operatorname{Fun}\left(\oplus_{T} \mathfrak{g} \rightarrow \mathcal{U}^{\otimes H}(\mathfrak{g})\right)
$$

ζ and BF Theory. Let A denote a \mathfrak{g}-connection on S^{4} with curvature F_{A}, and B a \mathfrak{g}^{*}-valued 2form on S^{4}. For a hoop γ_{x}, let $\operatorname{hol}_{\gamma_{x}}(A) \in \mathcal{U}(\mathfrak{g})$ be the holonomy of A along γ_{x}. For a ball γ_{u}, let $\mathcal{O}_{\gamma_{u}}(B) \in \mathfrak{g}^{*}$ be the integral of B (transported via A to ∞) on γ_{u}.
Loose Conjecture. For $\gamma \in \mathcal{K}(T, H)$,

$$
\int \mathcal{D} A \mathcal{D} B e^{\int B \wedge F_{A}} \prod_{u} e^{\left.\mathcal{O}_{\gamma_{u}}(B)\right)} \bigotimes_{x} \operatorname{hol}_{\gamma_{x}}(A)=e^{\tau}(\zeta(\gamma))
$$

That is, ζ is a complete evaluation of the BF TQFT.
Issues. How exactly is B transported via A to ∞ ? How does
the ribbon condition arise? Or if it doesn't, could it be that ζ can be generalized??
The β quotient, 1. • Arises when \mathfrak{g} is the 2D non-Abelian Lie algebra.

- Arises when reducing by relations satisfied by the weight system of the Alexander polynomial.
"God created the knots, all else in topology is the work of mortals." Leopold Kronecker (modified)

Paper in progress: $\omega \epsilon \beta / \mathrm{kbh}$

$$
\begin{aligned}
& \begin{array}{l}
\text { Calculus. Let } \beta(H, T) \text { be } \\
\left\{\begin{array}{c|ccc|}
\omega & x & y & \cdots \\
u & \alpha_{u x} & \alpha_{u y} & \cdot \\
v & \alpha_{v x} & \alpha_{v y} & \cdot \\
\vdots & \cdot & \cdot & \cdot \\
\text { rational functions in } \\
\text { variables } t_{u}, \text { one for } \\
\text { each } u \in T .
\end{array}\right\}, \begin{array}{l}
\text { In preparation, } \\
\text { Selmani } \mathrm{B}-\mathrm{N} . \\
\hline
\end{array}
\end{array} \\
& t m_{w}^{u v}: \begin{array}{c|c}
\omega & \cdots \\
\hline u & \alpha \\
v & \beta \\
\vdots & \gamma
\end{array} \quad \begin{array}{c|c}
\omega & \cdots \\
\hline w & \alpha+\beta \\
& \\
& \\
&
\end{array} \\
& \begin{array}{c|c|c|c}
\omega_{1} & H_{1} \\
\hline T_{1} & \alpha_{1} & \omega_{2} & H_{2} \\
\hline T_{2} & \alpha_{2} \\
= & \omega_{1} \omega_{2} & H_{1} & H_{2} \\
\hline T_{1} & \alpha_{1} & 0 \\
T_{2} & 0 & \alpha_{2}
\end{array}, \\
& h m_{z}^{x y}: \begin{array}{c|ccc}
\omega & x & y & \cdots
\end{array} \mapsto \begin{array}{c|cc}
\omega & z & \cdots \\
\hline \vdots & \alpha & \beta \\
\gamma
\end{array} \mapsto \\
& t h a^{u x}: \begin{array}{c|cc}
\omega & x & \cdots \\
u & \alpha & \beta \\
\vdots & \gamma & \delta
\end{array}, \begin{array}{c|cc}
\omega \epsilon & x & \cdots \\
\hline u & \alpha(1+\langle\gamma\rangle / \epsilon) & \beta(1+\langle\gamma\rangle / \epsilon) \\
\hline
\end{array},
\end{aligned}
$$

where $\epsilon:=1+\alpha,\langle\alpha\rangle:=\sum_{v} \alpha_{v}$, and $\langle\gamma\rangle:=\sum_{v \neq u} \gamma_{v}$, and let

$$
R_{u x}^{+}:=\begin{array}{c|c}
1 & x \\
\hline u & t_{u}-1
\end{array} \quad R_{u x}^{-}:=\begin{array}{c|c}
1 & x \\
\hline u & t_{u}^{-1}-1
\end{array}
$$

On long knots, ω is the Alexander polynomial! Why bother? (1) An ultimate Alexander sinvariant: Manifestly polynomial (time and size) extension of the (multivariable) Alexan der polynomial to tangles. Every step of the computation is the computation of the invariant of some topological thing (no fishy
 Gaussian elimination!). If there should be an Alexander invariant to have an algebraic categorification, it is this one. See also $\omega \epsilon \beta /$ regina, $\omega \epsilon \beta /$ gwu.
Why bother? (2) Related to A-T, K-V, and E-K, should have vast generalization beyond w-knots and the Alexander polynomial.

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Newton-1301/

A Quick Introduction to Khovanov
Homology
Dror Bar-Natan,
Hamburg, August 2012
Abstract. I will tell the Kauffman bracket story of the Jones polynomial as Kauffman told it in 1987, then the Khovanov homology story as Khovanov told it in 1999, and finally the "local Khovanov homology" story as I understood it in 2003. At the end of our 90 minutes we will understand what is a "Jones homology", how to generalize it to tangles and to cobordisms between tangles, and why it is computable relatively efficiently. But we will say nothing about more modern stuff Alexander and HOMFLYPT Alexander and HOMFLYPT
knot homologies, and the categorification of $s l_{2}$ and other Lie algebras.

Why Bother?

What is Categorification=Concretization=deabstraction? " 3 " is \{cow, cow, cow $\}$ and: \{pig, pig, pig\} and many other things... . categorification is choosing which 3 it is!! N. Natural numbers \mapsto finite sets, equalities \mapsto bi-:
ections, inequalities \mapsto injections and surjections: jections, inequalities
$\binom{2 n}{n}=\sum\binom{n}{k}^{2} \mapsto$

$$
\binom{X \times\{1,2\}}{|X|} \leftrightarrow \bigcup\binom{X}{k} \times\binom{ X}{k} .
$$

Weaker Categorification. Do the same in the category of vector spaces: " 3 " becomes V s.t. $\operatorname{dim} V=3$, or better, $V^{\bullet}=\left(\cdots V^{r-1} \rightarrow V^{r} \rightarrow V^{r+1} \cdots\right)$ s.t. $d^{2}=0$ and

Khovanov: $K(L)$ is a chain complex of graded \mathbb{Z}-modules;
$V=\operatorname{span}\left\langle v_{+}, v_{-}\right\rangle ; \quad \operatorname{deg} v_{ \pm}= \pm 1 ; \quad q \operatorname{dim} V=q+q^{-1} ;$
$K\left(\bigcirc^{k}\right)=V^{\otimes k} ; \quad K(\circledast)=\operatorname{Flatten}(0 \rightarrow \underset{\text { height } 0}{K()()\{1\}} \rightarrow \underset{\text { height } 1}{K(\asymp)}\{2\} \rightarrow 0) ;$
$K\left(\chi^{\star}\right)=$ Flatten $(0 \rightarrow \underset{\text { height }-1}{K(\asymp)}\{-2\} \rightarrow \underset{\text { height } 0}{K()()\{-1\} \rightarrow 0) ;}$,
$\chi\left(V^{\bullet}\right):=\sum(-1)^{r} \operatorname{dim} V^{r}=3=\sum(-1)^{r} \operatorname{dim} H^{r}$. Equalities become homotopies between complexes.

$$
\text { Categorifying } \mathbb{Z}\left[q^{ \pm 1}\right] \quad f=\sum_{j} a_{j} q^{j} \text { be- }
$$ comes $V=\bigoplus V_{j}$ s.t. $q \operatorname{dim} V$:= $\sum q^{j} \operatorname{dim} V_{j}=f, \quad$ or better, $V^{\bullet}=\left(\cdots V^{r-1} \rightarrow V^{r} \rightarrow V^{r+1} \cdots\right)$ s.t. $d^{2}=0, \quad \operatorname{deg} d=0$, and $\chi_{q}\left(V^{\bullet}\right):=\sum(-1)^{r} q \operatorname{dim} V^{r}=f=$ $V\{l\}_{j}:=V_{j-l}$, we get $q \operatorname{dim} V\{l\}=$ $q^{l} q \operatorname{dim} V$.

$$
=q+q^{3}+q^{5}-q^{9} .
$$

$$
3 q^{5}\left(q+q^{-1}\right)^{2}
$$

$$
q^{6}\left(q+q^{-1}\right)^{3}
$$

(here $(-1)^{\xi}:=(-1)^{\sum_{i<j} \xi_{i}}$ if $\xi_{j}=\star$)

$$
=K(®) .
$$

Theorem 1. The graded Euler characteristic of $K(L)$ is $J(L)$.
Theorem 2. The homology $\operatorname{Kh}(L)$ of $K(L)$ is a link invariant.
Theorem 3. $\operatorname{Kh}(L)$ is strictly stronger than $J(L): J\left(\overline{5}_{1}\right)=J\left(10_{132}\right)$ yet $\operatorname{Kh}\left(\overline{5}_{1}\right) \neq \operatorname{Kh}\left(10_{132}\right)$.
References. Khovanov's arXiv:math.QA/9908171 and arXiv:math.QA/0103190 and my
http://www.math.toronto.edu/~drorbn/papers/Categorification/.

$$
\begin{aligned}
& \bigcirc \bigcirc \rightarrow(V \otimes V \xrightarrow{\rightarrow} V) \quad m:\left\{\begin{array}{l}
v_{+} \otimes v_{-} \mapsto v_{-} \\
v_{-} \otimes v_{+} \otimes v_{+} \mapsto v_{-} \\
v_{-} \otimes v_{-} \mapsto 0
\end{array}\right. \\
& (\bigcirc) \longrightarrow(V \otimes V \xrightarrow{m} V) \quad m:\left\{\begin{array}{lll}
v_{+} \otimes v_{-} \mapsto v_{-} & v_{+} \otimes v_{+} \mapsto v_{+} & \begin{array}{l}
\sum_{\text {N }}(-1)^{r} q \operatorname{dim} H^{r} . \\
v_{-} \otimes v_{+} \mapsto v_{-} \\
v_{-} \otimes v_{-} \mapsto 0
\end{array} \\
\text { Note. } & \text { Setting }
\end{array}\right.
\end{aligned}
$$

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Hamburg-1208/

The Reduction Lemma. If ϕ is an isomorphism then the complex

$$
[C] \xrightarrow{\binom{\alpha}{\beta}}\left[\begin{array}{l}
b_{1} \\
D
\end{array}\right] \xrightarrow{\left(\begin{array}{ll}
\phi & \delta \\
\gamma & \epsilon
\end{array}\right)}\left[\begin{array}{l}
b_{2} \\
E
\end{array}\right] \xrightarrow{\left(\begin{array}{ll}
\mu & \nu
\end{array}\right)}[F]
$$

is isomorphic to the (direct sum) complex

$$
[C] \xrightarrow{\binom{0}{\beta}}\left[\begin{array}{c}
b_{1} \\
D
\end{array}\right] \xrightarrow{\left(\begin{array}{cc}
\phi & 0 \\
0 & \epsilon-\gamma \phi^{-1} \delta
\end{array}\right)}\left[\begin{array}{c}
b_{2} \\
E
\end{array}\right] \xrightarrow{\left(\begin{array}{ll}
0 & \nu
\end{array}\right)}[F]
$$

Functoriality / cobordisms.

Invariance under R2.
 スン $x \xrightarrow{\infty} \approx$

[^5]

A more general theory: Remove G and NC , add
4Tu:

(minor further revisions are necessary)

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Hamburg-1208/

The Most Important Missing Infrastructure Project in Knot Theory
January-23-12
10:12 AM
An "infrastructure project" is hard (and sometimes non-glorious) work that's done now and pays off later.

An example, and the most important one within knot theory, is the tabulation of knots up to 10 crossings. I think it precedes Rolfsen, yet the result is often called "the Rolfsen Table of Knots", as it is famously printed as an appendix to the famous book by Rolfsen. There is no doubt the production of the Rolfsen table was hard and non-glorious. Yet its impact was and is tremendous. Every new thought in knot theory is tested against the Rolfsen table, and it is hard to find a paper in knot theory that doesn't refer to the Rolfsen table in one way or another.

A second example is the Hoste-Thistlethwaite tabulation of knots with up to 17 crossings. Perhaps more fun to do as the real hard work was delegated to a machine, yet hard it certainly was: a proof is in the fact that nobody so far had tried to replicate their work, not even to a smaller crossing number. Yet again, it is hard to overestimate the value of that project: in many ways the Rolfsen table is "not yet generic", and many phenomena that appear to be rare when looking at the Rolfsen table become the rule when the view is expanded. Likewise, other phenomena only appear for the first time when looking at higher crossing numbers.

But as I like to say, knots are the wrong object to study in knot theory. Let me quote (with some variation) my own (with Dancso) "WKO" paper:

Studying knots on their own is the parallel of studying cakes and pastries as they come out of the bakery - we sure want to make them our own, but the theory of desserts is more about the ingredients and how they are put together than about the end products. In algebraic knot theory this reflects through the fact that knots are not finitely generated in any sense (hence they must be made of some more basic ingredients), and through the fact that there are very few operations defined on knots (connected sums and satellite operations being the main exceptions), and thus most interesting properties of knots are transcendental, or nonalgebraic, when viewed from within the algebra of knots and operations on knots (see [AKTCFA]).

The right objects for study in knot theory are thus the ingredients that make up knots and that permit a richer algebraic structure. These are braids (which are already well-studied and tabulated) and even more so tangles and tangled graphs.

The interchange of I-95 and I-695, northeast of Baltimore. (more)

From [AKT-CFA]

In my mind it would be better to leave these questions to the tabulator. Anything is better than nothing, yet good tabulators would try to tabulate the more general things from which the more special ones can be sieved relatively easily, and would see that their programs already contain all that would be easy to implement within their frameworks. Counting legs is easy and can be left to the end user. Determining symmetries is better done along with the enumeration itself, and so it should.

An even better tabulation should come with a modern front-end - a set of programs for basic manipulations of tangles, and a web-based "tangle atlas" for an even easier access.

Overall this would be a major project, well worthy of your time.
he Knot Itlas
Gnyone Can Edit http://katlas.org/
(Source: http://katlas.math.toronto.edu/drorbn/AcademicPensieve/2012-01/)

A Bit on Maxwell's Equations

Prerequisites.

- Poincaré's Lemma, which says that on \mathbb{R}^{n}, every closed form is exact. That is, if $d \omega=0$, then there exists η with $d \eta=\omega$.
- Integration by parts: $\int \omega \wedge d \eta=$ $-(-1)^{\operatorname{deg} \omega} \int(d \omega) \wedge \eta$ on domains that have no boundary.
- The Hodge star operator \star which satisfies $\omega \wedge$ $\star \eta=\langle\omega, \eta\rangle d x_{1} \cdots d x_{n}$ whenever ω and η are of the same degree.
- The simplesest least action principle: the extremes of $q \mapsto \int_{a}^{b}\left(\frac{1}{2} m \dot{q}^{2}(t)-V(q(t))\right) d t$ occur when $m \ddot{q}=-V^{\prime}(q(t))$. That is, when $F=m a$.

The Feynman Lectures on Physics vol. II, page 18-2

The Action Principle. The Vector Field is a compactly supported 1-form A on \mathbb{R}^{4} which extremizes the action

$$
S_{J}(A):=\int_{\mathbb{R}^{4}} \frac{1}{2}\|d A\|^{2} d t d x d y d z+J \wedge A
$$

where the 3 -form J is the charge-current.
The Euler-Lagrange Equations in this case are $d \star d A=J$, meaning that there's no hope for a solution unless $d J=0$, and that we might as well (think Poincaré's Lemma!) change variables to $F:=d A$. We thus get

$$
d J=0 \quad d F=0 \quad d \star F=J
$$

These are the Maxwell equations! Indeed, writing $F=\left(E_{x} d x d t+E_{y} d y d t+E_{z} d z d t\right)+\left(B_{x} d y d z+B_{y} d z d x+B_{z} d x d y\right)$ and $J=\rho d x d y d z-j_{x} d y d z d t-j_{y} d z d x d t-j_{z} d x d y d t$, we find:

$$
\begin{array}{ccl}
\hline d J=0 \Longrightarrow & \frac{\partial \rho}{\partial t}+\operatorname{div} j=0 & \text { "conservation of charge" } \\
d F=0 \Longrightarrow & \operatorname{div} B=0 & \text { "no magnetic monopoles" } \\
d * F=J \Longrightarrow & \operatorname{curl} E=-\frac{\partial B}{\partial t} & \text { that's how generators work! } \\
& \operatorname{div} E=-\rho & \text { "electrostatics" } \\
& \operatorname{curl} B=-\frac{\partial E}{\partial t}+j & \text { that's how electromagnets work! }
\end{array}
$$

Exercise. Use the Lorentz metric to fix the sign errors.
Exercise. Use pullbacks along Lorentz transformations to figure out how E and B (and j and ρ) appear to moving observers.
Exercise. With $d s^{2}=c^{2} d t^{2}-d x^{2}-d y^{2}-d z^{2}$ use $S=m c \int_{e_{1}}^{e^{2}}(d s+e A)$ to derive Feynman's "law of motion" and "force law".

November 30, 2011; http://katlas.math.toronto.edu/drorbn/AcademicPensieve/2011-11\#OtherFiles

Let K be a unital algebra over a field \mathbb{F} with char $\mathbb{F}=0$, and Why Care?
let $I \subset K$ be an "augmentation ideal"; so $K / I \xrightarrow[\epsilon]{\sim} \mathbb{F}$. Definition. Say that K is quadratic if its associated graded $\operatorname{gr} K=\bigoplus_{p=0}^{\infty} I^{p} / I^{p+1}$ is a quadratic algebra. Alternatively, let $A=q(K)=\left\langle V=I / I^{2}\right\rangle /\left\langle R_{2}=\operatorname{ker}\left(\bar{\mu}_{2}: V \otimes V \rightarrow\right.\right.$ $\left.\left.I^{2} / I^{3}\right)\right\rangle$ be the "quadratic approximation" to $K(q$ is a lovely functor). Then K is quadratic iff the obvious $\mu: A \rightarrow \operatorname{gr} K$ is an isomorphism. If G is a group, we say it is quadratic if its group ring is, with its augmentation ideal.
The Overall Strategy. Consider the "singularity tower" of (K, I) (here ":" means \otimes_{K} and μ is (always) multiplication):

$$
\cdots I^{: p+1} \xrightarrow{\mu_{p+1}} I^{: p} \xrightarrow{\mu_{p}} I^{: p-1} \longrightarrow \cdots \longrightarrow K
$$

We care as $\operatorname{im}\left(\mu^{p}=\mu_{1} \circ \cdots \circ \mu_{p}\right)=I^{p}$, so $I^{p} / I^{p+1}=$ $\operatorname{im} \mu^{p} / \operatorname{im} \mu^{p+1}$. Hence we ask:

- What's $I^{: p} / \mu\left(I^{: p+1}\right)$? - How injective is this tower? Lemma. $I^{: p} / \mu\left(I^{: p+1}\right) \simeq\left(I / I^{2}\right)^{\otimes p}=V^{\otimes p} ;$ set $\pi: I^{: p} \rightarrow V^{\otimes p}$. Flow Chart.

Proposition 1. The sequence
$\Re_{p}:=\bigoplus_{j=1}^{p-1}\left(I^{: j-1}: \mathfrak{R}_{2}: I^{: p-j-1}\right) \xrightarrow{\partial} I^{: p} \xrightarrow{\mu_{p}} I^{: p-1}$ is exact, where $\mathfrak{R}_{2}:=\operatorname{ker} \mu: I^{2} \rightarrow I$; so (K, I) is " 2 -local". The Free Case. If J is an augmentation ideal in $K=F=$ $\left\langle x_{i}\right\rangle$, define $\psi: F \rightarrow F$ by $x_{i} \mapsto x_{i}+\epsilon\left(x_{i}\right)$. Then $J_{0}:=\psi(J)$ $\left\langle x_{i}\right\rangle$, define $\psi: F \rightarrow F$ by $x_{i} \mapsto x_{i}+\epsilon\left(x_{i}\right)$. Then $J_{0}:=\psi(J)$
is $\{w \in F: \operatorname{deg} w>0\}$. For J_{0} it is easy to check that $\mathfrak{R}_{2}=$ $\Re_{p}=0$, and hence the same is true for every J.
The General Case. If $K=F /\langle M\rangle$ (where M is a vector space
of "moves") and $I \subset K$, then $I=J /\langle M\rangle$ where $J \subset F$. ThenThe X Lemma (inspired by [Hut]).
$I^{: p}=J^{: p} / \sum J^{: j-1}:\langle M\rangle: J^{: p-j}$ and we have
 \mathcal{R}_{2} is simpler than may seem! It's $J^{2} \xrightarrow{\mu_{F}} J \supset M \operatorname{ker}\left(\beta_{1} \circ \alpha_{0}\right) / \operatorname{ker} \alpha_{0} \simeq \operatorname{ker}\left(\beta_{0} \circ \alpha_{1}\right) / \operatorname{ker} \alpha_{1}$.
an "augmentation bimodule" $\left(I \mathfrak{R}_{2}=\right.$ $0=\mathfrak{R}_{2} I$ thus $x r=\epsilon(x) r=r \epsilon(x)=r x$ for $x \in K$ and $r \in \mathfrak{R}_{2}$), and hence $\Re_{2}=\pi_{2}\left(\mu_{F}^{-1} M\right)$.
\Re_{p} is simpler than may seem! In $\Re_{p, j}=I^{: j-1}: \mathfrak{R}_{2}: I^{p p-j-1}$ the I factors may be replaced by $V=I / I^{2}$. Hence

$$
\Re_{p} \simeq \bigoplus_{j=1}^{p-1} V^{\oplus j-1} \otimes \pi_{2}\left(\mu_{F}^{-1} M\right) \otimes V^{\otimes p-j-1}
$$

Claim. $\pi\left(\Re_{p, j}\right)=R_{p, j} ;$ namely,

$$
\pi\left(I^{: j-1}: \Re_{2}: I^{: p-j-1}\right)=V^{\otimes j-1} \otimes R_{2} \otimes V^{\otimes p-j-1}
$$

 $\mathrm{So}^{2} \operatorname{ker}(\mu)=\pi_{p}\left(\mu_{F}^{-1}\left(\operatorname{ker} \pi_{p-1}\right)\right)=\pi_{p}\left(\sum \mu_{F}^{-1}\left(J^{:}:\langle M\rangle: J^{*}\right)\right)=$ If the above diagram is Conway (\asymp) exact, then its two $\sum \pi_{p}\left(J^{i}: \mu_{F}^{-1}\langle M\rangle: J^{i}\right)=\sum I^{i}: \mathfrak{R}_{2}: I^{i}=: \sum_{j=1}^{p-1} \mathfrak{R}_{p, j}$. if $A_{0} \rightarrow B \rightarrow C_{0}$ and $A_{1} \rightarrow B \rightarrow C_{1}$ are exact, then

- In abstract generality, gr K is a simplified version of K and if it is quadratic it is as simple as it may be without being silly. - In some concrete (somewhat generalized) knot theoretic cases, A is a space of "universal Lie algebraic formulas" and the "primary approach" for proving (strong) quadraticity, constructing an appropriate homomorphism $Z: K \rightarrow \hat{A}$, becomes wonderful mathematics:

| K | u-Knots and
 Braids | v-Knots | w-Knots |
| :--- | :--- | :--- | :--- |
| A | Metrized Lie
 algebras [BN1] $]$ | Lie bialgebras [Hav]
 Linite dimensional Lie
 algebras [BN3] | |
| Z | Associators
 [Dri, BND] | Etingof-Kazhdan
 quantization
 (EK, BN2] | Kashiwara-Vergne-
 Alekseev-Torossian
 [KV, AT] |

2-Injectivity. A (one-sided infinite) sequence

$$
\cdots \longrightarrow K_{p+1} \xrightarrow{\delta_{p+1}} K_{p} \xrightarrow{\delta_{p}} \cdots \longrightarrow K_{0}=K
$$

is "injective" if for all $p>0$, $\operatorname{ker} \delta_{p}=0$. It is " 2 -injective" if its "1-reduction"

$$
\cdots \longrightarrow \frac{K_{p+1}}{\operatorname{ker} \delta_{p+1}} \xrightarrow{\bar{\delta}_{p+1}} \frac{K_{p}}{\operatorname{ker} \delta_{p}} \xrightarrow{\bar{\delta}_{p}} \frac{K_{p-1}}{\operatorname{ker} \delta_{p-1}} \longrightarrow \cdots
$$

is injective; i.e. if for all $p, \operatorname{ker}\left(\delta_{p} \circ \delta_{p+1}\right)=\operatorname{ker} \delta_{p+1}$. A pair (K, I) is "2-injective" if its singularity tower is 2 -injective.
Proposition 2. If (K, I) is 2-local and 2-injective, it is quadratic.
Proof. Staring at the 1-reduced sequence $\frac{I^{: p p+1}}{\text { ker } \mu_{p+1}} \xrightarrow{\mu_{p+1}} \frac{I^{: p}}{\operatorname{ker} \mu_{p}} \xrightarrow{\mu_{p}} \cdots \longrightarrow K$, get $\frac{I^{p}}{I^{p+1}} \simeq$ $=\frac{I^{p, p} / \operatorname{ker} \mu_{p}}{\mu\left(I^{p+1} / \operatorname{ker} \mu_{p+1}\right)} \simeq \frac{I^{: p}}{\mu\left(I^{p+1}+\operatorname{ker} \mu_{p}\right.}$. But $\frac{I^{: p}}{\mu\left(I^{p p+1}\right)} \simeq\left(I / I^{2}\right)^{\otimes p}$, so the above is $\left(I / I^{2}\right)^{\otimes p} / \sum_{I}\left(I^{j p-1}: \mathfrak{R}_{2}: I^{: p-j-1}\right)$. But that's diagonals have the same "2-injectivity defect". That is,
if $A_{0} \rightarrow B \rightarrow C_{0}$ and $A_{1} \rightarrow B \rightarrow C_{1}$ are exact, then

Proof. $\frac{\operatorname{ker}\left(\beta_{1} \circ \alpha_{0}\right)}{\operatorname{ker} \alpha_{0}} \xrightarrow[\alpha_{0}]{\sim} \operatorname{ker} \beta_{1} \cap \operatorname{im} \alpha_{0}$
 "topological syzygy".
Conclusion. We need to know that (K, I) is "syzygy complete" - that every diagrammatic syzygy is also a topological syzygy, that $\operatorname{ker}(\pi \circ \partial)=\operatorname{ker}(\partial)$.

$$
\left(K / I^{p+1}\right)^{\star}=(\text { invariants of type } p)=: \mathcal{V}_{p}
$$

$$
\left(I^{p} / I^{p+1}\right)^{\star}=\mathcal{V}_{p} / \mathcal{V}_{p-1} \quad V=\left\langle t^{i j} \mid t^{i j}=t^{j i}\right\rangle=\langle\mid \mapsto\rangle
$$

ker $\bar{\mu}_{2}=\left\langle\left[t^{i j}, t^{k l}\right]=0=\left[t^{i j}, t^{i k}+t^{j k}\right]\right\rangle=\langle 4 \mathrm{~T}$ relations \rangle

$$
A=q(K)=\binom{\text { horizontal chord dia- }}{\text { grams mod 4T }}=\left\langle\begin{array}{l|l}
\hline & -
\end{array}\right) / 4 \mathrm{~T}
$$

Z: universal finite type invariant, the Kontsevich integral. $P v B_{n}$ is the group

$$
\left\langle\sigma_{i j}: 1 \leq i \neq j \leq n\right\rangle / \begin{aligned}
\sigma_{i j} \sigma_{i k} \sigma_{j k} & =\sigma_{j k} \sigma_{i k} \sigma_{i j} \\
\sigma_{i j} \sigma_{k l} & =\sigma_{k l} \sigma_{i j}
\end{aligned}
$$

of "pure virtual braids" ("braids when you look", "blunder braids"):

R3:

The Main Theorem [Lee]. $P v B_{n}$ is quadratic.
$I=$
[GPV]

with $\boldsymbol{x}^{2}=\tilde{\sigma}_{i j}=\sigma_{i j}-1=$ 天 $-\chi$, the "semi-virtual crossing".
$\begin{aligned} V= & I / I^{2}=\left\langle\begin{array}{c}\text { v-braids } \\ \text { with one }\end{array}\right\rangle /(\text { 天 }=\chi) & a_{24}=\mid\end{aligned}$
$A_{n}=T V /\left\langle\left[a_{i j}, a_{i k}\right]+\left[a_{i j}, a_{j k}\right]+\left[a_{i k}, a_{j k}\right], c_{k l}^{i j}=\left[a_{i j}, a_{k l}\right]\right\rangle$,
$y_{i j k}=\underset{\rightarrow \mid}{ }|+|\rightarrow|+\underset{\rightarrow}{\rightarrow} \xrightarrow[\rightarrow]{\rightarrow}-\xrightarrow{\rightarrow}$
$I^{: p}$.

James Gillespie's Sightline \#2 (1984) is a syzygy, and (arguably) Toronto's largest sculpture. Find it next to University of Toronto's Hart House.

$\Re_{2}\left(P v B_{n}\right)$ is generated as a vector space by $C_{k l}^{i j}$ and
$+$

Syzygy Completeness, for $P v B_{n}$, means:

$$
\Re_{p}=\bigoplus_{j=1}^{p-1} \Re_{p, j} \xrightarrow{\partial} I^{: p} \xrightarrow{\pi} V^{\otimes p}
$$

$\left\{\tilde{\sigma}_{12}: \underline{Y_{345}}: \tilde{\sigma}_{67}: \ldots\right\} \longrightarrow$
$\left\{\tilde{\sigma}_{12}: Y_{345}: \tilde{\sigma}_{67}: \ldots\right\} \longrightarrow\left\{a_{12} y_{345} a_{67} \ldots\right\}$
Is every relation between the $y_{i j k}$'s and the $c_{k l}^{i j}$'s also a relation between the $Y_{i j k}$'s and the $C_{k l}^{i j}$'s?

Theorem S. Let D be the free associative algebra generated by symbols $a_{i j}, y_{i j k}$ and $c_{k l}^{i j}$, where $1 \leq i, j, k, l \leq n$ are distinct integers. Let D_{0} be the part of D with only $a_{i j}$ symbols and let D_{1} be the span of the monomials in D having only $a_{i j}$ symbols, with exactly one exception that may be either a $y_{i j k}$ or a $c_{k l}^{i j}$. Let $\partial: D_{1} \rightarrow D_{0}$ be the map defined by

$$
\begin{aligned}
y_{i j k} & \mapsto\left[a_{i j}, a_{i k}\right]+\left[a_{i j}, a_{j k}\right]+\left[a_{i k}, a_{j k}\right], \\
c_{k l}^{i j} & \mapsto\left[a_{i j}, a_{k l}\right] .
\end{aligned}
$$

Then ker ∂ is generated by a family of elements readable from the picture above and by a few similar but lesser families.

Footnotes

1. Following a homonymous paper and thesis by Peter Lee [Lee]. All serious work here is his and was extremely patiently explained by him to DBN. Page design by the latter.
2. The proof presented here is broken. Specifically, at the very end of the proof of the "general case" of Proposition 1 the sum that makes up ker π_{p-1} is interchaged with μ_{F}^{-1}. This is invalid; in general it is not true that $T^{-1}(U+V)=T^{-1}(U)+T^{-1}(V)$, when T is a linear transformation and U and V are subspaces of its target space. We thank Alexander Polishchuk for noting this gap. A handwritten non-detailed fix can be found at http://katlas.math.toronto.edu/drorbn/AcademicPensieve/Projects/Quadraticity/, especially under "Oregon Handout Post Mortem". A fuller fix will be made available at a later time.

References

[AT] A. Alekseev and C. Torossian, The Kashiwara-Vergne conjecture and Drinfeld's associators, arXiv:0802.4300.
[BN1] D. Bar-Natan, On the Vassiliev knot invariants, Topology 34 (1995) 423-472.
[BN2] D. Bar-Natan, Facts and Dreams About v-Knots and Etingof-Kazhdan, talk presented at the Swiss Knots 2011 conference. Video and more at http://www.math.toronto.edu/~drorbn/Talks/SwissKnots-1105/.
[BN3] D. Bar-Natan, Finite Type Invariants of W-Knotted Objects: From Alexander to Kashiwara and Vergne, paper and related files at http://www.math.toronto.edu/~drorbn/papers/WKO/.
[BND] D. Bar-Natan, and Z. Dancso, Homomorphic Expansions for Knotted Trivalent Graphs, arXiv:1103.1896.
[BEER] L. Bartholdi, B. Enriquez, P. Etingof, and E. Rains, Groups and Lie algebras corresponding to the YangBaxter equations, Journal of Algebra 305-2 (2006) 742-764, arXiv:math.RA/0509661.
[Dri] V. G. Drinfel'd, Quasi-Hopf Algebras, Leningrad Math. J. 1 (1990) 1419-1457 and On Quasitriangular Quasi-Hopf Algebras and a Group Closely Connected with Gal($\overline{\mathbb{Q}} / \mathbb{Q})$, Leningrad Math. J. 2 (1991) 829860.
[EK] P. Etingof and D. Kazhdan, Quantization of Lie Bialgebras, I, Selecta Mathematica, New Series 2 (1996) 1-41, arXiv:q-alg/9506005, and Quantization of Lie Bialgebras, II, Selecta Mathematica, New Series 4 (1998) 213-231, arXiv:q-alg/9701038.
[GPV] M. Goussarov, M. Polyak, and O. Viro, Finite type invariants of classical and virtual knots, Topology 39 (2000) 1045-1068, arXiv:math.GT/9810073.
[Hav] A. Haviv, Towards a diagrammatic analogue of the Reshetikhin-Turaev link invariants, Hebrew University PhD thesis, September 2002, arXiv:math.QA/0211031.
[Hut] M. Hutchings, Integration of singular braid invariants and graph cohomology, Transactions of the AMS 350 (1998) 1791-1809.
[KV] M. Kashiwara and M. Vergne, The Campbell-Hausdorff Formula and Invariant Hyperfunctions, Invent. Math. 47 (1978) 249-272.
[Kau] L. H. Kauffman, Virtual Knot Theory, European J. Comb. 20 (1999) 663-690, arXiv:math.GT/9811028.
[KL] L. H. Kauffman and S. Lambropoulou, Virtual Braids, Fundamenta Mathematicae 184 (2005) 159-186, arXiv:math.GT/0407349.
[Koh] T. Kohno, Monodromy representations of braid groups and Yang-Baxter equations, Ann. Inst. Fourier 37 (1987) 139-160.
[Lee] P. Lee, The Pure Virtual Braid Group is Quadratic, in preparation. See links at http://www.math.toronto.edu/drorbn/Talks/Oregon-1108/.

More at http://www.math.toronto.edu/~drorbn/Talks/Oregon-1108/

After $A \longmapsto A / \sqrt{k}$, and setting $K=\frac{1}{\sqrt{k}}$:
$Z(\gamma)=\int D A t r_{R} \operatorname{holr}(A) e^{\frac{i}{4 \pi} \underbrace{\operatorname{tr}^{3}\left(A^{\wedge} d A+\frac{2 k}{3} A \cap A A\right)}_{M_{B^{3}}}}$ $A \in \Omega^{\prime}\left(\mathbb{K}^{3}, g\right)$
Whee trehol $(A)=\operatorname{tr}_{R}\left(1+\hbar \int d s A(\dot{\gamma}(s))\right.$
$\begin{gathered}\text { Trouble "d is } \\ \text { not invethle! }\end{gathered}+\hbar^{2} \int_{S_{1}<S_{2}} A\left(\dot{\gamma}\left(s_{1}\right)\right) A\left(\dot{\gamma}\left(s_{2}\right)\right)+\ldots$.
Gauge Invariance: $C S(A)$ is invariant under
$A \mapsto A+\delta A, \quad \delta A=-(d C+\hbar[A, C]), c \in \Omega^{0}((R, g)$
Back to the drawing beard....
Suppose $\mathcal{L}(x)$ on \mathbb{R}^{n} is invariant under a k-dimensional Group G w/ Lie algebra $g=\left\langle g_{a}\right\rangle$, and suppose $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ is such th r $f F=0$ is a suction of the G-action:
$G \rightarrow \mathbb{R}^{n}{ }_{\rightarrow} \mathbb{H}_{3}^{k}$

Then

$\int_{\mathbb{R}^{1}} d x e^{i \alpha} \sim \int_{\mathbb{R}^{1}} d x e^{i \alpha} f(F(x)) \cdot \operatorname{det}\left(\frac{\partial F^{a}}{\partial g_{b}}\right)(x)$
$\left.\sim \int_{\mathbb{R}^{n}} d x \int_{\mathbb{R}^{l}} d \phi e^{i(l+F(x) \cdot \phi)} d e t\left(\frac{\partial F^{a}}{\partial g_{b}}\right)(x)\right\} \begin{aligned} & \text { Put wo baton } \\ & \text { theory for } \\ & \text { determinants }\end{aligned}$
$\operatorname{det}\left(J_{0}+\hbar J_{1}(x)\right)=\operatorname{det}\left(J_{0}\right) \sum_{m} \hbar^{m} \operatorname{Tr}\left(\Lambda^{m} J_{0}^{-1}\right) \cdot\left(\Lambda^{m} J_{1}(x)\right)$
$\begin{aligned} & \text { Berezina } \\ & \text { Fermionic } \\ & \text { Anti-commating }\end{aligned}$
So
$Z \sim \int_{\mathbb{R}^{n}} d x \int_{\mathbb{R}^{k}} d \phi \int d^{k} \bar{C} \int d^{k} C l^{i \alpha_{t_{0} t}}$ whee
$\alpha_{\text {tot }_{0}}=\underbrace{\alpha(x)}_{\text {the original }}+\underbrace{F(x) \cdot \phi}_{\substack{\text { paige- } \\ \text { Fixing }}}+\underbrace{\overline{c_{a}}\left(\frac{\partial F^{a}}{\partial g_{b}} c^{b}\right.}_{\text {"ghosts" }}$

In chern-simons, w/ $F(A):=d^{*} A=\partial_{i} A^{i}$, get

$$
\alpha_{\text {tot }}=\frac{k}{4 \pi} \int_{\mathbb{R}^{3}} t<\left(A^{\wedge}\right) A+\frac{2}{3} A^{\wedge} A^{\wedge} A+\varnothing \partial_{i} A^{i}
$$

So wi have

$$
+\bar{C} \partial_{i}\left(\partial^{i}+a d A^{i}\right) C
$$

* A bosonic quadratic term involving $\binom{A}{\theta}$.
* A fermionic quadratic term involving \bar{C}, C.
* A cubic interaction of $3 A^{\prime}$ s.
* A cubic A cc vortex.
* Funny A and γ "holonomy" vertices along γ.

After mach crunching:
$Z(\gamma)=\sum_{m=0}^{\infty} \hbar^{m}$
Where $E(D)$ is constructed as follows:

$$
\left.\int_{c}^{b}\right|_{i a} ^{j} \longrightarrow \frac{i}{2 \pi} \int_{\mathbb{R}^{3}} t a b c \epsilon^{i j k} \quad \int_{s^{\prime}} d s R_{a \beta}^{\alpha} \dot{\gamma}^{i}(s)
$$

$$
\left.\frac{a}{i} V_{b}<c \rightarrow \frac{1}{2 \pi} \int_{k^{3}} d z t_{a b c} \begin{array}{c}
\partial_{x}^{i} \\
\text { anctingony } \\
\text { in b-dinction }
\end{array}\right) \begin{aligned}
& (-) \text { sign for each } \\
& \text { red bop. }
\end{aligned}
$$

By a bit of a miracle, this boils down to. a configuration space intogrel, which in itself, can be reduced to a pre-image count.
... But I run out of steam for tonight...

Banks like knots.
2011-07 Page 1

Definition. A knot invariant is any function whose domain is \{knots\}. Really, we mean a Computable Function whose target space is understandable; e.g.

Example. The conway polynomial is given by

$$
c(\text { N })-c\left(x^{\prime}\right)=z c(50)
$$

and

$$
R(\underbrace{O O O}_{k})= \begin{cases}1 & k=1 \\ 0 & k>1\end{cases}
$$

Exircise. Pick your favourite bask and compute the Conway Polynomial of its logo.
Definition. Any
 using $V(X)=V\left(\lambda_{1}\right)-V\left(\lambda^{\lambda}\right)$. (Think "differetiation") Definition. V is of type m if always

$$
V\left(\frac{x>x \ldots x}{m+1}\right)=0 \quad \text { (think "polynomial") }
$$

Conjecture. Finite type invariants separate knots. Theorem. If $C(k)=\sum_{m=0}^{\infty} V_{m}(k) z^{m}$ then V_{m} is of type m .
proof. $C\left(X^{\lambda}\right)=C(N)-C\left(\aleph^{9}\right)=z C(\eta \Gamma) \square$ Let V be of type m; then $V^{(m)}$ is constant:

$$
V(\underbrace{X \ldots X_{2}}_{m}, Y)=V(\underbrace{X_{2}, X^{\prime}})
$$

So $W_{V}:=V^{(m)}=\left.V\right|_{\substack{m-s i n g u l a r \\ 1<n g t s}}$ is really a function on m-chord dingranss: $W_{v}:\{\infty\} \rightarrow A$ Claim. Wv satisfies the $4 T$ relation:

Exercise for Lecture 2. Use $\int_{R} e^{-x^{2} / 2}=\sqrt{2 \pi}$, Fubini's theorem, and molar coordinates to compute $\int_{\mathbb{R}^{n}} e^{-11 x\left(11^{2} / 2\right.} d^{n} x$ in two different ways and hence to deduce the volume of S^{n-1}, the (n-1)-dimensional sphere.
Exercise. I. Determine the "Weight system" $W_{V_{m}}$ of the m-th coefficient of the conway polynomial and verify that is satisfies $4 T$.
2. Learn somewhere about the Jones polynomid, and do the same for its coefficients.
Theorem. (The Fundamental Theorem)
Every "Weight system", ie. Every linear
functional W on $A:=\left\{\begin{array}{c}\text { char } \\ \text { dangrans }\end{array}\right\} / 4 T$ is the with derivative of a type m invariant: $\forall W \exists v$ sit. $W=W_{v}$

| m | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

proof

proposition. The fundamental than holds ff there exists an expansion:

$$
z: K \rightarrow \hat{A} \text { s.t. if } K \text { is }
$$

m-singular, then

$$
\begin{aligned}
& Z(k)=D_{k}+ \\
& \text { hight } \\
& \text { Proof. digress. }
\end{aligned}
$$

Also see my old paper, "On the Vassilicar knot invariants" (google will find...))
$=\ll$ Knot Theory
Loading KnotTheory version of August 22, 2010, 13:36:57.55. Read more at http://katlas.org/wiki/KnotTheory.

The big picture, " K " Case.

very low algebra.

More precisely, let $\mathfrak{g}=\left\langle X_{a}\right\rangle$ be a Lie algebra with an orthonormal basis, and let $R=\left\langle v_{\alpha}\right\rangle$ be a representation. Set

$$
f_{a b c}:=\langle[a, b], c\rangle \quad X_{a} v_{\beta}=\sum_{\not \gamma \gamma} r_{a \gamma}^{\beta} v_{\gamma}
$$

and then

$$
W_{\mathrm{g}, R}: \underbrace{\gamma}_{\alpha} a_{c}^{\beta} \longrightarrow \sum_{a b c \alpha \beta \gamma} f_{a b c} r_{a \gamma}^{\beta} r_{b \alpha}^{\gamma} r_{c \beta}^{\alpha}
$$

Excrsice. Find a fast method to find $w_{g, R}(D)$ when $g=g l_{n}, R=R^{n}$.
Is it related to the Conway polynomial? Universal Representation Theory.
Inspired by $\rho([x, y])=\rho(x) \rho(y)-\rho(y) \rho(x)$, set $U(g)=\langle$ words in $g\rangle /[x, y]=x y-y x$

* Eucry up of g extends to $u(g)$.
* $\exists \Delta: U(g) \rightarrow U(g)^{82}$ by "Word splitting", as must be for $R, \otimes R_{2}$. Exercise. With $y=\langle x, y\rangle /[x, y]=x$, determine $U(g)$. Guess a generalization. Low algebra. A $(\eta \eta) \rightarrow u(g)^{\otimes_{2}}$ via

\& likewise, $A\left(I_{n}\right) \rightarrow U(g)^{\infty n} \Rightarrow$ $A\left(\hat{\imath}_{n}\right)$ is "universe universal rad theory"?
 haven't lost hope of achieving happiness, one day.

Abstract Generalities. (K, I) : an algebra and an "augmentation ideal" in it. $\hat{K}:=\lim K / I^{m}$ the " I-adic completion". $\operatorname{gr}_{I} K:=\widehat{\bigoplus} I^{m} / I^{m+1}$ has a product μ, especially, $\mu_{11}:\left(C=I / I^{2}\right)^{\otimes 2} \rightarrow$ I^{2} / I^{3}. The "quadratic approximation" $\mathcal{A}_{I}(K):=$ $\widehat{F C} /\left\langle\right.$ ker $\left.\mu_{11}\right\rangle$ of K surjects using μ on gr K.

The Prized Object. A "homomorphic \mathcal{A}-expansion": a homomorphic filterred $Z: K \rightarrow \mathcal{A}$ for which $\operatorname{gr} Z: \operatorname{gr} K \rightarrow \mathcal{A} Z:$ universal finite type invariant, the Kontsevich integral. inverts μ.
Dror's Dream. All interesting graded objects and equations, especially those around quantum groups, arise this way.

Example 2. For $K=\mathbb{Q} P v B_{n}=$ "braids when you look", [Lee] shows that a non-homomorphic Z exists. [BEER]: there is no homomorphic one.

- Has kinds, elements, operations, and maybe constants.
- Must have "the free structure over some generators".
- We always allow formal linear combinations.

All
still works!

Why Prized? Sizes K and shows it "as big" as \mathcal{A}; reduces "topological" questions to quadratic algebra questions; gives ${ }^{6}$ life and meaning to questions in graded algebra; universalizes those more than "universal enveloping algebras" and allows for richer quotients.

Presentation. KTG is generated by ribbon twists and the works! tetrahedron Δ, modulo the relation(s):

Example 3. Quandle: a set K with an op \wedge s.t.

$$
\begin{gathered}
1 \wedge x=1, \quad x \wedge 1=x=x \wedge x \\
(x \wedge y) \wedge z=(x \wedge z) \wedge(y \wedge z) \quad \text { (appetizers) } \quad(\text { main })
\end{gathered}
$$

$\mathcal{A}(K)$ is a graded Leibniz ${ }^{2}$ algebra: Roughly, set $\bar{v}:=(v-1)$ (these generate $I!$), feed $1+\bar{x}, 1+\bar{y}, 1+\bar{z}$ in (main), collect the surviving terms of lowest degree:

$$
(\bar{x} \wedge \bar{y}) \wedge \bar{z}=(\bar{x} \wedge \bar{z}) \wedge \bar{y}+\bar{x} \wedge(\bar{y} \wedge \bar{z})
$$

Example 4. Parenthesized braids make a category with some extra operations. An expansion is the same thing as an A_{n-} associator, and the Grothendieck-Teichmüller story ${ }^{3}$ arises

Claim. With $\Phi:=Z(\Delta)$, the above relation becomes equivalent to the Drinfel'd's pentagon of the theory of quasi-Hopf algebras. 5 A $\mathcal{U}(\mathfrak{g})$-Associator:

$$
(A B) C \xrightarrow{\Phi \in \mathcal{U}(\mathfrak{g})^{\otimes 3}} A(B C)
$$

satisfying the "pentagon",
$\Phi 1 \cdot(1 \Delta 1) \Phi \cdot 1 \Phi=(\Delta 11) \Phi \cdot(11 \Delta) \Phi$

$((A B) C) D \longrightarrow(A B)(C D)$

| |
| :---: |
| | |

Video and more at http://www.math.toronto.edu/~drorbn/Talks/SwissKnots-1105/

Facts and Dreams About v-Knots and Etingof-Kazhdan, 2

The w-relations include R234, VR1234, D, Overcrossings Commute

Trivalent w-Tangles.
\(\mathrm{wTT}=\mathrm{PA}\left\langle\begin{array}{c}\mathrm{w}-

generators\end{array}\right|\)| $\mathrm{w}-$ |
| :---: | :---: |
| relations |\(\left|\begin{array}{c}unary \mathrm{w}-

operations\end{array}\right\rangle=\mathrm{CA}\left\langle$$
\begin{array}{c}\text { same } \\
\mathrm{w} / \mathrm{o} \times\end{array}
$$\right\rangle\)
Theorem. There exists a homomorphic expansion Z for wTT. In particular, Z respects $R 4$ and intertwines annulus and disk unzips:

Forbidden Theorem [EK, Ha, ?]. There exists a homomorphic expansion Z for vTT.
Why Forbidden (to me)?

- Minor statement details may be off.
- No fully written proof.
- I don't understand the proof.

Haviv

- There isn't yet a knot-theoretic view of the proof, like there is in the w-case.

Why Should We Care?
Kazhdan

- A gateway into the forbidden territory of "quantum groups".
- Abstractly more pleasing: We study the things, and not just their representations.
- \mathcal{A}^{v} is sometimes easier than \mathcal{A}^{u} : Alexander, say, arises easily from the 2D Lie algebra ${ }^{4}$.
- Potentially, \mathcal{A}^{v} has many more "internal quotients" than there are Lie bialgebras. What are they and what are the corresponding theories?
- My old ${ }^{5}$ Algebraic Knot Theory dream:
 $\overrightarrow{u n z i p}$

$V \rightarrow \Phi^{\text {1-loop }}$ after $[A T]$. "cut and cap" is well-defined(!) on \mathcal{K}^{u}
 Better:

$\Phi \rightarrow V$ after [AET]. In $\mathcal{K}^{\bar{w}}$ allow tubes and strands and tubestrand vertices, allow "punctures", yet allow no "tangles".

). \mathcal{K}^{u} (i.e., given Φ, can write a formula for V). With T any classical tangle, esp. \square or \square, consider the "sled"

$$
V \cdot(\Delta \otimes 1)(R)=R^{13} R^{23} V \text { in } \mathcal{A}^{w}\left(\uparrow_{3}\right)
$$

\mathcal{A}^{v} pairs with Lie bialgebras. Let \mathfrak{g}_{+}be a Lie bialgebra with basis X_{a}, bracket $[\cdot, \cdot]$, cobracket δ, dual $\mathfrak{g}_{-}=\mathfrak{g}_{+}^{\star}$, dual basis X^{a} for \mathfrak{g}_{-}, double $\mathfrak{g}=\mathfrak{g}_{+} \oplus \mathfrak{g}_{-}$, structure constants $\left[X_{a}, X_{b}\right]=\sum b_{a b}^{c} X_{c}$ and co-structure constants $\delta\left(X_{a}\right)=\sum c_{a}^{b c} X_{b} \otimes X_{c}$. Then

$$
\sum_{a, b, c, d, e, f=1}^{\operatorname{dim} \mathfrak{g}} b_{d e}^{c} c_{c}^{b a} X_{a} X^{d} X_{f} \otimes X_{b} X^{f} X^{e} \in \mathcal{U}(\mathfrak{g})^{\otimes 2}
$$

The Polyak-Ohtsuki Description of $\mathcal{A}^{v}[\mathrm{Po}]$.

"God created the knots, all else in topology is the work of mortals."
Leopold Kronecker (modified)

Alekseev-Torossian [AT] (equivalent to Kashiwara-Vergne [KV]) There are elements $F \in \mathrm{TAut}_{2}$ and $a \in \mathfrak{t r}_{1}$ such that

$$
F(x+y)=\log e^{x} e^{y} \quad \text { and } \quad j F=a(x)+a(y)-a\left(\log e^{x} e^{y}\right)
$$

Theorem. That's equivalent to a homomorphic expansion for wTT
The Main Example.

Footnotes

1. I probably mean "a functor from some fixed "structure multi-category" to the multi-category of sets, extended to formal linear combinations".
2. A Leibniz algbera is a Lie algebra minus the anti-symmetry of the bracket; I have previously erroneously asserted that here $\mathcal{A}(K)$ is Lie; however see the comment by Conant attached to this talk's video page.
3. See my paper [BN1] and my talk/handout/video [BN3].
4. See [BN5] and my talk/handout/video [BN4].
5. Not so old and not quite written up. Yet see [BN2].

References

[AT] A. Alekseev and C. Torossian, The Kashiwara-Vergne conjecture and Drinfeld's associators, arXiv:0802.4300.
[AET] A. Alekseev, B. Enriquez, and C. Torossian, Drinfeld associators, Braid groups and explicit solutions of the Kashiwara Vergne equations, Pub. Math. de L'IHES 112-1 (2010) 143-189, arXiv:arXiv:0903.4067.
[BEER] L. Bartholdi, B. Enriquez, P. Etingof, and E. Rains, Groups and Lie algebras corresponding to the YangBaxter equations, Jornal of Algebra 305-2 (2006) 742-764, arXiv:math.RA/0509661.
[BN1] D. Bar-Natan, On Associators and the Grothendieck-Teichmüller Group I, Selecta Mathematica, New Series 4 (1998) 183-212.
[BN2] D. Bar-Natan, Algebraic Knot Theory - A Call for Action, web document, 2006, http://www.math.toronto.edu/~drorbn/papers/AKT-CFA.html.
[BN3] D. Bar-Natan, Braids and the Grothendieck-Teichmüller Group, talk given in Toronto on January 10, 2011, http://www.math.toronto.edu/~drorbn/Talks/Toronto-110110/.
[BN4] D. Bar-Natan, From the $a x+b$ Lie Algebra to the Alexander Polynomial and Beyond, talk given in Chicago on September 11, 2010, http://www.math.toronto.edu/~drorbn/Talks/Chicago-1009/.
[BN5] D. Bar-Natan, Finite Type Invariants of w-Knotted Objects: From Alexander to Kashiwara and Vergne, in preparation, online at http://www.math.toronto.edu/~drorbn/papers/WKO/.
[Dr1,2] V. G. Drinfel'd, Quasi-Hopf Algebras, Leningrad Math. J. 1 (1990) 1419-1457 and On Quasitriangular Quasi-Hopf Algebras and a Group Closely Connected with Gal($(\overline{\mathbb{Q}} / \mathbb{Q})$, Leningrad Math. J. 2 (1991) 829-860.
[EK] P. Etingof and D. Kazhdan, Quantization of Lie Bialgebras, I, Selecta Mathematica, New Series 2 (1996) 1-41, arXiv:q-alg/9506005.
[Ha] A. Haviv, Towards a diagrammatic analogue of the Reshetikhin-Turaev link invariants, Hebrew University PhD thesis, September 2002, arXiv:math.QA/0211031.
[KV] M. Kashiwara and M. Vergne, The Campbell-Hausdorff Formula and Invariant Hyperfunctions, Invent. Math. 47 (1978) 249-272.
[Lee] P. Lee, The Pure Virtual Braid Group is Quadratic, in preparation.
[Po] M. Polyak, On the Algebra of Arrow Diagrams, Let. Math. Phys. 51 (2000) 275-291.
[Th] D. P. Thurston, The Algebra of Knotted Trivalent Graphs and Turaev's Shadow World, Geometry \& Topology Monographs 4 (2002) 337-362, arXiv:math.GT/0311458.

Plan

1. (8 minutes) The Peter Lee setup for (K, I), "all interesting graded equations arise in this way".
2. (3 minutes) Example: the pure braid group (mention $P v B$, too).
3. (3 minutes) Generalized algebraic structures.
4. (1 minute) Example: quandles.
5. (4 minutes) Example: parenthesized braids and horizontal associators.
6. (6 minutes) Example: KTGs and non-horizontal associators. ("Bracket rise" arises here).
7. (8 minutes) Example: wKO's and the Kashiwara-Vergne equations.
8. (12 minutes) vKO's, bi-algebras, E-K, what would it mean to find an expansion, why I care (stronger invariant, more interesting quotients).
9. (5 minutes) wKO's, uKO's, and Alekseev-Enriquez-Torossian.

Video and more at http://www.math.toronto.edu/~drorbn/Talks/SwissKnots-1105/

Abstract. In the first half of my talk I will tell a cute and simple story - how given a knot in \mathbb{R}^{3} one may count all possible "cosmic coincidences" associated with that knot, and how this count, appropriately packaged, becomes an invariant Z with val ues in some space \mathcal{A} of linear combinations of certain trivalent graphs.
In the second half of my talk I will describe (rather sketchily, I'm afraid) a part of the story surrounding Z and \mathcal{A} : How the same Z also comes from quantum field theory, Feynman diagrams, and configuration space integrals. How \mathcal{A} is a space of universa formulas which make sense in every metrized Lie algebra and how specific choices for that Lie algebra correspond to various famed knot invariants. How Z solves a universal topological problem, and how solving for Z is solving some universal Liealgebraic problem. All together, this is the u-story.
In the remaining time I will mention several other Z 's and \mathcal{A} ' and the parallel (yet sometimes interwoven) stories surroundin them - the v-story, and w-story, and perhaps also the p-story Each of these stories is clearly still missing some chapters.

Michelangelo

Disclaimer

We'll concentrate on the beauty and ignore the cracks.
$\langle D, K\rangle_{\pi}:=\binom{$ The signed Stonehenge }{ pairing of D and $K}:$
$D=$

$K=$

The
Gaussian
linking
number

The generating function of all cosmic coincidences:
$Z(K):=\lim _{N \rightarrow \infty} \sum_{3 \text {-valent } D} \frac{\langle D, K\rangle_{\rangle_{N} D} D}{2^{c}!\binom{N}{e}} \cdot\left(\begin{array}{c}\text { framing- } \\ \text { dependent } \\ \text { counter-term }\end{array}\right) \in \mathcal{A}(\circlearrowleft) \frac{\text { D. Thursion }\langle }{}$
N :=\# of stars
c :=\# of chopsticks
e :=\# of edges of D
$\mathcal{A}(\circlearrowleft) \quad$ oriented vertices
:=Span

${ }_{\&} \mathrm{AS}: \bar{Y}+\bar{m}=0$ 人
When deforming, catastrophes occur when:

| A plane moves over an | An intersection line cuts | The Gauss curve slides |
| :--- | :--- | :--- | :--- |
| intersection point - | through the knot | over a star - |
| Solution: Impose IHX, | Solution: Impose STU, | Solution: Multiply by |
| (see below) | (similar argument) | (not shown here) |

Theorem. Modulo Relations, $Z(K)$ is a knot invariant!
The Cast

The IHX Relation

$\Leftrightarrow>$ the red star is your eye.

*
in rough historical order

The Neolithic People
Carl Friedrich Gauss Edward Witten Victor Vassiliev Mikhail Goussarov

Clifford Taubes

Jun Murakami

Tomotada Ohtsuki
"Low Algebra" and universal formulae in Lie algebras.
 More precisely, let $\mathfrak{g}=\left\langle X_{a}\right\rangle$ be a Lie algebra with an orthonormal basis, and let $R=\left\langle v_{\alpha}\right\rangle$ be a representation. Set

$$
f_{a b c}:=\left\langle\left[X_{a}, X_{c}\right], X_{c}\right\rangle \quad X_{a} v_{\beta}=\sum_{\gamma} r_{a \gamma}^{\beta} v_{\gamma}
$$

and then

$$
\sum_{a b c \alpha \beta \gamma} f_{a b c} r_{a \gamma}^{\beta} r_{b \alpha}^{\gamma} r_{c \beta}^{\alpha}
$$

$W_{\mathfrak{g}, R} \circ Z \quad$ is often interesting:

The Jones polynomial

$$
\mathfrak{g}=\operatorname{sl}(N)
$$

The HOMFLYPT polynomial Przytycki
$\mathfrak{g}=\operatorname{so}(N)$

The Kauffman polynomial $\mathfrak{g}=s l(2)$

Chern-Simons-Witten theory and Feynman diagrams.
$\int_{\mathfrak{g} \text {-connections }} \mathcal{D} A \operatorname{hol}_{K}(A) \exp \left[\frac{i k}{4 \pi} \int_{\mathbb{R}^{3}} \operatorname{tr}\left(A \wedge d A+\frac{2}{3} A \wedge A \wedge A\right)\right]$
$\longrightarrow \sum_{\substack{D: \text { Feynman } \\ \text { diagram }}} W_{\mathfrak{g}}(D) \sum \mathcal{E}(D) \longrightarrow \sum_{\begin{array}{c}D: \text { Feynman } \\ \text { diagram }\end{array}} D \sum \mathcal{E}(D)$

Definition. $\quad V$ is finite type (Vassiliev, Goussarov) if it vanishes on sufficiently large alternations as on the right
Theorem. All knot polynomials (Conway, Jones, etc.) are of finite type.
Conjecture. (Taylor's theorem) Finite type invariants separate knots.
Theorem. $\quad Z(K)$ is a universal finite type invariant!
 (sketch: to dance in many parties, you need many feet).

Knots are the wrong objects to study in knot theory! They are not finitely generated and they carry no interesting operations.

Vassiliev

Algebraic Knot Theory

Theorem (\sim, "High Algebra"). A homomorphic
Z is the same as a "Drinfel'd Associator".

Drinfel'd
The $u \rightarrow v \rightarrow \mathrm{w}$ \& p Stories

|) | Topology | Combinatorics | Low Algebra | High Algebra | Counting Coincidences Conf. Space Integrals | Quantum Field Theory | Graph Homology |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | The usual Knotted Objects (KOs) in 3D - braids, knots, links, tangles, knotted graphs, etc. | Chord diagrams and Jacobi diagrams, modulo $4 T, S T U$, $I H X$, etc. | Finite dimensional metrized Lie algebras, representations, and associated spaces. | The Drinfel'd theory of associators. | Today's work. Not beautifully written, and some detour-forcing cracks remain. | Perturbative Chern-SimonsWitten theory. | The
 "original"
 graph
 homology. |
| | Virtual KOs -
 "algebraic", "not embedded"; KOs drawn on a surface, mod stabilization. | Arrow diagrams and v-Jacobi diagrams, modulo $6 T$ and various "directed" $S T U \mathrm{~s}$ and $I H X \mathrm{~s}$, etc. | Finite dimensional Lie bi-algebras, representations, and associated spaces. | Likely, quantum groups and the Etingof-Kazhdan theory of quantization of Lie bi-algebras. | No clue. | No clue. | No clue. |
| | Ribbon 2D KOs in 4D; "flying rings". Like v, but also with "overcrossings commute". | Like v, but also with "tails commute". Only "two in one out" internal vertices. | Finite dimensional co-commutative Lie bi-algebras $\left(\mathfrak{g} \ltimes \mathfrak{g}^{*}\right)$, representations, and associated spaces. | The Kashiwara-Vergne-AlekseevTorossian theory of convolutions on Lie groups / algebras. | No clue. | Probably related to 4D BF theory. | Studied. |
| | No clue. | "Acrobat towers" with 2-in many-out vertices. | Poisson structures. | Deformation quantization of poisson manifolds. | Configuration space integrals are key, but they don't reduce to counting. | Work of Cattaneo. | Studied.
 Hyperbolic geometry |

Abstract. I will present the simplest-ever "quantum" formula for the Alexander polynomial, using only the unique two dimensional non-commutative Lie algebra (the one associated with the " $a x+b$ " Lie group). After introducing the "Euler technique" and some diagrammatic calculus I will sketch the proof of the said formula, and following that, I will present a long list of extensions, generalizations, and dreams.
The 2D Lie Algebra. Let $\mathfrak{g}=\mathfrak{l i e}\left(x^{1}, x^{2}\right) /\left[x^{1}, x^{2}\right]=x^{2}$, let $\mathfrak{g}^{*}=\left\langle\phi_{1}, \phi_{2}\right\rangle$ with $\phi_{i}\left(x^{j}\right)=\delta_{i}^{j}$, let $I \mathfrak{g}=\mathfrak{g}^{*} \rtimes \mathfrak{g}$ so $\left[\phi_{i}, \phi_{j}\right]=\left[\phi_{1}, x^{i}\right]=0$ while $\left[x^{1}, \phi_{2}\right]=-\phi_{2}$ and $\left[x^{2}, \phi_{2}\right]=\phi_{1}$. Let $r=I d=\phi_{1} \otimes x^{1}+\phi_{2} \otimes x^{2} \in \mathfrak{g}^{*} \otimes \mathfrak{g} \subset I \mathfrak{g} \otimes I \mathfrak{g}$. Let $\mathcal{U}=\{$ words in $I \mathfrak{g}\} / a b-b a=[a, b]$, degree-completed with respect to $\operatorname{deg} \phi_{i}=1$ and $\operatorname{deg} x^{i}=0$ (so $\mathcal{U} \equiv$ (power series is 4 variables)). Let $R=\exp (r) \in \mathcal{U} \otimes \mathcal{U}$.
The Invariant. Define Z : \{long knots\} $\rightarrow \mathcal{U}$ by mapping every \pm-crossing to $R^{ \pm 1}$:

Alexander

$\cdots+\frac{1}{2!} \frac{(-1)^{3}}{3!} \frac{1}{1!}\left(\phi_{2} \phi_{1}\right)\left(\phi_{2} \phi_{1} \phi_{2}\right)\left(\overrightarrow{\left.x^{2} x^{1}\right)} \underset{\left(x^{1}\right)\left(\overrightarrow{x^{2} x^{1} x^{2}}\right)\left(\phi_{1}\right)+\cdots}{ }\right.$
Near Theorem. Z is invariant, and it is essentially the Alexander polynomial; with $N=\exp \left(\vec{l} \phi_{i} x^{i}+\overleftarrow{l} x^{i} \phi_{i}\right)=: \exp (S L)$,

$$
\begin{equation*}
Z(K)=N \cdot\left(A(K)\left(e^{\phi_{1}}\right)\right)^{-1} \tag{1}
\end{equation*}
$$

Invariance. "The identity is an invariant tensor":

The Euler Prelude. Apply $\tilde{E} \zeta:=\zeta^{-1} E \zeta$ to (1):

Some Relations. $\phi_{i} x^{i}, x^{i} \phi_{i}, \phi_{1}$ are central, $x^{i} \phi_{i}-\phi_{i} x^{i}=\phi_{1}$,
 and the famed "tails commute" (TC):

Near Proof. Let $\lambda_{\alpha j}$ be a red arrow with tail at a_{α} and head just left of h_{j}. Let $\Lambda=\left(\lambda_{\alpha j}\right)$. Then roughly $R \Lambda=\phi_{1} I$ so roughly, $\Lambda=R^{-1} \phi_{1}$. The rest is book-keeping that I haven't finished yet, yet with which my computer agrees fully.

I don't understand the Alexander polynomial!

[^6]An Alexander Reminder. Number the arrows $1, \ldots, n$, let t_{j}, h_{j} be the tail and head of arrow j, and let $s_{j} \in \pm 1$ be its sign. Cut the skeleton into arcs a_{α} by arrow heads, and $\left(\begin{array}{cccc}0 & -1 & X & 1-X\end{array}\right)$ let $\alpha(p)$ be "the arc of point p ". Let $R \in M_{n \times(n+1)}$ be the matrix whose j 'th row has -1 in column $\alpha\left(h_{j}\right)$ and $1-X^{s_{j}}$ in column $\alpha\left(t_{j}\right)$ and $X^{s_{j}}$ in column $\alpha\left(h_{j}\right)+1$, and let M be R with a column removed. Then $A(X)=\operatorname{det}(M)$.
An Euler Interlude. If you know brackets, how do you test exponentials? When's $e^{A} e^{B}=e^{C} e^{D}$?
Bad Idea. Take log and use BCH. You'll want to cry.
Clever Idea. Let E be the Euler derivation, which multiplies each element by its degree (e.g. on $\mathbb{Q}[\phi], E f=$ $\phi \partial_{\phi} f$, so $\left.E e^{\phi}=\phi e^{\phi}\right)$. Apply $\tilde{E} \zeta:=\zeta^{-1} E \zeta: \tilde{E}\left(e^{A} e^{B}\right)=$ $e^{-B} e^{-A}\left(e^{A} A e^{B}+e^{A} e^{B} B\right)=e^{-B} A e^{B}+B=e^{-\mathrm{ad} B}(A)+B$.
"Uninterpreting" Diagrams. Make $Z^{w}: \mathcal{K}^{w} \rightarrow \mathcal{A}^{w} \rightarrow \mathcal{U}$, with
 $\mathcal{K}^{w}=C A\langle\vee / \overline{\mathrm{V}}\rangle / \mathrm{R} 23, \mathrm{OC}$

R3

VR3

D

OC
Z^{w} is a UFTI on w-knots! It extends to links and tangles, is well behaved under compositions and cables, and remains computable for tangles. It contains Burau, Gassner, and Cimasoni-Turaev in natural ways, and it contains the MVA though my understanding of the latter is incomplete.

There's 1D in 4D, non-trivial given 2D, and there are ops...
Dream. Z^{w} extends to virtual knots as $Z^{v}: \mathcal{K}^{v} \rightarrow \mathcal{A}^{v}$, with good composition and cabling properties and plenty of computable quotients, more then there are quantum groups and representations thereof. I don't understand quantum groups!

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Chicago-1009/

| 18 Conjectures |
| :--- |
| Dror Bar-Natan, Chicago, September 2010 |
| http://www.math.toronto.edu/ \sim drorbn/Talks/Chicago-1009/ |

Abstract. I will state $18=3 \times 3 \times 2$ "fundamental" conjectures on finite type invariants of various classes of virtual knots. This done, I will state a few further conjectures about these conjectures and ask a few questions about how these 18 conjectures may or may not interact.

Following "Some Dimensions of Spaces of Finite Type Invariants of Virtual Knots", by B-N, Halacheva, Leung, and Roukema, http://www.math.

A J-K Flip Flop

Infineon HYS64T64020HDL-3.7-A 512MB RAM

Definitions

$$
\mathcal{V}_{n}=\left(v \mathcal{K} / \mathcal{I}^{n+1}\right)^{*}
$$ is one thing we measure..

"arrow diagrams"

$$
\mathcal{V}_{n} / \mathcal{V}_{n-1}
$$

$\mathcal{W}_{n}=\left(\mathcal{D}_{n} / \mathcal{R}_{n}^{D}\right)^{*}=\left(\mathcal{A}_{n}\right)^{*}$ is the other thing we measure...
The Polyak Technique

$$
v \mathcal{K}=\mathrm{CA}_{\mathbb{Q}}\langle\mathcal{Q}\rangle / \mathcal{R}^{\circ}=\{8 T, \text { etc. }\}
$$

fails in

8T:

This is a computable space!

the u case equations.

- In the w case, these are the Kashiwara-Vergne-AlekseevTorossian equations. Composed with $\mathcal{T}_{\mathfrak{g}}: \mathcal{A} \rightarrow \mathcal{U}$, you get Iorossian equations. Composed with $\mathcal{F}_{\mathfrak{g}}: \mathcal{A} \rightarrow \mathcal{U}$, you get
that the convolution algebra of invariant functions on a Lie group is isomorphic to the convolution algebra of invariant functions on its Lie algebra.
- In the v case there are strong indications that you'd get the equations defining a quantized universal enveloping algebra equations defining a quantized universal enveloping algebra
and the Etingof-Kazhdan theory of quantization of Lie bialgebras. That's why I'm here!

Theorem. For u-knots, $\operatorname{dim} \mathcal{V}_{n} / \mathcal{V}_{n-1}=\operatorname{dim} \mathcal{W}_{n}$ for all n.
Proof. This is the Kontsevich integral, or the "Fundamental Theorem of Finite Type Invariants". The known proofs use QFT-inspired differential geometry or associators and some homological computations.
Two tables. The following tables show $\operatorname{dim} \mathcal{V}_{n} / \mathcal{V}_{n-1}$ and $\operatorname{dim} \mathcal{W}_{n}$ for $n=$ $1, \ldots, 5$ for 18 classes of v-knots:

| relations \backslash skeleton | | round (\bigcirc) | long (\longrightarrow) | flat $\left({ }^{\pi}=\lambda^{7}\right)$ |
| :--- | :--- | :--- | :--- | :--- |
| standard | mod R1 | $0,0,1,4,17 \bullet$ | $0,2,7,42,246 \bullet \bullet$ | $0,0,1,6,34 \bullet$ |
| R2b R2c R3b | no R1 | $1,1,2,7,29$ | $2,5,15,67,365$ | $1,1,2,8,42$ |
| braid-like | mod R1 | $0,0,1,4,17 \bullet$ | $0,2,7,42,246$ | $0,0,1,6,34 \bullet$ |
| R2b R3b | no R1 | $1,2,5,19,77$ | $2,7,27,139,813$ | $1,2,6,24,120$ |
| R2 only | mod R1 | $0,0,4,44,648$ | $0,2,28,420,7808$ | $0,0,2,18,174$ |
| R2b R2c | no R1 | $1,3,16,160,2248$ | $2,10,96,1332,23880$ | $1,2,9,63,570$ |

18 Conjectures. These 18 coincidences persist.

Comments. $0,0,1,4,17$ and $0,2,7,42,246$. These are the "standard" virtual knots.
$2,7,27,139,813$. These best match Lie bi-algebra. Leung computed the bi-algebra dimensions to be \geq $2,7,27,128$.
-•. We only half-understand these equalities.

$1,2,6,24,120$. Yes, we noticed. Karene Chu is proving all about this, including the classification of flat knots.
$1,1,2,8,42,258,1824,14664, \ldots$, which is probably http://www. research.att.com/~njas/sequences/A013999.
What about w? See other side. What about flat and round? What about v-braids? I don't know. Likely fails!

Bang. Recall the surjection $\bar{\tau}: \mathcal{A}_{n}=\mathcal{D}_{n} / \mathcal{R}_{n}^{D} \rightarrow \mathcal{I}^{n} / \mathcal{I}^{n+1}$. A filtered map $Z: v \mathcal{K} \rightarrow \mathcal{A}=\bigoplus \mathcal{A}_{n}$ such that $(\operatorname{gr} Z) \circ \bar{\tau}=I$ is called a universal finite type invariant, or an "expansion". ${ }^{1}$ Theorem. Such Z exist iff $\bar{\tau}: \mathcal{D}_{n} / \mathcal{R}_{n}^{D} \rightarrow \mathcal{I}^{n} / \mathcal{I}^{n+1}$ is an isomorphism for every class and every n, and iff the 18 con- jectures hold true.
The Big Bang. Can you find a "homomorphic expansion" Z - an expansion that is also a morphism of circuit algebras? Perhaps one that would also intertwine other operations, such as strand doubling? Or one that would extend to v-knotted trivalent graphs?

- Using generators/relations, finding Z is an exercise in solving equations in graded spaces.
- In the u case, these are the Drinfel'd pentagon and hexagon functions on its Lie algebra

[^7]www.katlas.org

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Chicago-1009/

Cans and Can't Yets.
$\binom{$ arbitrary algebraic }{ structure }$\xrightarrow[\text { machine }]{\text { projectivization }}\binom{$ a problem in }{ graded algebra }$\xrightarrow{\text { The chno }}$ Alas Feed knot-things, get Lie algebra things.

- (u-knots) \rightarrow (Drinfel'd associators).
- (w-knots) \rightarrow (K-V-A-E-T).
- Dream: (v-knots) \rightarrow (Etingof-Kazhdan).
- Clueless: (???) \rightarrow (Kontsevich)?
- Goals: add to the Knot Atlas, produce a working AKT and touch ribbon 1-knots, rip benefits from truly understanding quantum groups.

Circuit Algebras

A Ribbon 2-Knot is a surface S embedded in \mathbb{R}^{4} that bounds an immersed handlebody B, with only "ribbon singularities"; a ribbon singularity is a disk D of trasverse double points, whose preimages in B are a disk D_{1} in the interior of B and a disk D_{2} with_ $D_{2} \cap \underset{\Gamma}{\partial B}=\partial D_{2}$, modulo isotopies of S_{-}alone.

The w-relations include R234, VR1234, D, Overcrossings Commute (OC) but not UC:

yet not \uparrow

"God created the knots, all else in topology is the work of mortals."
Leopold Kronecker (modified)
Also see http://www.math.toronto.edu/~drorbn/papers/WKO

- Has kinds, objects, operations, and maybe constants.
- Perhaps subject to some axioms.
- We always allow formal linear combinations.

Homomorphic expansions for a filtered algebraic structure \mathcal{K} :
${ }_{\text {ops }} \odot \mathcal{K}=\mathcal{K}_{0} \supset \mathcal{K}_{1} \supset \mathcal{K}_{2} \supset \mathcal{K}_{3} \supset \ldots$
\Downarrow
\downarrow_{Z}
ops $\odot \operatorname{gr} \mathcal{K}:=\mathcal{K}_{0} / \mathcal{K}_{1} \oplus \mathcal{K}_{1} / \mathcal{K}_{2} \oplus \mathcal{K}_{2} / \mathcal{K}_{3} \oplus \mathcal{K}_{3} / \mathcal{K}_{4} \oplus \ldots$ An expansion is a filtered $Z: \mathcal{K} \rightarrow$ gr \mathcal{K} that "covers" the identity on $\operatorname{gr} \mathcal{K}$. A homomorphic expansion is an expansion that respects all relevant "extra" operations.
Reality. gr \mathcal{K} is often too hard. An \mathcal{A}-expansion is a graded "guess" \mathcal{A} with a surjection $\tau: \mathcal{A} \rightarrow \operatorname{gr} \mathcal{K}$ and a filtered Z : $\mathcal{K} \rightarrow \mathcal{A}$ for which $(\operatorname{gr} Z) \circ \tau=I_{\mathcal{A}}$. An \mathcal{A}-expansion confirms \mathcal{A} and yields an ordinary expansion. Same for "homomorphic".

Filtered algebraic structures are cheap and plenty. In any \mathcal{K}, allow formal linear combinations, let $\mathcal{K}_{1}=\mathcal{I}$ be the ideal generated by differences (the "augmentation ideal"), and let $\mathcal{K}_{m}:=\left\langle\left(\mathcal{K}_{1}\right)^{m}\right\rangle$ (using all available "products"). In this case, set $\operatorname{proj} \mathcal{K}:=\operatorname{gr} \mathcal{K}$.
Examples. 1. The projectivization of a group is a graded associative algebra.
2. Pure braids - $P B_{n}$ is generated by $x_{i j}$, "strand i goes around strand j once", modulo "Reidemeister moves". $A_{n}:=$ $\operatorname{gr} P B_{n}$ is generated by $t_{i j}:=x_{i j}-1$, modulo the $4 T$ relations $\left[t_{i j}, t_{i k}+t_{j k}\right]=0$ (and some lesser ones too). Much happens in A_{n}, including the Drinfel'd theory of associators.
3. Quandle: a set Q with an op \wedge s.t.

$$
\begin{gathered}
1 \wedge x=1, \quad x \wedge 1=x, \quad \text { (appetizers) } \\
(x \wedge y) \wedge z=(x \wedge z) \wedge(y \wedge z) \quad \text { (main) }
\end{gathered}
$$

$\operatorname{proj} Q$ is a graded Leibniz algebra: Roughly, set $\bar{v}:=(v-1)$ (these generate $I!$), feed $1+\bar{x}, 1+\bar{y}, 1+\bar{z}$ in (main), collect the surviving terms of lowest degree:

$$
(\bar{x} \wedge \bar{y}) \wedge \bar{z}=(\bar{x} \wedge \bar{z}) \wedge \bar{y}+\bar{x} \wedge(\bar{y} \wedge \bar{z})
$$

1． $\operatorname{proj} \mathcal{K}^{w}\left(\uparrow_{n}\right) \cong_{j} \mathcal{U}\left(\left(\mathfrak{a}_{n} \oplus \mathfrak{t d e r}_{n}\right) \ltimes \mathfrak{t r}_{n}\right)$ ，continued．Wheels and Trees．With \mathcal{P} for \mathcal{P} rimitives，

Goussarov－Polyak－Viro

exact?

Imperfect Thumb－Rule．Take R3（say），substitute $火 \rightarrow X+S$ 2，keep the lowest degree terms that don＇t immediately die：
 The Bracket－Rise Theorem．

Proof．
 －
Corollaries．（1）Related to Lie algebras！（2）Only wheels and isolated arrows persist．
To Lie Algebras．With $\left(x_{i}\right)$ and $\left(\varphi^{j}\right)$ dual bases of \mathfrak{g} and \mathfrak{g}^{*} and with $\left[x_{i}, x_{j}\right]=\sum b_{i j}^{k} x_{k}$ ，we have $\mathcal{A}^{w} \rightarrow \mathcal{U}$ via

$$
\longrightarrow \sum_{i, j, k, l, m, n=1}^{\operatorname{dim} \mathfrak{g}} b_{i j}^{k} b_{k l}^{m} \varphi^{i} \varphi^{j} x_{n} x_{m} \varphi^{l} \in \mathcal{U}\left(I \mathfrak{g}:=\mathfrak{g}^{*} \rtimes \mathfrak{g}\right)
$$

Theorem（PBW，${ }^{\mathcal{U}}(I \mathfrak{g}){ }^{\otimes n} \cong \mathcal{S}(I \mathfrak{g})^{\otimes n ")}$ ）．As vector spaces， $\mathcal{A}^{w}\left(\uparrow_{n}\right) \cong \mathcal{B}_{n}$ ，where

$x_{1}, \ldots, x_{n}, \operatorname{lie}_{n}=\operatorname{lie}\left(\mathfrak{a}_{n}\right)$ is the free Lie algebra，Ass $=$ $\mathcal{U}\left(\mathrm{fix}_{n}\right)$ is the free associative algera＂of words＂， $\operatorname{tr}: \mathrm{Ass}_{n}^{+} \rightarrow$ $\mathfrak{t r}_{n}=\operatorname{Ass}_{n}^{+} /\left(x_{i_{1}} x_{i_{2}} \cdots x_{i_{m}}=x_{i_{2}} \cdots x_{i_{m}} x_{i_{1}}\right)$ is the＂trace＂into ＂cyclic words＂， $\mathfrak{d e r}_{n}=\mathfrak{d e r}\left(\mathfrak{l i e}_{n}\right)$ are all the derivations，and

$$
\mathfrak{t d e r}_{n}=\left\{D \in \mathfrak{d e r}_{n}: \forall i \exists a_{i} \text { s.t. } D\left(x_{i}\right)=\left[x_{i}, a_{i}\right]\right\}
$$

are＂tangential derivations＂，so $D \leftrightarrow\left(a_{1}, \ldots, a_{n}\right)$ is a vec－ tor space isomorphism $\mathfrak{a}_{n} \oplus \mathfrak{t d e r}_{n} \cong \bigoplus_{n} \mathfrak{l i e}_{n}$ ．Finally，div ： $\mathfrak{t d e r}_{n} \rightarrow \mathfrak{t r}_{n}$ is $\left(a_{1}, \ldots, a_{n}\right) \mapsto \sum_{k} \operatorname{tr}\left(x_{k}\left(\partial_{k} a_{k}\right)\right)$ ，where for $a \in \mathrm{Ass}_{n}^{+}, \partial_{k} a \in \mathrm{Ass}_{n}$ is determined by $a=\sum_{k}\left(\partial_{k} a\right) x_{k}$, and $j: \mathrm{TAut}_{n}=\exp \left(\mathfrak{t d e r}_{n}\right) \rightarrow \mathfrak{t r}_{n}$ is $j\left(e^{D}\right)=\frac{e^{D}-1}{D} \cdot \operatorname{div} D$ ．
Theorem．Everything matches．〈trees〉 is $\mathfrak{a}_{n} \oplus \mathfrak{t d e r}_{n}$ as Lie algebras，$\left\langle\right.$ wheels〉 is $\mathfrak{t r}_{n}$ as \langle trees $\rangle / \mathfrak{t} \mathfrak{e r}_{n}$－modules，div $D=$ \left.${c^{-1}}^{-1} u-l\right)(D)$ ，and $e^{u D} e^{-l D}=e^{j D}$ ．
Differential Operators．Interpret $\hat{\mathcal{U}}(I \mathfrak{g})$ as tangential differen－ tial operators on $\operatorname{Fun}(\mathfrak{g})$ ：
－$\varphi \in \mathfrak{g}^{*}$ becomes a multiplication operator．
－$x \in \mathfrak{g}$ becomes a tangential derivation，in the direction of the action of ad $x:(x \varphi)(y):=\varphi([x, y])$ ．
Trees become vector fields and $u D \mapsto l D$ is $D \mapsto D^{*}$ ．So $\operatorname{div} D$ is $D-D^{*}$ and $j D=\log \left(e^{D}\left(e^{D}\right)^{*}\right)=\int_{0}^{1} d t e^{t D} \operatorname{div} D$ ．
Special Derivations．Let $\mathfrak{s j e r}_{n}=\left\{D \in \mathfrak{t d e r}_{n}: D\left(\sum x_{i}\right)=0\right\}$ ． Theorem． $\mathfrak{s d e r}_{n}=\pi \alpha$（proj u－tangles），where α is the obvious map proju－tangles \rightarrow proj w－tangles．
Proof．After decoding，this becomes Lemma 6.1 of Drinfel＇d＇s amazing $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ paper．
The Alexander Theorem．$\quad T_{i j}=|\operatorname{low}(\# j) \in \operatorname{span}(\# i)|$ ，

Conjecture．For u－knots，A is the Alexander polynomial． Theorem．With $w: x^{k} \mapsto w_{k}=($ the k－wheel），

$$
Z=N \exp _{\mathcal{A}^{w}}\left(-w\left(\log _{\mathbb{Q} \llbracket x \rrbracket} A\left(e^{x}\right)\right)\right) \quad \begin{array}{r}
\bmod w_{k} w_{l}=w_{k+l}, \\
Z=N \cdot A^{-1}\left(e^{x}\right)
\end{array}
$$

This is the ultimate Alexander invariant！computable in poly－ nomial time，local，composes well，behaves under cabling． Seems to significantly generalize the multi－variable Alexander polynomial and the theory of Milnor linking numbers．But it＇s ugly，and much work remains．

Video and more at http：／／www．math．toronto．edu／～drorbn／Talks／Montpellier－1006／
$\mathrm{wTT}=\mathrm{CA}\left\langle\begin{array}{c|c|c}\mathrm{w}- & \mathrm{w}- & \text { unary w- } \\ \text { generators } & \text { relations } & \text { operations }\end{array}\right\rangle$

The w-relations include R234, VR1234, D, Overcrossings Commute (OC) but not UC, $W^{2}=1$, and funny interactions between the wen and the cap and over- and under-crossings:

w-Jacobi diagrams and $\mathcal{A} \cdot \mathcal{A}^{w}(Y \uparrow) \cong \mathcal{A}^{w}(\uparrow \uparrow \uparrow)$ is

An Associator:

$$
(A B) C \xrightarrow{\Phi \in \mathcal{U}(\mathfrak{g})^{\otimes 3}} A(B C)
$$

satisfying the "pentagon", $((A B) C) D \longrightarrow(A B)(C D)$

| $\ell^{\prime 1}$ | $\begin{aligned} & 1) \Phi \\ & (11 \Delta) \Phi \\ & V \end{aligned}$ |
| :---: | :---: |
| $(A(B C)) D$ | $A(B(C D))$ |
| Φ | (|

$\Phi 1 \cdot(1 \Delta 1) \Phi \cdot 1 \Phi=(\Delta 11) \Phi \cdot(11 \Delta) \Phi$
The hexagon? Never heard of it.

Etingof-Kazhdan yet, and I'm clueless about Kontsevich Dror Bar-Natan, Montpellier, June 2010, http://www.math.toronto.edu/~drorbn/Talks/Montpellier-1006/ Knot-Theoretic statement. There exists a homomorphic expansion Z for trivalent w-tangles. In particular, Z should respect $R 4$ and intertwine annulus and disk unzips:

\checkmark

(2)

(3)

Diagrammatic statement. Let $R=\exp \hat{\wedge} \hat{\wedge} \in \mathcal{A}^{w}(\uparrow \uparrow)$. There exist $\omega \in \mathcal{A}^{w}(\uparrow)$ and $V \in \mathcal{A}^{w}(\uparrow \uparrow)$ so that

(1) $V \cdot(\Delta \otimes 1)(R)=R^{13} R^{23} V$ in $\mathcal{A}^{w}(\uparrow \uparrow \uparrow)$

(3) $V \cdot \Delta(\omega)=\omega \otimes \omega$ in $\mathcal{A}^{w}(\uparrow \uparrow)$
(2) $V V^{*}=I$ in $\mathcal{A}^{w}(\uparrow \uparrow)$

Alekseev-Torossian statement. There are elements $F \in$ TAut $_{2}$ and $a \in \mathfrak{t r}_{1}$ such that
$F(x+y)=\log e^{x} e^{y} \quad$ and $\quad j F=a(x)+a(y)-a\left(\log e^{x} e^{y}\right)$. Theorem. The Alekseev-Torossian statement is equivalent to the knot-theoretic statement.
Proof. Write $V=e^{c} e^{u D}$ with $c \in \mathfrak{t r}_{2}, D \in \mathfrak{t d e r}_{2}$, and $\omega=e^{b}$ with $b \in \mathfrak{t r}_{1}$. Then $(1) \Leftrightarrow e^{u D}(x+y) e^{-u D}=\log e^{x} e^{y}$,
$(2) \Leftrightarrow I=e^{c} e^{u D}\left(e^{u D}\right)^{*} e^{c}=e^{2 c} e^{j D}$, and
$(3) \Leftrightarrow e^{c} e^{u D} e^{b(x+y)}=e^{b(x)+b(y)} \Leftrightarrow e^{c} e^{b\left(\log e^{x} e^{y}\right)}=e^{b(x)+b(y)}$
$\Leftrightarrow c=b(x)+b(y)-b\left(\log e^{x} e^{y}\right)$.
The Alekseev-Torossian Correspondence.
\{Drinfel'd Associators $\} \leftrightarrows\{$ Solutions of KV $\}$.
We need an even bigger algebraic structure!
$\binom{$ green knotted trivalent }{ graphs in $\mathbb{R}^{3}(u)} \xrightarrow{\alpha_{e}}\binom{$ blue tubes and red }{ strings in $\mathbb{R}^{4}(\overline{\mathrm{w}})}$

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Montpellier-1006/

Claim. With $\Phi:=Z(\Delta)$, the above relation becomes equivalent to the Drinfel'd's pentagon of the theory of quasi-Hopf algebras.
Proof.

 has 4 vertices.

as above, yet allow only "compact" knots - nothing runs to ∞.
$\mathcal{K}^{w} \leftrightarrow \mathcal{K}^{\bar{w}}$ equivalence. \mathcal{K}^{w} has a homomorphic expansion of $\mathcal{K}^{\bar{w}}$ has a homomorphic expansion.
\Longrightarrow Puncture \mathcal{A} and Z :

Theorem. The generators of $\mathcal{K}^{\bar{w}}$ can be written in
terms of the generators of \mathcal{K}^{u} (i.e., given Φ, can write
Theorem. The generators of $\mathcal{K}^{\bar{w}}$ can be written in
terms of the generators of \mathcal{K}^{u} (i.e., given Φ, can write a formula for V.
Sketch.
$\overparen{\square} \rightarrow$ and $\rightarrow \rightarrow \rightarrow \square$, so enough to write any T. Here go:

Note.

$\mathcal{C}^{\bar{w}}$. Allow tubes and strands and tube-strand vertices

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Montpellier-1006/

Day $1-u$, v, w: topology and philosophy
Dror Bar-Natan, Goettingen, April 2010
Plans and Dreams $\binom{$ arbitrary algebraic }{ structure }$\frac{\text { projectivization }}{\text { machine }}\left(\begin{array}{lll}\text { a } & \text { problem in } \\ \text { graded algebra }\end{array}\right)$

- Feed knot-things, get Lie algebra things.

Feed u-knots, get Drinfel'd associators.
Feed w-knots, get Kashiware-Vergne-Alekseev-Torossian.
Dream: Feed v-knots, get Etingof-Kazhdan.

- Dream: Knowing the question whose answer is 42 , or $\mathrm{E}-\mathrm{K}$, will be useful to algebra and topology.

A Ribbon 2-Knot is a surface S embedded in \mathbb{R}^{4} that bounds an immersed handlebody B, with only "ribbon singularities"; a ribbon singularity is a disk D of trasverse double points, whose preimages in B are a disk D_{1} in the interior of B and a disk D_{2} with $D_{2} \cap \partial B=\partial D_{2}$ modulo isotopies of S alone.

The w-relations include R234, VR1234, M, Overcrossings Commute (OC) but not UC:

Also see http://www.math.toronto.edu/~drorbn/papers/WKO/

u, v, and w-Knots: Topology, Combinatorics and Low and High Algebra http://www.math.toronto.edu/~drorbn/Talks/Goettingen-1004/

- Has kinds, objects, operations, and maybe constants.
- Perhaps subject to some axioms.
- We always allow formal linear combinations.

Homomorphic expansions for a filtered algebraic structure \mathcal{K} :

$\Downarrow \quad \downarrow_{Z}$
ops $\odot \operatorname{gr} \mathcal{K}:=\mathcal{K}_{0} / \mathcal{K}_{1} \oplus \mathcal{K}_{1} / \mathcal{K}_{2} \oplus \mathcal{K}_{2} / \mathcal{K}_{3} \oplus \mathcal{K}_{3} / \mathcal{K}_{4} \oplus \ldots$ An expansion is a filtration respecting $Z: \mathcal{K} \rightarrow$ gr \mathcal{K} that "covers" the identity on gr \mathcal{K}. A homomorphic expansion is an expansion that respects all relevant "extra" operations.

Filtered algebraic structures are cheap and plenty. In any \mathcal{K}, allow formal linear combinations, let $\mathcal{K}_{1}=\mathcal{I}$ be the ideal generated by differences (the "augmentation ideal"), and let $\mathcal{K}_{m}:=\left\langle\left(\mathcal{K}_{1}\right)^{m}\right\rangle$ (using all available "products").
Examples. 1. The projectivization of a group is a graded associative algebra. 2. Quandle: a set Q with an op \wedge s.t.

$$
\begin{aligned}
& 1 \wedge x=1, \quad x \wedge 1=x, \quad \text { (appetizers) } \\
& (x \wedge y) \wedge z=(x \wedge z) \wedge(y \wedge z) . \quad \text { (main) }
\end{aligned}
$$

$\operatorname{proj} Q$ is a graded Leibniz algebra: Roughly, set $\bar{v}:=(v-1)$
(these generate $I!$), feed $1+\bar{x}, 1+\bar{y}, 1+\bar{z}$ in (main), collect the surviving terms of lowest degree:

$$
(\bar{x} \wedge \bar{y}) \wedge \bar{z}=(\bar{x} \wedge \bar{z}) \wedge \bar{y}+\bar{x} \wedge(\bar{y} \wedge \bar{z})
$$

Our case(s).
\mathcal{K} is knot theory or topology; $\operatorname{proj} \mathcal{K}=\bigoplus \mathcal{I}^{m} / \mathcal{I}^{m+1}$ is finite combinatorics: bounded-complexity diagrams modulo simple relations.

Day 2 - u, v, w: combinatorics, low and high algebra Dror Bar-Natan, Goettingen, April 2010
http://www.math.toronto.edu/~drorbn/Talks/Goettingen-1004/
The Scheme. Topology \rightarrow Combinatorics \rightarrow Lie Theory via $\mathcal{K} \xrightarrow[\text { equations, unknowns }]{Z: \text { high algebra }} \mathcal{A}=\operatorname{proj} \mathcal{K}=\mathcal{I}^{m} / \mathcal{I}^{m+1} \xrightarrow[\text { pictures } \rightarrow \text { formulas }]{\mathcal{T}_{\mathfrak{g}}: \text { low algebra }}$ " $\mathcal{U}(\mathfrak{g})$ " $1+1=2$, on an abacus, implies Duflo's $\mathcal{U}(\mathfrak{g})^{\mathfrak{g}} \cong \mathcal{S}(\mathfrak{g})^{\mathfrak{g}}$ (with T. Le and D. Thurston).

The Finite Type Story. With $\mathbb{X}:=$ メー \times
 $-\frac{\infty}{1}+\infty$ \rightarrow $\left.(\square)-\# \frac{\square}{\square}-\frac{10}{\square}\right)$

RB.

The Bracket-Rise Theorem. \mathcal{A}^{w} is isomorphic to

Corollaries. (1) Related to Lie algebras! (2) Only wheels and isolated arrows persist.
Low Algebra. With $\left(x_{i}\right)$ and $\left(\varphi^{j}\right)$ dual bases of \mathfrak{g} and \mathfrak{g}^{*} and with $\left[x_{i}, x_{j}\right]=\sum b_{i j}^{k} x_{k}$, we have $\mathcal{A}^{w} \rightarrow \mathcal{U}$ via

w-Jacobi diagrams and $\mathcal{A} . \mathcal{A}^{w}(Y \uparrow) \cong \mathcal{A}^{w}(\uparrow \uparrow \uparrow)$ is
 same relations, plus

VI:
 $+Y$
deg $=\frac{1}{2} \#\{$ vertices $\}=6$
Knot-Theoretic statement (simplified). There exists a homomorphic expansion Z for trivalent w-tangles. In particular, Z should respect $R 4$.
 Diagrammatic
$\begin{array}{lr}\text { statement } & \text { (sim- } \\ \text { plified). } & \text { Let }\end{array}$ $R=\exp \hat{\uparrow} \hat{\wedge} \in$ $\mathcal{A}^{w}(\uparrow \uparrow)$. There exist $V \in \mathcal{A}^{w}(\uparrow \uparrow)$
so that
 Algebraic statement (simplified). With $r \in \mathfrak{g}^{*} \otimes \mathfrak{g}$ the identity element and with $R=e^{r} \in \mathcal{U}(I \mathfrak{g}) \otimes \mathcal{U}(\mathfrak{g})$ there exist $\hat{V} \in$ $\hat{\mathcal{U}}(I \mathfrak{g})^{\otimes 2}$ so that $V(\Delta \otimes 1)(R)=R^{13} R^{23} V$ in $\hat{\mathcal{U}}(I \mathfrak{g})^{\otimes 2} \otimes \hat{\mathcal{U}}(\mathfrak{g})$

Unitary statement (simplified). There exists a unitary tangential differential operator V defined on $\operatorname{Fun}\left(\mathfrak{g}_{x} \times \mathfrak{g}_{y}\right)$ so that $V \widehat{e^{x+y}}=\widehat{e^{x}} \widehat{e^{y}} V$ (allowing $\hat{\mathcal{U}}(\mathfrak{g})$-valued functions)
Unitary \Longleftrightarrow Algebraic. Interpret $\hat{\mathcal{U}}(I \mathfrak{g})$ as tangential differential operators on $\operatorname{Fun}(\mathfrak{g}): \varphi \in \mathfrak{g}^{*}$ becomes a multiplication operator, and $x \in \mathfrak{g}$ becomes a tangential derivation, in the direction of the action of $\operatorname{ad} x:(x \varphi)(y):=\varphi([x, y])$.
Group-Algebra statement (simplified). For every $\phi, \psi \in$ Fun $(\mathfrak{g})^{G}$ (with small support), the following holds in $\hat{\mathcal{U}}(\mathfrak{g})$:
$\iint_{\mathfrak{g} \times \mathfrak{g}} \phi(x) \psi(y) e^{x+y}=\iint_{\mathfrak{g} \times \mathfrak{g}} \phi(x) \psi(y) e^{x} e^{y}$. Unitary $\Longrightarrow \quad$ Group-Algebra. $\quad \iint e^{x+y} \phi(x) \psi(y)=$ $\left\langle 1, e^{x+y} \phi(x) \psi(y)\right\rangle=\left\langle V 1, V e^{x+y} \phi(x) \psi(y)\right\rangle=$ $\left\langle 1, e^{x} e^{y} V \phi(x) \psi(y)\right\rangle=\left\langle 1, e^{x} e^{y} \phi(x) \psi(y)\right\rangle=\iint e^{x} e^{y} \phi(x) \psi(y)$.
Convolutions statement (Kashiwara-Vergne, simplified). Convolutions of invariant functions on a Lie group agree with convolutions of invariant functions on its Lie algebra. More accurately, let G be a finite dimensional Lie group and let \mathfrak{g} be its Lie algebra, and let $\Phi: \operatorname{Fun}(G) \rightarrow \operatorname{Fun}(\mathfrak{g})$ be given by $\Phi(f)(x):=f(\exp x)$. Then if $f, g \in \operatorname{Fun}(G)$ are Ad-invariant and supported near the identity, then $\Phi(f) \star \Phi(g)=\Phi(f \star g)$. Convolutions and Group Algebras (ignoring all Jacobians). If G is finite, A is an algebra, $\tau: G \rightarrow A$ is multiplicative then $(\operatorname{Fun}(G), \star) \rightarrow(A, \cdot)$ via $L: f \mapsto \sum f(a) \tau(a)$. For Lie (G, \mathfrak{g}),

$(G, \cdot) \ni e^{x} e^{x} \in \hat{\mathcal{U}}(\mathfrak{g})$
$\operatorname{Fun}(G) \xrightarrow{L_{1}} \hat{\mathcal{U}}(\mathfrak{g})$
with $L_{0} \psi=\int \psi(x) e^{x} d x \in \hat{\mathcal{S}}(\mathfrak{g})$ and $L_{1} \Phi^{-1} \psi=\int \psi(x) e^{x} \in$ $\hat{\mathcal{U}}(\mathfrak{g})$. Given $\psi_{i} \in \operatorname{Fun}(\mathfrak{g})$ compare $\Phi^{-1}\left(\psi_{1}\right) \star \Phi^{-1}\left(\psi_{2}\right)$ and $\Phi^{-1}\left(\psi_{1} \star \psi_{2}\right)$ in $\hat{\mathcal{U}}(\mathfrak{g})$: (shh, $L_{0 / 1}$ are "Laplace transforms") \star in $G: \iint \psi_{1}(x) \psi_{2}(y) e^{x} e^{y}$ \star in $\mathfrak{g}: \iint \psi_{1}(x) \psi_{2}(y) e^{x+y}$
w-Knots from Z to A Dror Bar-Natan, Luminy, April 2010 http://www.math.toronto.edu/~drorbn/Talks/Luminy-1004/
Abstract I will define w-knots, a class of knots wider than ordinary knots but weaker than virtual knots, and show that it is quite easy to construct a universal finite invariant Z of w-knots. In order to study Z we will introduce the "Euler Operator" and the "Infinitesimal Alexander Module", at the end finding a simple determinant formula for Z. With no doubt that formula computes the Alexander polynomial A, except I don't have a proof yet.

\rightarrow

$\overrightarrow{S T U}_{3}=\mathrm{TC}: 0=$
Corollaries. (1) Related to Lie algebras! (2) Only wheels and isolated arrows persist. Habiro - can you do better? The Alexander Theorem. $\quad T_{i j}=|\operatorname{low}(\# j) \in \operatorname{span}(\# i)|$,

Conjecture. For u-knots, A is the Alexander polynomial. Theorem. With $w: x^{k} \mapsto w_{k}=($ the k-wheel $)$,

$$
Z=N \exp _{\mathcal{A}^{w}}\left(-w\left(\log _{\mathbb{Q} \llbracket x \rrbracket} A\left(e^{x}\right)\right)\right) \quad \begin{array}{r}
\bmod w_{k} w_{l}=w_{k+l}, \\
Z=N \cdot A^{-1}\left(e^{x}\right)
\end{array}
$$

Proof Sketch. Let E be the Euler operator, "multiply anything by its degree", $f \mapsto x f^{\prime}$ in $\mathbb{Q} \llbracket x \rrbracket$, so $E e^{x}=x e^{x}$ and
$E Z=\xrightarrow[\text { ned to show that } Z^{-1} E Z=N^{\prime}-\operatorname{tr}\left((I-B)^{-1} T S e^{-x S}\right) w_{1}]{+}$ with $B=T\left(e^{-x S}-I\right)$. Note that $a e^{b}-e^{b} a=\left(1-e^{\operatorname{ad} b}\right)(a) e^{b}$ implies

So What? - Habiro-Shima did this already, but not quite. (HS: Finite
Type Invariants of Ribbon 2-Knots, II, Top. and its Appl. 111 (2001).)

- New (?) formula for Alexander, new (?) "Infinitesimal Alexander Module". Related to Lescop's arXiv:1001.4474?
- An "ultimate Alexander invariant": local, composes well, behaves under cabling. Ought to also generalize the multi-variable Alexander polynomial and the theory of Milnor linking numbers.
- Tip of the Alekseev-Torossian-Kashiwara-Vergne iceberg (AT: The Kashiwara-Vergne conjecture and Drinfeld's associators, arXiv:0802.4300).
- Tip of the v-knots iceberg. May lead to other polynomial-time polynomial invariants. "A polynomial's worth a thousand exponentials". Also see http://www.math.toronto.edu/~drorbn/papers/WKO/

Homomorphic expansions for a filtered algebraic structure \mathcal{K} : ${ }_{\mathrm{ops}} \triangleright \mathcal{K}=\mathcal{K}_{0} \supset \mathcal{K}_{1} \supset \mathcal{K}_{2} \supset \mathcal{K}_{3} \supset \ldots$ $\Downarrow \quad \downarrow_{Z}$
$\operatorname{ops}^{\odot} \operatorname{gr} \mathcal{K}:=\mathcal{K}_{0} / \mathcal{K}_{1} \oplus \mathcal{K}_{1} / \mathcal{K}_{2} \oplus \mathcal{K}_{2} / \mathcal{K}_{3} \oplus \mathcal{K}_{3} / \mathcal{K}_{4} \oplus \ldots$ An expansion is a filtration respecting $Z: \mathcal{K} \rightarrow \operatorname{gr} \mathcal{K}$ that "covers" the identity on $\operatorname{gr} \mathcal{K}$. A homomorphic expansion is an expansion that respects all relevant "extra" operations.
Filtered algebraic structures are cheap and plenty. In any \mathcal{K}, allow formal linear combinations, let \mathcal{K}_{1} be the ideal generated by differences (the "augmentation ideal"), and let $\mathcal{K}_{m}:=\left\langle\left(\mathcal{K}_{1}\right)^{m}\right\rangle$ (using all available "products").

A Ribbon 2-Knot is a surface S embedded in \mathbb{R}^{4} that bounds an immersed handlebody B, with only "ribbon singularities"; a ribbon singularity is a disk D of trasverse double points, whose preimages in B are a disk D_{1} in the interior of B and a disk D_{2} with $D_{2} \cap \partial B=\partial D_{2}$, modulo isotopes of S alone.

The w-relations include R234, VR1234, M, Overcrossings Commute (OC) but not UC, $W^{2}=1$, and funny interactions between the wen and the cap and over- and under-crossings:

- Has kinds, objects, operations, and maybe constants.
- Perhaps subject to some axioms.
- We always allow formal linear combinations.

Example: Pure Braids. $P B_{n}$ is generated by $x_{i j}$, "strand i goes around strand j once", modulo "Reidemeister moves". $A_{n}:=\operatorname{gr} P B_{n}$ is generated by $t_{i j}:=x_{i j}-1$, modulo the $4 T$ relations $\left[t_{i j}, t_{i k}+t_{j k}\right]=0$ (and some lesser ones too). Much happens in A_{n}, including the Drinfel'd theory of associators. Our cases).
\mathcal{K} is knot theory or topology; gr \mathcal{K} is finite combinatorics: bounded-complexity diagrams modulo simple relations.
[1] http://qlink.queensu.ca/~41b $11 /$ interesting. html
29/5/10, 8:42 am
Also see http://www.math.toronto.edu/~drorbn/papers/WKO/
A a (Just for fun.

An expansion Z is a choice of a

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Bonn-0908/

Convolutions on Lie Groups and Lie Algebras and Ribbon 2-Knots, Page 2

Knot-Theoretic statement. There exists a homomorphic ex- From wTT to $\mathcal{A}^{w} . \mathrm{gr}_{m}$ wTT $:=\{m-\mathrm{cubes}\} /\{(m+1)-\mathrm{cubes}\}$: pansion Z for trivalent w-tangles. In particular, Z should respect $R 4$ and intertwine annulus and disk unzips:
(1)

ς

(3)

Diagrammatic statement. Let $R=\exp \hat{\uparrow} \hat{\wedge} \in \mathcal{A}^{w}(\uparrow \uparrow)$. There exist $\omega \in \mathcal{A}^{w}(\uparrow)$ and $V \in \mathcal{A}^{w}(\uparrow \uparrow)$ so that
(1)

Algebraic statement. With $I \mathfrak{g}:=\mathfrak{g}^{*} \rtimes \mathfrak{g}$, with $c: \hat{\mathcal{U}}(I \mathfrak{g}) \rightarrow$ $\hat{\mathcal{H}}(I \mathfrak{g}) / \hat{\mathcal{U}}(\mathfrak{g})=\hat{\mathcal{S}}\left(\mathfrak{g}^{*}\right)$ the obvious projection, with S the antipode of $\hat{\mathcal{U}}(I \mathfrak{g})$, with W the automorphism of $\hat{\mathcal{U}}(I \mathfrak{g})$ induced by flipping the sign of \mathfrak{g}^{*}, with $r \in \mathfrak{g}^{*} \otimes \mathfrak{g}$ the identity element and with $R=e^{r} \in \hat{\mathcal{U}}(I \mathfrak{g}) \otimes \hat{\mathcal{U}}(\mathfrak{g})$ there exist $\omega \in \hat{\mathcal{S}}\left(\mathfrak{g}^{*}\right)$ and $V \in \hat{\mathcal{U}}(I \mathfrak{g})^{\otimes 2}$ so that
(1) $V(\Delta \otimes 1)(R)=R^{13} R^{23} V$ in $\hat{\mathcal{U}}(I \mathfrak{g})^{\otimes 2} \otimes \hat{\mathcal{U}}(\mathfrak{g})$
(2) $V \cdot S W V=1$
(3) $(c \otimes c)(V \Delta(\omega))=\omega \otimes \omega$

Unitary statement. There exists $\omega \in \operatorname{Fun}(\mathfrak{g})^{G}$ and an (infinite order) tangential differential operator V defined on $\operatorname{Fun}\left(\mathfrak{g}_{x} \times\right.$ \mathfrak{g}_{y}) so that
(1) $V \widehat{e^{x+y}}=\widehat{e^{x}} \widehat{e^{y}} V$ (allowing $\hat{\mathcal{U}}(\mathfrak{g})$-valued functions)
(2) $V V^{*}=I \quad$ (3) $V \omega_{x+y}=\omega_{x} \omega_{y}$

Group-Algebra statement. There exists $\omega^{2} \in \operatorname{Fun}(\mathfrak{g})^{G}$ so that for every $\phi, \psi \in \operatorname{Fun}(\mathfrak{g})^{G}$ (with small support), the following holds in $\hat{\mathcal{U}}(\mathfrak{g})$:
$\left(\operatorname{shhh}, \omega^{2}=j^{1 / 2}\right)$

$$
\iint_{\mathfrak{g} \times \mathfrak{g}} \phi(x) \psi(y) \omega_{x+y}^{2} e^{x+y}=\iint_{\mathfrak{g} \times \mathfrak{g}} \phi(x) \psi(y) \omega_{x}^{2} \omega_{y}^{2} e^{x} e^{y}
$$

Convolutions statement (Kashiwara-Vergne). Convolutions of invariant functions on a Lie group agree with convolutions of invariant functions on its Lie algebra. More accurately, let G be a finite dimensional Lie group and let \mathfrak{g} be its Lie algebra, let $j: \mathfrak{g} \rightarrow \mathbb{R}$ be the Jacobian of the exponential map $\exp : \mathfrak{g} \rightarrow G$, and let $\Phi: \operatorname{Fun}(G) \rightarrow \operatorname{Fun}(\mathfrak{g})$ be given by $\Phi(f)(x):=j^{1 / 2}(x) f(\exp x)$. Then if $f, g \in \operatorname{Fun}(G)$ are Ad-invariant and supported near the identity, then

$$
\Phi(f) \star \Phi(g)=\Phi(f \star g) .
$$

Diagrammatic to Algebraic. With $\left(x_{i}\right)$ and $\left(\varphi^{j}\right)$ dual bases of \mathfrak{g} and \mathfrak{g}^{*} and with $\left[x_{i}, x_{j}\right]=\sum b_{i j}^{k} x_{k}$, we have $\mathcal{A}^{w} \rightarrow \mathcal{U}$ via

Unitary \Longleftrightarrow Algebraic. The key is to interpret $\hat{\mathcal{U}}(I \mathfrak{g})$ as tangential differential operators on $\operatorname{Fun}(\mathfrak{g})$:

- $\varphi \in \mathfrak{g}^{*}$ becomes a multiplication operator.
- $x \in \mathfrak{g}$ becomes a tangential derivation, in the direction of the action of $\operatorname{ad} x:(x \varphi)(y):=\varphi([x, y])$.
- $c: \hat{\mathcal{U}}(I \mathfrak{g}) \rightarrow \hat{\mathcal{U}}(I \mathfrak{g}) / \hat{\mathcal{U}}(\mathfrak{g})=\hat{\mathcal{S}}\left(\mathfrak{g}^{*}\right)$ is "the constant term". Unitary \Longrightarrow Group-Algebra. $\iint \omega_{x+y}^{2} e^{x+y} \phi(x) \psi(y)$
$=\left\langle\omega_{x+y}, \omega_{x+y} e^{x+y} \phi(x) \psi(y)\right\rangle=\left\langle V \omega_{x+y}, V e^{x+y} \phi(x) \psi(y) \omega_{x+y}\right\rangle$ $=\left\langle\omega_{x} \omega_{y}, e^{x} e^{y} V \phi(x) \psi(y) \omega_{x+y}\right\rangle=\left\langle\omega_{x} \omega_{y}, e^{x} e^{y} \phi(x) \psi(y) \omega_{x} \omega_{y}\right\rangle$
$=\iint \omega_{x}^{2} \omega_{y}^{2} e^{x} e^{y} \phi(x) \psi(y)$.
Convolutions and Group Algebras (ignoring all Jacobians). If G is finite, A is an algebra, $\tau: G \rightarrow A$ is multiplicative then $(\operatorname{Fun}(G), \star) \cong(A, \cdot)$ via $L: f \mapsto \sum f(a) \tau(a)$. For Lie (G, \mathfrak{g}),

with $L_{0} \psi=\int \psi(x) e^{x} d x \in \hat{\mathcal{S}}(\mathfrak{g})$ and $L_{1} \Phi^{-1} \psi=\int \psi(x) e^{x} \in$ $\hat{\mathcal{U}}(\mathfrak{g})$. Given $\psi_{i} \in \operatorname{Fun}(\mathfrak{g})$ compare $\Phi^{-1}\left(\psi_{1}\right) \star \Phi^{-1}\left(\psi_{2}\right)$ and $\Phi^{-1}\left(\psi_{1} \star \psi_{2}\right)$ in $\hat{\mathcal{U}}(\mathfrak{g}): \quad$ (shhh, $L_{0 / 1}$ are "Laplace transforms")
\star in $G: \iint \psi_{1}(x) \psi_{2}(y) e^{x} e^{y}$ \star in $\mathfrak{g}: \iint \psi_{1}(x) \psi_{2}(y) e^{x+y}$
We skipped... • The Alexander • v-Knots, quantum groups and polynomial and Milnor numbers. Etingof-Kazhdan.
- u-Knots, Alekseev-Torossian, - BF theory and the successful and Drinfel'd associators. religion of path integrals.
- The simplest problem hyperbolic geometry solves.

| (u, v, and w knots) x (topology, combinatorics, low algebra, and high algebra) Dror Bar-Natan, Kansas State April 7 2009, http://www.math.toronto.edu/~drorbn/Talks/KSU-090407 | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | |
| | | | w is for welded, weakly v , and warmup:
 $4\{\mathrm{w}-\mathrm{knots}\}=\{\mathrm{v}-\mathrm{knots}\} /(\mathrm{OC})$
 where OC is Overcrossings Commute: | | |
| | | | | | |
| | | | | | |
| | | | | | |

Motivation Homology measures our failure to construct all Solutions of a given equation:

$\mathbb{R}_{\theta}^{\prime} \xrightarrow{ل^{\prime}} R_{x, y}^{2} \xrightarrow{d^{2}} \mathbb{R}_{r}^{\prime}$
$\theta \mapsto\binom{\cos \theta}{\sin \theta} \quad\binom{x}{y} \mapsto \sqrt{x^{2}+y^{2}}$
$d^{2} 0 d^{\prime}=$ costs
$V \xrightarrow{d_{1}} W \xrightarrow{J_{2}} Z$
$\operatorname{im} d_{1} c \operatorname{tar} d_{2} \Leftrightarrow d_{2} \circ d_{1}=0$
$H(W):=$ kew $d_{2} /$ in d_{l}
Euler characteristic
Theorem IF werything is finite, then

$$
\begin{aligned}
\sum(1)^{r} \operatorname{dim} \Omega^{r} & =\sum(-1)^{r} \operatorname{dim} H^{r} \\
& =: x(\Omega)
\end{aligned}
$$

Proof (move ar less)

Definition A "conner" is a long chan of "pranntriation rollins:
st. $d^{2}=0$ or imp(d)cker(d)
Homology:

$$
H^{r}(\Omega):=k e r d^{r} / i m d^{r-1}
$$

The "parametrization failure" at stop r.
$\left[\begin{array}{l}\text { I dort understand " why "bong" complexes } \\ \text { are so common }\end{array}\right]$
Morphisms and Homotopy
Morphisms:
$\cdot \longrightarrow \Omega_{0}^{r-1} \xrightarrow{d^{r-1}} \Omega_{0}^{r} \xrightarrow{d^{r}} \Omega_{0}^{r+1} \longrightarrow \cdots$

Homotopies:

$F^{r}-G^{r}=h^{r+1} d^{r}+d^{r-1} h^{r}$
If there are $\Omega_{0} \frac{E}{e_{g}} \Omega$,
sit. $f \circ g \sim I_{\Omega_{1}}$ and $g \circ f \sim I_{\Omega_{2}}$ then " $\Omega_{0} \& \Omega$, are homo tory equivalent" [ans they hare equal]

Largely strong enough V_{0}

 (27) 8089838
 28,8838 " 8882083888
 Q 8888888888 Taken from
Rob Schavein's site, $\frac{\text { nitpo//knotioloc.com/200/ }}{}$ \Rightarrow knot coloring isn't enough.

 Algebraic knot Theory:
 Problem Prove that $O \neq$

More at http://www.math.toronto.edu/~drorbn/Talks/Copenhagen-081009/
害

More at http://www.math.toronto.edu/~drorbn/Talks/Copenhagen-081009/

Dror Bar－Natan：Talks：Sandbjerg－0810：
 The Penultimate Alexander Invariant
 A Definition of the MVA（From［Ar］）

Relations by J．Murakami

The Naik－Stanford Double Delta Relation
（From［NS］）

This handout and further links are at
http：／／www．math．toronto．edu／～drorbn／Talks／Sandbjerg－0810／

Our Goal．Prove all these relations uniformly，at maximal confidence and minimal brain utilization．
\Rightarrow We need an＂Alexander Invariant＂for arbitrary tangles， easy to define and compute and well－behaved under tangle compositions；better，＂virtual tangles＂．
Circuit Algebras
＊Have＂circuits＂with＂ends＂，
＊Can be wired arbitrarily．

＊May have＂relations＂－de－Morgan，etc．
Example $\quad V \mathcal{T}=C A\langle$ ㅅ，入 $\rangle / R 23=P A\langle$ 人 $, ~ 入, ~ \chi\rangle / R 23, V R 123, M R 3$ Reminders from linear algebra．If X is a（finite）set，

$$
\Lambda^{k}(X):=\langle k \text {-tuples in } X, \text { modulo anti-symmetry }\rangle
$$

$\Lambda^{\mathrm{top}}(X):=\langle | X \mid$－tuples in X ，modulo anti－symmetry \rangle
$\Lambda^{1 / 2}(X):=\langle(|X| / 2)$－tuples in X ，modulo anti－symmetry \rangle.
If $Y \subset X^{m}$ ，the＂interior multiplication＂$i_{Y}: \Lambda^{k}(X) \rightarrow$ $\Lambda^{k-m}(X)$ is anti－symmetric in Y ．
Definition．An＂Alexander half density with input strands $X^{\text {in }}$ and output strands $X^{\text {out＂}}$ is an element of

$$
\operatorname{AHD}\left(X^{\text {in }}, X^{\text {out }}\right):=\Lambda^{\text {top }}\left(X^{\text {out }}\right) \otimes \Lambda^{1 / 2}\left(X^{\text {in }} \cup X^{\text {out }}\right)
$$

Often we extend the coefficients to some polynomial ring without warning．
Definition．If $\alpha_{i} \otimes p_{i} \in \operatorname{AHD}\left(X_{i}^{\text {in }}, X_{i}^{\text {out }}\right.$（for $\left.i=1,2\right)$ ，and $G=\left(X_{1}^{\text {in }} \cup X_{2}^{\text {in }}\right) \cap\left(X_{1}^{\text {out }} \cup X_{2}^{\text {out }}\right)$ is the set of＂gluable legs＂， the＂gluing＂in $\operatorname{AHD}\left(X_{1}^{\text {in }} \cup X_{2}^{\text {in }}-G, X_{1}^{\text {out }} \cup X_{2}^{\text {out }}-G\right)$ is

$$
i_{G}\left(\alpha_{1} \wedge \alpha_{2}\right) \otimes i_{G}\left(p_{1} \wedge p_{2}\right)
$$

Claim．This makes AHD a circuit algebra．
Definition．The＂Penultimate Alexander Invariant＂is de－ fined using

$$
\begin{aligned}
& p A: \underset{l}{k} \begin{array}{c}
k \\
\text { ス }_{i}
\end{array} \mapsto(j \wedge k) \otimes\binom{l \wedge i+\left(t_{i}-1\right) l \wedge j-t_{l} l \wedge k}{+i \wedge j+t_{l} j \wedge k}
\end{aligned}
$$

Why Works？
 exactly l rooks in the yellow zone and l rooks in the purple zone．So for T_{1} we only care about the minors in which exactly l of the $2 l$ middle columns are dropped，and the rest is signs．．
Weaknesses．Exponential，no understanding of cablings， no obvious＂meaning＂．The ultimate Alexander invariant should address all that．．．
Challenge．Can you categorify this？

Dror Bar-Natan: Talks: Sandbjerg-0810: The Penultimate Alexander Invariant: We Mean Business

```
    (* WP: Wedge Product *)
    WSort[expr_] := Expand[expr /. w_W :> Signature[w]*Sort[w]];
    WP[O, _] = WP[_, O] = 0;
    WP[a_, b_] := WSort[Distribute[a ** b] /.
        (c1_. * w1_W) ** (c2_. * w2_W) :> c1 c2 Join[w1, w2]];
            (* IM: Interior Multiplication *)
    IM[{}, expr_] := expr;
    IM[i_, w_W] := If [FreeQ[w, i], O,
        -(-1)^Position[w, i][[1,1]]*DeleteCases[w, i] ];
    IM[{is___, i_}, w_W] := IM[{is}, IM[i, w]];
    IM[is_List, expr_] := expr /. w_W :> IM[is, w]
            (* pA on Crossings *)
    pA[Xp[i_,j_,k_,\mp@subsup{l}{_}{\prime}]] := AHD[(t[i]==t[k])(t[j]==t[l]), {i,l}, W[j,k],
        W[l,i] + (t[i]-1)W[l,j] - t[l]W[l,k] + W[i,j] + t[l]W[j,k] ];
    pA[Xm[i-, j- , k_, , _ ] ] := AHD[(t[i]==t[k]) (t[j]==t[l]), {i,j},W[k,l],
        t[j]W[i,j] - t[j]W[i,l] + W[j,k] + (t[i]-1)W[j,l] + W[k,l] ]
            (* Variable Equivalences *)
    ReductionRules[Times[]] = {};
    ReductionRules[Equal[a_, b__]] := (# -> a)& /@ {b};
    ReductionRules[eqs_Times] := Join @@ (ReductionRules /@ List@@eqs)
            (* AHD: Alexander Half Densities *)
    AHD[eqs_, is_, -os_, p_] := AHD[eqs, is, os, Expand[-p]];
    AHD /: Reduce[AHD[eqs_, is_, os_, p_]] :=
    AHD[eqs, Sort[is], WSort[os], WSort[p /. ReductionRules[eqs]]];
    AHD /: AHD[eqs1_,is1_,os1_,p1_] AHD[eqs2_,is2_,os2_,p2_] := Module[
    {glued = Intersection[Union[is1, is2], List@@Union[os1, os2]]},
    Reduce [AHD [
        eqs1*eqs2 //. eq1_Equal*eq2_Equal /;
            Intersection[List@@eq1, List@@eq2] =!= {} :> Union[eq1, eq2],
        Complement[Union[is1, is2], glued],
        IM[glued, WP[os1, os2]],
        IM[glued, WP[p1, p2]]
    ] ]
```

 (* pA on Circuit Diagrams *)
 pA[cd_CircuitDiagram, eqs_-_] := pA[cd, \{\}, AHD[Times[eqs], \{\}, W[], W[]]];
 pA[cd_CircuitDiagram, done_, ahd_AHD] := Module[
 \{pos = First[Ordering[Length[Complement[List @@ \#, done]] \& /@ cd]]\},
 \(\mathrm{pA}[\mathrm{Delete}[\mathrm{cd}, \mathrm{pos}]\), Union[done, List @@ cd[[pos]]], ahd*pA[cd[[pos]]]]
];
 pA[CircuitDiagram[], _, ahd_AHD] := ahd
 Comments online 2. W[i1,i2,...] represents $i_{1} \wedge i_{2} \wedge \ldots$ To sort it we Sort its arguments and multiply by the Signature of the permutation used. 3. The wedge product of 0 with anything is $0.4-5$. The wedge product of two things involves applying the Distributeive law, Joining all pairs of W's, and WSorting the result. 8. Inner multiplying by an empty list of indices does nothing. 9-10. Inner multiplying a single index yields 0 if that index is not pressent, otherwise it's a sign and the index is deleted. 11-12. Aftwrwards it's simple recursion. 15-18. For the crossings Xp and Xm it is straightforward to determine the incoming strands, the outgoing ones, and the variable equivalences. The associated half-densities are just as in the formulas. 21-23. The technicalities of imposing variable equivalences are annoying. 26. That's all we need from the definition of a tensor product. 27-28. Straightforward simplifications. 29. The (circuit algebra) product of two Alexander Half Densities: 30. The glued strands are the intersection of the ins and the outs. 3233. Merging the variable equivalences is tricky but natural. 34-35. Removing the glued strands from the ins and outs. 36 The Key Point. The wedge product of the half-densities, inner with the glued strands. 40-45. A quick implementation of a "thin scanning" algorithm for multiple products. The key line is $\mathbf{4 2}$, where we select the next crossing we multiply in to be the crossing with the fewest "loose strands".

- --...-- -.... \quad I Commutators Commute

 Circuitdiagram [
$\operatorname{xem}[19,1,20,2], \operatorname{xp}[11,3,12,2], \operatorname{Xe}[3,30,4,29], \operatorname{Xem}[4,21,5,22]$, $\operatorname{xp}[6,23,7,22], \operatorname{xam}[7,28,8,29], \operatorname{Xan}[12,8,13,9], \operatorname{xp}[18,10,19,9]$, $\operatorname{xp}[6,23,7,22], \operatorname{xm}[7,28,8,29], \operatorname{Kn}[12,8,13,9], \operatorname{xp}[18,10,19,9]$,
$\operatorname{Znm}[27,13,28,14], \operatorname{Xe}[23,15,24,14], \operatorname{xm}[24,16,25,17], \operatorname{xp}[26,18,27,17]$ 1 , CircuitDiagram [
$\operatorname{xip}_{\mathrm{p}}[1,28,2,27], \operatorname{xim}_{\mathrm{m}}[2,23,3,24],{\operatorname{xan}[17,3,18,4], \operatorname{xip}_{\mathrm{p}}[13,5,14,4],}^{2}[14,6$, $\mathrm{K}_{\mathrm{Kn}}[29,11,30,12], \mathrm{K}_{\mathrm{p}}[21,13,22,12], \mathrm{Xnn}^{2}[22,18,23,19], \mathrm{K}_{\mathrm{p}}[28,20,29,19]$ 3
31

A very large output was generated. Here is a sample of it:
\{9.86. $\{$ AHD $[(t[1]=t[2]=t[3]=t[4]=t[5]=t[6]=t[7]=t[8]=t[9]=t[10])$ ($\mathrm{t}[11]=\mathrm{t}[12]==\mathrm{t}[13]=\mathrm{t}[14]=\mathrm{t}[15]=\mathrm{t}[16]=\mathrm{t}[17]=\mathrm{t}[18]=\mathrm{t}[19]=\mathrm{t}[201)$ ($\mathrm{t}[21]=\mathrm{t}[22]=\mathrm{t}[23]=\mathrm{t}[24]=\mathrm{t}[25]=\mathrm{t}[26]=\mathrm{t}[27]=\mathrm{t}[28]=\mathrm{t}[29]=\mathrm{t}[301$), $\{1,6,11,16,21,26\}, \ll 1 \gg$, $\left.-t[1]^{2} t[11]^{2} t[21]^{2} w[1,5,6,11,15,21]+\ll 2574 \gg 1, \ll 1 \gg 3\right\}$ Show Less Show More Show Full Output Set Size Limit...
$\ln [11]=$ Equal @@ (Last/@res4)

- Commutators Commute
 $\xrightarrow{2}$

$\ln [5]=$ Equal [
pA [CircuitDiagram $[\mathrm{Xp}[1,2,11,8], \mathrm{Xm}[11,3,12,7]$,
$\mathrm{Xp}[12,4,13,10], \mathrm{Xm}[13,5,6,9]], \mathrm{t}[2]=\mathrm{t}[3], \mathrm{t}[4]=\mathrm{t}[5]]$,

Out $[$ [$]=$ True

References

[Ar] J. Archibald, The Weight System of the Multivariable Alexander Polynomial, arXiv:0710.4885.
[MH] H. Murakami, A Weight System Derived from the Multivariable Conway Potential Function, Jour. of the London Math. Soc. 59 (1999) 698-714, arXiv:math/9903108.
[MJ] J. Murakami, A State Model for the Multi-Variable Alexander Polynoomial, Pac. Jour. of Math. 157-1 (1993) 109-135.
[NS] S. Naik and T. Stanford, A Move on Diagrams that Generates SEquivalence of Knots, Jour. of Knot Theory and its Ramifications 12-5 (2003) 717-724, arXiv:math/9911005.
[Va] A. Vaintrob, Melvin-Morton Conjecture and Primitive Feynman Diagrams, Inter. J. Math. 8 (1997) 537-553, arXiv:q-alg/9605028.

Dror Bar-Natan: Talks: MSRI-0808:
Projectivization, w-Knots, Kashiwara-Vergne and Alekseev-Torossian
The Categorification Speculative Paradigm.

- Every object in math is the Euler characteristic of a complex.
- Every operation in math lifts to an operation between complexes.
- Every identity in mathematics is true up to homotopy.

The Projectivization Tentative Speculative Paradigm. Projectivization?

- Every graded algebraic structure in mathematics is the projectivization of a plain ("global") one.
- Every equation written in a graded algebraic structure is an equation for a homomorphic expansion, or for an automorphism of such.
- $e(x+y)=e(x) e(y)$ in $\mathbb{Q}[[x, y]] . \quad$ Graded Equations Examples
- The pentagon and hexagons in $\mathcal{A}\left(\uparrow_{3,4}\right)$.
- The equations defining a QUEA, the work of Etingof and Kazhdan.
- The Alekseev-Torossian equations in $\mathcal{U}\left(\right.$ sder $\left._{n}\right)$ and $\mathcal{U}\left(\operatorname{tder}_{n}\right)$.
sder \leftrightarrow tree-level \mathcal{A}
$F \in \mathcal{U}\left(\operatorname{tder}_{2}\right) ; \quad F^{-1} e(x+y) F=e(x) e(y) \quad \Longleftrightarrow \quad F \in \operatorname{Sol}_{0}$

$$
\Phi=\Phi_{F}:=\left(F^{12,3}\right)^{-1}\left(F^{1,2}\right)^{-1} F^{23} F^{1,23} \in \mathcal{U}\left(\operatorname{sder}_{3}\right)
$$

$\Phi^{1,2,3} \Phi^{1,23,4} \Phi^{2,3,4}=\Phi^{12,3,4} \Phi^{1,2,34} \quad$ "the pentagon"
$t=\frac{1}{2}(y, x) \in \operatorname{sder}_{2}$ satisfies $4 T \quad$ and $\quad r=(y, 0) \in \operatorname{tder}_{2}$ satisfies $6 T$ $R:=e(r)$ satisfies Yang-Baxter: $R^{12} R^{13} R^{23}=R^{23} R^{13} R^{12}$ also $R^{12,3}=R^{13} R^{23}$ and $F^{23} R^{1,23}\left(F^{23}\right)^{-1}=R^{12} R^{13}$
$\tau(F):=R F^{21} e(-t)$ is an involution, $\Phi_{\tau(F)}=\left(\Phi_{F}^{321}\right)^{-1}$ $\operatorname{Sol}_{0}^{\tau}:=\{F: \tau(F)=F\}$ is non-empty; for $F \in \operatorname{Sol}_{0}^{\tau}$,

$$
e\left(t^{13}+t^{23}\right)=\Phi^{213} e\left(t^{13}\right)\left(\Phi^{231}\right)^{-1} e\left(t^{23}\right) \Phi^{321}
$$

and $\quad e\left(t^{12}+t^{13}\right)=\left(\Phi^{132}\right)^{-1} e\left(t^{13}\right) \Phi^{312} e\left(t^{12}\right) \Phi$
Alekseev
This is just a part of the Alekseev-Torossian work!

- Related to the Kashiwara-Vergne Conjecture!
- Will likely lead to an explicit tree-level associator, a linear equation away from a 1-loop equation, two linear equations away from a 2-loop associator, etc.!
- A baby version of the QUEA equations; we may be on the right tracks!
Knotted Trivalent Graphs
$\mathcal{O}(\Delta)=\{\infty, \ldots$,

Theorem. KTG is generated by the unknotted Δ and the Möbius band, with identifiable relations between them.
Theorem. $Z(\Delta)$ is equivalent to an associator Φ.

Algebraic
Knot
Theory
Theorem. \{ribbon knots $\} \sim\{u \gamma: \gamma \in \mathcal{O}(\circ-), d \gamma=\bigcirc \bigcirc\}$. Hence an expansion for KTG may tell us about ribbon knots, knots of genus 5 , boundary links, etc.

- Has kinds, objects, operations, and maybe constants.
- Perhaps subject to some axioms.
- We always allow formal linear combinations.

Defining proj \mathcal{O}. The augmentation "ideal":

$$
I=I_{\mathcal{O}}:=\left\{\begin{array}{l}
\text { formal differences of ob- } \\
\text { jects "of the same kind" }
\end{array}\right\}
$$

Then $I^{n}:=\left\{\begin{array}{l}\text { all outputs of algebraic } \\ \text { expressions at least } n \text { of } \\ \text { whose inputs are in } I\end{array}\right\}$, and

$$
\operatorname{proj} \mathcal{O}:=\bigoplus_{n \geq 0} I^{n} / I^{n+1} \quad\left(\begin{array}{l}
\text { has same kinds and opera- } \\
\text { tions, but different objects } \\
\text { and axioms }
\end{array}\right) .
$$

Knot Theory Anchors.

- $\left(\mathcal{O} / I^{n+1}\right)^{\star}$ is "type n invariants".
- $\left(I^{n} / I^{n+1}\right)^{\star}$ is "weight systems".
- $\operatorname{proj} \mathcal{O}$ is \mathcal{A}, "chord diagrams".

Warmup Examples.

- The projectivization of a group is a graded associative algebra.
- A quandle: a set Q with a binary op \wedge s.t.
$1 \wedge x=1, \quad x \wedge 1=x \wedge x=x, \quad$ (appetizers)

$$
(x \wedge y) \wedge z=(x \wedge z) \wedge(y \wedge z)
$$

$\operatorname{proj} Q$ is a graded Lie algebra: set $\bar{v}:=(v-1)$ (these generate $I!$), feed $1+\bar{x}, 1+\bar{y}, 1+\bar{z}$ in (main), collect the surviving terms of lowest degree:
$(\bar{x} \wedge \bar{y}) \wedge \bar{z}=(\bar{x} \wedge \bar{z}) \wedge \bar{y}+\bar{x} \wedge(\bar{y} \wedge \bar{z})$.
An Expansion is $Z: \mathcal{O} \rightarrow \operatorname{proj} \mathcal{O}$ s.t. $Z\left(I^{n}\right) \subset$ $(\operatorname{proj} \mathcal{O})_{\geq n}$ and $Z_{I^{n} / I^{n+1}}=I d_{I^{n} / I^{n+1}} \quad(\mathrm{~A}$ "universal finite type invariant"). In practice, it is hard to determine proj \mathcal{O}, but easy to guess a surjection $\rho: \mathcal{A} \rightarrow \operatorname{proj} \mathcal{O}$. So find $Z^{\prime}: \mathcal{O} \rightarrow \mathcal{A}$ with $Z^{\prime}\left(I^{n}\right) \subset \mathcal{A}_{\geq n}$ and $Z_{I^{n} / I^{n+1}}^{\prime} \circ \rho_{n}=I d_{\mathcal{A}_{n}}:$

Can you make this diagram less confusing?

Homomorphic Expansions are expansions that intertwine the algebraic structure on \mathcal{O} and $\operatorname{proj} \mathcal{O}$. They provide finite / combinatorial handles on global problems.

The Key Point. If \mathcal{O} is finitely presented, finding a homomorphic expansion is solving finitely many equations with finitely many unknowns, in some graded spaces.

Dror Bar-Natan: Talks: MSRI-0808: Projectivization, w-Knots, Kashiwara-Vergne and Alekseev-Torossian: We Mean Business
Trivalent (framed) w-tangles:
further operations: delete, unzip.
$w T T=C A\langle>/ 1 / 1\rangle / \mathrm{R} 123, \mathrm{R} 4$ (for vertices), F, OC.
$=P A\langle\gg /</</ \mathrm{R} 1234, \mathrm{~F}, \mathrm{VR} 1234, \mathrm{D}, \mathrm{OC}$.
(=tangles in thick surfaces, modulo stabilization)

Partial Dictionary.

$$
R^{12,3}=R^{13} R^{23}
$$

$$
11
$$

$$
F^{12,3} R^{12,3}=R^{13} R^{23} F_{\text {(u nf }}^{12,3}
$$

 (unforbidding F makes this automatic)

$$
R F^{21} e(-t)=F \quad L_{1}^{2}=\frac{1}{1}
$$

$$
\Phi=\left(\mathbb{F}^{12,3}\right)^{-1}\left(\mathbb{F}^{1,2}\right)^{-1} F^{2,3} F^{1,23} R
$$

$$
\text { 历esdur }<\rightarrow
$$

The pentagon and the hexagons follow, with a minor twist, from the fact that we have an untipbchaved invariant of KTG's.

The Main Theorem. (approximate, false as stated) F 's in Sol_{0}^{τ} are in a bijective correspondance with tree-level associators for ordinary paranthesized tangles (or ordinary knotted trivalent graphs) / with homomorphic expansions for trivalent w-tangles

Circuit Algebras

* Have "circuits" with "ends"

* Can be wired arbitrarily.
* May have "relations" - de-Morgan, etc.
w-braids describe flying rings:

w-knotted objects describe ribbon surfaces in \mathbb{R}^{4}.

(and π_{1} is preserved)

The "Jacobi Diagrams" - $\mathcal{A}_{n}^{c c}$.
Theorem. $\mathcal{A}_{n}^{w t}$ is $\mathcal{A}_{n}^{c c}$ is $\overline{\mathcal{U}}\left(\right.$ ter $\left._{n}\right)$.

$$
\begin{aligned}
& \text { Here } A_{n}^{C C} \text { is } \\
& {[\uparrow \text { trivalut directed tree }} \\
& \text { with only 2-in 1-ant }
\end{aligned}
$$ Keels: $\xrightarrow{\text { tails commute }}=1 \begin{aligned} & \text { Hods satisfy the only possible, s } \pi\end{aligned}$

The Map $\alpha: \mathcal{A}_{n}^{\text {tree }} \rightarrow \mathcal{A}_{n}^{c c}: \quad \longrightarrow \quad \mapsto \longrightarrow-\longrightarrow$ Theorem. α is an injection on $\mathcal{A}_{n}^{\text {tree }} \cong \mathcal{U}\left(\operatorname{sder}_{n}\right)$. Furthermore, there is a simple charactarization of am α, so we can tell "an arrowless element" when we see it

$$
\begin{aligned}
& \left(\begin{array}{c}
\bigodot_{C}=0 \\
\text { write dit. wm } \\
=0
\end{array}\right) \\
& \text { vuticas } \rightarrow \\
& \text { In tunsorlands, this is } \\
& \text { "Co-commutative Lie-biales" }
\end{aligned}
$$

This handout and further links are at
http://www.math.toronto.edu/~drorbn/Talks/MSRI-0808/
"God created the knots,
all else in topology is the work of mortals"
Leopold Kronecker (paraphrased)
/ with solutions of the Kashiwara-Vergne problem.
Extra. Restricted to knots, we get precisely the Alexander polynomial.
Disclaimer. Orientations, rotation numbers, framings, the vertical direction and the cyclic symmetry of the vertex may still make everything uglier. I hope not.

Theorem. There exists a skeletal (very) planar algebra of "shielded tangles" with:

(red and brown are always "knottable")

and

and

Example.

is
1.

(so knottedness moved around \&) well defined?
Facts. 1. There is no planar-algeb-a-struchre deeper connections -respecting universal finite type invariant

$$
\left\{\begin{array}{l}
\text { or dinar } \\
\text { tangles }
\end{array}\right\} \rightarrow\left\langle\begin{array}{l}
4 T, \text { STU, } \\
\text { AS, I } H X
\end{array}\right.
$$

2. But there is one for shielded tangles D

$$
\exists z:\left\{\begin{array}{c}
\text { shielded } \\
\text { tangles }
\end{array}\right\} \rightarrow<\mathrm{reds} .
$$

3. This z provides a Reidemeister context for the kontserich integral!
4. A cousin of z is equivdent to the Drinfel'd theory of assuciators.
Dram similar story will be told for "virtual knots", and will provide a topological interpretation of a "universe quantum group". See .../Talks/Hanoi-0708
5. slides/blame/some pro /ana powerpoint are evil!

* Can you always sync with the speaker?
* Don 4 you want to bot back at pictures longgon? 2. Handouts are cool! Everything's always in front of you, evan when you go. home.
"God created the knots, all else in topology is the work of mortals"
Leopold Kronecker (modified)

Visit!
katlas.org Edit!
http://www.math.toronto.edu/~~drorbn/Talks/Fields-0709/

Dror Bar-Natan: Talks: Hanoi-0708: Following Lin:
Expansions for Groups

Riverside, April 2000
o, September 2001

Vaughan's Hierarchy
(generalized, unauth
) Computation
) Formula
Θ Proof
Θ Theory
\ominus Dream

2

 Dror's Dream / Obsession:The bigger quest:
Understand quantum groups (I don't).
"Unify" quantum groups - find one object that contains all.
Example: One invariant to rule them all:

Easy! Universal! A Morphism! Unique! An Isomorphism! What is a "Quantum Group"? For now, a "deformation of the trivial" solution in $\mathcal{U}(\mathfrak{g}))^{\otimes *}[[\hbar]]$ of the major equations:

$$
\begin{array}{cc}
(\Delta \otimes 1) \Delta=(1 \otimes \Delta) \Delta & R^{-1} \Delta R=\Delta^{o p} \\
(\Delta \otimes 1) R=R^{23} R^{13} & (1 \otimes \Delta) R=R^{12} R^{13}
\end{array}
$$

(as well as a few minor equations).
Dror's Guess: A unified object exists; we'll need:

1. Expansions as in Lin / universal finite type invariants.
2. Naturality / functoriality.
3. Knotted graphs, especially trivalent.
4. Associators following Drinfel'd.
5. The work of Etingof and Kazhdan on bialgebras.

Why care?
Quantum groups
computable computable computable
invariants make!
6. Virtual braids / knots / knotted graphs. Edit!
7. Polyak (LMP 54) \& Haviv (arXiv:math/0211031) on arrow diagrams. (and when construction ends, we'll dump the scaffolding)
(Quasi?) Natural Expansions
$G \mapsto C(G)$ and $G \mapsto \mathcal{A}(G)$ are functors. Can you choose a ((quasi?) natural) Z satisfying $C\left(G_{1}\right) \xrightarrow[C(\Delta)]{ } C\left(G_{2}\right)$

Perhaps just on a subcategory of Groups? Perhaps Braids with strands addition, deletion and doubling:

$\begin{array}{ll}\text { Virtual Braids crossings are real, strands go virtual } \\ \text { Definition. } & \text { Lie bialgebras. }\end{array}$ Definition.
Crossings, $\quad \begin{aligned} & \text { Lie bialgebras. } \\ & \text { The } \mathfrak{g} \text { in a sum } \mathfrak{g} \oplus \mathfrak{g}^{\star}\end{aligned}$ modulo $\ll \begin{aligned} & \text { which in itself is a Lie } \\ & \text { algebra with subalge- }\end{aligned}$ Reidemeister moves,
but the linkages between
crossings are "virtual":

8. Z^{2} is an isomorphism.
9. ρ is an isomorphism.

Everything generalizes, step 2 sometimes becomes tricky.

The Kontsevich Integral for Braids

Hallucinations

about
Khovanov

Some harsh reality.
EK mix tangles and braids and algebras and Verma modules

Night Time
Dreams
about
Etingof - Kazhdan

Day Time Dreams about Reshetikhin

- Turaev \& quasi triangular quasi Hopf algebras Reality of associators, FT invariants and co-commutative quasi-Hopf algebras

Gens and rels? \rightarrow| $\mathcal{K}_{V}=\mathrm{K}(\mathrm{T})$ |
| :---: |
| $\begin{array}{c}\text { Knotted (triv } \\ \text { virtual kn }\end{array}$ |

 Genus g knots, ribbon knots, boundary links and more...

Proof.

A La Carte Drawings

Knotted Trivalent Graphs (KTG's):

$=(\Phi \otimes 1) \cdot(1 \otimes \Delta \otimes 1)(\Phi) \cdot(1 \otimes \Phi) \in \mathcal{A}\left(\uparrow_{4}\right)$

Claim. With $\Phi:=Z(\Delta)$, the above relation is equivalent to the Drinfel'd's pentagon equation.

More at http://www.math.toronto.edu/~drorbn/Talks/Kyoto-0705/

Math 1352 Algebraic Knot Theory - The Knizhnik-Zamobdchikov Connerlion Theorems. The following is an invariant of braids in $\mathbb{R}_{t} \times \mathcal{I}_{z}$ (fixed endpoints)

Let $\Omega \in \Omega^{\prime}(M, \Psi)$ with $\operatorname{deg} \Omega=1 . \frac{\text { Proof } 2 .}{\text { By stokes } s^{\prime}}$. Let $\Gamma: I_{s} \times I_{t} \rightarrow M, \Phi: I_{s} \times \Delta^{m} \rightarrow M^{m}$;
$r:[0, I]=I \rightarrow M$ induces

$$
\phi: \Delta^{m}=\left\{0 \leqslant t_{1} \leqslant \ldots \leqslant t_{m} \leqslant 1\right\} \rightarrow M^{m} .
$$

$$
\int_{\Delta^{m}} \Phi^{*} \Omega^{m}-\int_{\Delta^{m}} \Phi^{*} \Omega^{m}=\int_{I \times \Delta^{m}} d \Phi^{*} l^{m}-\int_{I^{*} \partial \Delta^{m}} \Phi^{*} \Omega^{m}=: A_{m}-B_{m}
$$

Now
where $\Omega^{m}:=\pi_{1}^{*} \Omega^{\wedge} \ldots \wedge \pi_{m}^{*} \Omega$

$$
A_{m}=\sum_{k=1}^{m}(-1)^{k+1} \int_{I \times 0} \pi_{1}^{*} \Omega^{\wedge} \ldots \wedge \pi_{k}^{*} \partial \Omega \Omega^{\wedge} \ldots K_{m}^{*} \Omega
$$

Theorem 2. If $F_{u}:=d \Omega+\Omega^{1} \Omega=0$,
then hoff (Ω) is invariant undor end-point preserving homotpins of γ.
The KZ connection.

$$
M=\mathbb{C}^{n},\{\text { dingonss }\}, A=A\left(\eta_{n}\right),
$$

$$
=\sum_{k=1}^{m-1}(-1)^{k} \int_{I \times D^{n-1}} \pi_{1}^{*} \Omega \wedge \ldots \uparrow \pi_{k}^{*}(\Omega \wedge \Omega)^{\wedge} \ldots \Lambda T_{n-1}^{*} \Omega
$$

and now $\sum A_{m}=\sum B_{m}$ by telescopic summations $F_{\Omega}=0$. and $\Omega=\sum_{i<j} t^{i j} w_{i j}$ where $w_{i j}=\frac{d z_{i}-d z_{j}}{z_{i}-z_{j}}=d \log \left(z_{i}-z_{j}\right) \frac{\text { Proof of } 1}{l_{0}\left(d_{y}\right.}$ Compute $F_{\Omega}=d \Omega+\Omega \Omega$: $\quad d w_{i j}=0$ so $d \Omega=0$.
"Anodes idurity Dor Ber-Nitan, Feb 13, 2007
More at http://drorbn.net/index.php?title=07-1352/Class_Notes_for_February_13 and at http://www.math.toronto.edu/~drorbn/Talks/Aarhus-1305/ (day 2)

$$
\begin{aligned}
& A=C=0 \text { as }\left[t^{i j}, t^{k}\right]=0 \text { if }|\{i j k 0\}|=20 r 4 \text { and }
\end{aligned}
$$

$$
\begin{aligned}
& =0 \text { by } \\
& =\sum_{\alpha<\beta \gamma \theta} Y^{\alpha \beta \gamma}\left(W_{\alpha \beta}{ }^{\wedge} \omega_{\beta \gamma}+c y c p o r M s\right)=0
\end{aligned}
$$

$$
\begin{aligned}
& Z(B)=f \frac{D_{p}}{(2 \pi i)^{m}} \bigwedge_{i=1}^{m} \frac{d z_{i}-d z_{i}^{\prime}}{z_{i}-z_{i}^{\prime}} \text { in } A\left(\eta_{n}\right):=\left\langle t^{i j}: \mathbb{k i} \neq j \leqslant n\right\rangle / \begin{array}{l}
t^{i j}=t^{j i}, \\
{\left[t^{i j}, t^{k} l^{j}=0\right.} \\
\left.t^{i j}, t^{k}+t^{j} k\right]=0
\end{array} \\
& \begin{array}{l}
t_{1} \leq, \leq t_{m} \\
p=\left(\left\{z_{i} ; z_{i}^{\prime}\right\}\right)
\end{array} \\
& \text { Formal Connections } \\
& \text { curvature. }
\end{aligned}
$$

Quantum algebra:
Claim. If $b a=q a b$ then
where

$$
(n)_{q}:=1+q+\ldots+q^{n-1}
$$

$$
(n)!_{q}:=(1)_{q}(2)_{q} \cdots(n)_{q}
$$

$(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k}_{q} a^{k} b^{n-k}$

$$
\binom{n}{k}_{q}:=\frac{(n)!_{q}}{(k)!_{q}(n-k)!_{q}}
$$

Local state spaces:

Local differentials:
$d\left(\begin{array}{l|l}\square & \\ \hline & \pm \\ \hline & d \\ \hline & \\ \hline & d \\ \hline & \\ \hline d & \\ \hline\end{array}+\begin{array}{|l|l|l|}\hline & \\ \hline & d \\ \hline\end{array}\right.$
where
$d^{2} \because \bigcirc=0$ or $\quad d^{2} \boxed{O}= \pm \boxed{\square} \pm \boxed{\square} \pm \boxed{\square}$
Tagged doodles:
(degrees in orange)

$d \lambda_{1}^{\lambda}:=>_{0}^{4}-\chi_{0}^{\lambda}=(x-y)$

$d \chi_{0}^{\nmid}:=\pi{\underset{y}{1}}_{1 x}^{1 x}$
$\ln [1]=\mathrm{n}=2 ; \pi_{\mathrm{i}_{-}, \mathrm{j}_{-}}:=\operatorname{Cancel}\left[\frac{\mathrm{x}_{\mathrm{i}}{ }^{\mathrm{n}+1}-\mathrm{x}_{\mathrm{j}}{ }^{\mathrm{n}+1}}{\mathrm{x}_{\mathrm{i}}-\mathrm{x}_{\mathrm{j}}}\right] ; \pi_{1,2}$
Out[$[1]=x_{1}^{2}+x_{1} x_{2}+x_{2}^{2}$
$\ln [2]:=L=\left(\begin{array}{cc}0 & x_{1}-x_{2} \\ \pi_{1,2} & 0\end{array}\right)$;
Expand[L.L] // MatrixForm
Out[3]/MatrixForm=

$$
\left(\begin{array}{cc}
x_{1}^{3}-x_{2}^{3} & 0 \\
0 & x_{1}^{3}-x_{2}^{3}
\end{array}\right)
$$

Set $L=d$
$(\operatorname{deg} d=n+1)$
$\left(\begin{array}{cc}x_{1}^{3}-x_{2}^{3} & 0 \\ 0 & x_{1}^{3}-x_{2}^{3}\end{array}\right)$

$$
\begin{array}{cc}
\text { Matrix factorizations: } & M^{0} \xrightarrow{A} \longrightarrow M^{1} \xrightarrow{B} \\
D=\left(\begin{array}{cc}
0 & A \\
B & 0
\end{array}\right) & U^{0} \downarrow \|^{0} \\
A B=B A & h^{1} \\
U^{1}
\end{array} M^{0} V^{V^{1}}
$$

A category, with "complexes", morphisms, homotopies, direct sums and tensor products.

See Khovanov and Rozansky, arXiv:math.QA/0401268

Conjecture:
(I. Frenkel, though he may disown this version)

1. Every object in mathematics is the Euler characteristic of a complex.
2. Every operation in mathematics lifts to an operation between complexes.
3. Every identity in mathematics is true up to homotopy at complex-level.

Likewise, set $Q=d \mid>$ with:
$\ln [4]:=Q:=\left(\begin{array}{cccc}0 & 0 & v_{1} & v_{2} \\ 0 & 0 & u_{2} & -\mathrm{u}_{1} \\ \mathrm{u}_{1} & \mathrm{v}_{2} & 0 & 0 \\ \mathrm{u}_{2} & -\mathrm{v}_{1} & 0 & 0\end{array}\right)$;

$\left\{\mathrm{v}_{1}, \mathrm{v}_{2}\right\}=\left\{\mathrm{x}_{1}+\mathrm{x}_{2}-\mathrm{x}_{3}-\mathrm{x}_{4}, \mathrm{x}_{1} \mathrm{x}_{2}-\mathrm{x}_{3} \mathrm{x}_{4}\right\}$;
$\ln [6]:=g\left[s_{-}, p_{-}\right]:=$
$s^{n+1}+(n+1) \sum_{i=1}^{(n+1) / 2} \frac{(-1)^{i}}{i}$ Binomial[n-i, $\left.i-1\right] s^{n+1-2 i} p^{i} ;$
$\mathrm{g}[\mathrm{x}+\mathrm{y}, \mathrm{xy} \mathrm{y}] / /$ Expand
Out $[6]=x^{3}+y^{3}$
$\ln [7]:=\left\{u_{1}, u_{2}\right\}=$
Cancel $\left[\left\{\frac{g\left[x_{1}+x_{2}, x_{1} x_{2}\right]-g\left[x_{3}+x_{4}, x_{1} x_{2}\right]}{v_{1}}\right.\right.$,

$$
\left.\left.\frac{g\left[x_{3}+x_{4}, x_{1} x_{2}\right]-g\left[x_{3}+x_{4}, x_{3} x_{4}\right]}{v_{2}}\right\}\right]
$$

Out[7] $=\left\{x_{1}^{2}-x_{1} x_{2}+x_{2}^{2}+x_{1} x_{3}+x_{2} x_{3}+x_{3}^{2}+x_{1} x_{4}+x_{2} x_{4}+2 x_{3} x_{4}+x_{4}^{2}\right.$, $\left.-3\left(x_{3}+x_{4}\right)\right\}$
$\ln [8]:=\omega=u_{1} v_{1}+u_{2} v_{2} / /$ Expand
Out[8] $=x_{1}^{3}+x_{2}^{3}-x_{3}^{3}-x_{4}^{3}$
$\ln [9]:=$ Simplify[Q.Q $==\omega$ IdentityMatrix[4]]
Out[9]= True
Example: Set $P=d \left\lvert\,>\left(\mathrm{P}=\left(\begin{array}{cccc}0 & 0 & \mathrm{x}_{1}-\mathrm{x}_{4} & \mathrm{x}_{2}-\mathrm{x}_{3} \\ 0 & 0 & \pi_{2,3} & -\pi_{1,4} \\ \pi_{1,4} & \mathbf{x}_{2}-\mathrm{x}_{3} & 0 & 0 \\ \pi_{2,3} & \mathbf{x}_{4}-\mathrm{x}_{1} & 0 & 0\end{array}\right)\right.$; \right.

$\ln [11]=$
Simplify[P.P == ω IdentityMatrix[4]]
Out[11]=
True
Theorem: (Kh-Ro) Taking homology and then the graded Euler characteristics, we get the [MOY] relations:

$$
\uparrow=\uparrow
$$

[MOY] := Murakami, Ohtsuki, Yamada,
Enseignement Math. 44 (1998)
$[k]:=\frac{q^{k}-q^{-k}}{q-q^{-1}}$
M. Khovanov

The Khovanov-Rozansky Complex
Dror Bar-Natan at UIUC, March 11, 2004, http://www.math.toronto.edu/~drorbn/Talks/UIUC-050311/
Crossings.
(height in blue) $\ln [12]:=$

$$
\begin{aligned}
& \left.\lambda \rightarrow()_{0}^{+1-n} \xrightarrow{U} \rightarrow \lambda_{1}^{-n}\right)
\end{aligned}
$$

$\mathrm{U}=\left(\begin{array}{cccc}\mathrm{x}_{4}-\mathrm{x}_{2} & 0 & 0 & 0 \\ \frac{u_{1}+\mathrm{x}_{4} \mathbf{u}_{2}-\pi_{2,3}}{\mathrm{x}_{1}-\mathbf{x}_{\mathbf{4}}} & 1 & 0 & 0 \\ 0 & 0 & \mathbf{x}_{4} & -\mathrm{x}_{2} \\ 0 & 0 & -1 & 1\end{array}\right) ; \quad \mathrm{V}=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ \frac{u_{1}+\mathrm{x}_{1} \mathbf{u}_{2}-\pi_{2}, 3}{} \\ \mathrm{x}_{\mathbf{4}}-\mathrm{x}_{1} & \mathrm{x}_{1}-\mathrm{x}_{3} & 0 & 0 \\ 0 & 0 & 1 & \mathrm{x}_{3} \\ 0 & 0 & 1 & \mathrm{x}_{1}\end{array}\right)$;
Simplify $[\{\mathrm{U} \cdot \mathrm{P}==\mathrm{Q} \cdot \mathrm{U}, \mathrm{V} \cdot \mathrm{Q}=\mathrm{P} \cdot \mathrm{V}\}]$
Out[12]=
\{True, True

More crossings?

Why am I happy?

1. The ugly formulas for $\mathrm{L}, \mathrm{Q}, \mathrm{U}, \mathrm{V}$; from where they come?
2. Where is the relationship with $\mathrm{gl}(\mathrm{n})$, representations and intertwiners?
3. Can you take the Euler characteristic before taking homology?
4. Is this computable?

The Jones/Kauffman case. (ordinary Khovanov homology)
"God created the knots, all else in topology is the work of mortals."
Leopold Kronecker (modified)

See my paper "Khovanov homology for tangles and cobordisms", http://www.math.toronto.edu/~drorbn/papers/Cobordism/

A computation example:

More at http://www.math.toronto.edu/~drorbn/Talks/UIUC-050311/

From Stonehenge to Witter Skipping all the Details
Oporto Meeting on Geometry, Topology and Physics, July 2004
Dror Bar-Natan, University of Toronto

It is well known that when the Sun rises on midsummer's morning over the "Heel Stone" at Stonehenge, its first rays shine right through the open arms of the horseshoe arrangement. Thus astrological lineups, one of the pillars of modern thought, are much older than the famed Gaussian linking number of two knots.
$\langle D, K\rangle_{\pi}:=\binom{$ The signed Stonehenge }{ pairing of D and $K}:$

Thus we consider the generating function of all stellar coincidences:
$Z(K):=\lim _{N \rightarrow \infty} \sum_{3 \text {-valent } D} \frac{1}{2^{c} c!\binom{N}{e}}\langle D, K\rangle_{\pi} D \cdot\left(\begin{array}{c}\text { framing- } \\ \text { dependent } \\ \text { counter-term }\end{array}\right) \in \mathcal{A}(\circlearrowleft)$

Theorem. Modulo Relations, $Z(K)$ is a knot invariant!
When deforming, catastrophes occur when:
A plane moves over an intersection point Solution: Impose IHX,

An intersection line cuts through the knot Solution: Impose STU,

(similar argument)

The Gauss curve slides over a star -
Solution: Multiply by a framing-dependent counter-term.
(not shown here)

The IHX Relation

It all is perturbative Chern-Simons-Witten theory:
$\int_{\mathfrak{g} \text {-connections }}^{\mathcal{D} A \operatorname{hol}_{K}(A) \exp \left[\frac{i k}{4 \pi} \int_{\mathbb{R}^{3}} \operatorname{tr}\left(A \wedge d A+\frac{2}{3} A \wedge A \wedge A\right)\right]}$

$$
\rightarrow \sum_{\substack{\text { D: Feynman } \\ \text { diagram }}} W_{\mathfrak{g}}(D) \sum \mathcal{E}(D) \rightarrow \sum_{\substack{D: \text { Feynman } \\ \text { diagram }}} D \sum \mathcal{E}(D)
$$

\leftrightarrow the red star is your eye.

Recall that the latter is itself an astrological construct: one of the standard ways to compute the Gaussian linking number is to place the two knots in space and then count (with signs) the number of shade points cast on one of the knots by the other knot, with the only lighting coming from some fixed distant star.

Dylan Thurston

| N | $:=\#$ of stars | $\mathcal{A}(\circlearrowleft)$ |
| :--- | :--- | :--- |
| c | $:=$ \# of chopsticks | $:=$ Span |
| e | $:=\#$ of edges of D | \square |

The Fourier Transform:
$(f: V \rightarrow \mathbb{C}) \Longrightarrow\left(F^{*}: V^{*} \rightarrow C\right)$
Via $\tilde{F}(Y)=\int_{V} F(v) e^{-i\langle\varphi, V\rangle} d v$.
simple farts:

1. $\tilde{F}(0)=\int_{\nabla} f(v) d v$.
2. $\frac{\partial}{\partial y_{i}} \widetilde{f} \sim \widetilde{V^{\prime} f}$.
3. $\left(e^{Q / 2}\right) \sim l^{-Q-1 / 2}$ where $Q^{-1}(\varphi):=\left\langle\varphi, L^{-1} \varphi\right\rangle$
(that's the heart of the Foncior Invasion Formula).

Differatiation and Pairings:

In our case,

$* Q$ is d, so Q^{-1} is an integral operator.
$\star P$ is $\frac{2}{3} A \wedge A^{\wedge} A$
 \& when the dust settles, we get $Z(K)$!

$$
\begin{aligned}
& \text { So } \int_{V} H(v) e^{\frac{1}{2} Q+\rho} d v \\
& \left.v H(\partial) e^{\rho(\partial)} e^{-Q^{-1}(\varphi) / 2}\right|_{\varphi=0}
\end{aligned}
$$

"God created the knots, all else in topology is the work of man."

Leopold Kronecker (modified)

This handout is at http://www.math.toronto.edu/~drorbn/Talks/Oporto-0407

From Stonehenge to Witten - Some Further Details
Oporto Meeting on Geometry, Topology and Physics, July 2004
Dror Bar-Natan, University of Toronto

We the generating function of all stellar coincidences:
$Z(K):=\lim _{N \rightarrow \infty} \sum_{3 \text {-valent } D} \frac{1}{2^{c} c!\binom{N}{e}}\langle D, K\rangle_{\text {out }} D \cdot\left(\begin{array}{c}\text { framing- } \\ \text { dependent } \\ \text { counter-term }\end{array}\right) \in \mathcal{A}(\circlearrowleft)$

| N | $:=$ \# of stars | $\mathcal{A}(\circlearrowleft)$ |
| :--- | :--- | :---: |
| c | $:=$ \# of chopsticks | $:=$ Span |
| e | $:=\#$ of edges of D | \square |

$\langle D, K\rangle_{\text {而 }}:=\binom{$ The signed Stonehenge }{ pairing of D and $K}:$

When deforming, catastrophes occur when:
A plane moves over an An intersection line cuts The Gauss curve slides intersection point Solution: Impose IHX,
through the knot over a star -
$T=H-X Y=\bigcup-X$

Solution: Multiply by a framing-dependent counter-term.

Theorem. Modulo Relations, $Z(K)$ is a knot invariant!

$$
\int_{\mathfrak{g}-\text { connections }}^{\mathcal{D} A \text { bol }_{K}(A) \exp }\left[\frac{i k}{4 \pi} \int_{\mathbb{R}^{3}} \operatorname{tr}\left(A \wedge d A+\frac{2}{3} A \wedge A \wedge A\right)\right] \rightarrow \sum_{\substack{D: \text { Feynman } \\ \text { diagram }}} W_{\mathfrak{g}}(D) \mathcal{E} \mathcal{E}(D) \longrightarrow \sum_{\substack{D: \text { Feynman } \\ \text { diagram }}} D \mathcal{E} \mathcal{E}(D)
$$

Definition. $\quad V$ is finite type (Vassiliev, Goussarov) if it vanishes on sufficiently large alternations as on the right

Theorem. All knot polynomials (Conway, Jones, etc.) are of finite type.

Conjecture. (Taylor's theorem) Finite type invariants separate knots.
Theorem. $\quad Z(K)$ is a universal finite type invariant! (sketch: to dance in many parties, you need many feet).

Related to Lie algebras

More precisely, let $\mathfrak{g}=\left\langle X_{a}\right\rangle$ be a Lie algebra with an orthonormal basis, and let $R=\left\langle v_{\alpha}\right\rangle$ be a representation. Set

$$
f_{a b c}:=\langle[a, b], c\rangle \quad X_{a} v_{\beta}=\sum_{\beta} r_{a \gamma}^{\beta} v_{\gamma}
$$

and then

$$
W_{\mathfrak{g}, R}: \underbrace{\gamma}_{\alpha} \underbrace{a}_{a b c \alpha \beta \gamma} f_{a b c} r_{a \gamma}^{\beta} r_{b \alpha}^{\gamma} r_{c \beta}^{\alpha}
$$

Planar algebra and the Yang-Baxter equation
$W_{\mathfrak{g}, R} \circ Z \quad$ is often interesting:

Parenthesized tangles, the pentagon and hexagon

Reshetikhin

Kauffman's bracket and the Jones polynomial

Claim $\hat{J}\left(x^{\prime}\right)=\hat{J}()()$

Drinfel'd
"God created the knots, all else in topology is the work of man."
This handout is at http://www.math.toronto.edu/~drorbn/Talks/Oporto-0407
More at http://www.math.toronto.edu/~drorbn/Talks/Oporto-0407/

The case of

The work of Naot. <surfaces>/4Tu is freely generated by Shrek surfaces

Let denote a tube to the distinguished component (the curtain), and let H denote a handle on the curtain. Then

... so the invariant is valued in complexes over a category with just one object and morphisms in $\mathrm{Z}[\mathrm{H}]$; all is graded and $\operatorname{degH}=-2$.

Invariant!

The Reduction Lemma. If ϕ is an isomorphism then the complex

$$
[C] \xrightarrow{\binom{\alpha}{\beta}}\left[\begin{array}{c}
b_{1} \\
D
\end{array}\right] \xrightarrow{\left(\begin{array}{ll}
\phi & \delta \\
\gamma & \epsilon
\end{array}\right)}\left[\begin{array}{l}
b_{2} \\
E
\end{array}\right] \xrightarrow{\left(\begin{array}{ll}
\mu & \nu
\end{array}\right)}[F]
$$

is isomorphic to the (direct sum) complex

$$
[C] \xrightarrow{\binom{0}{\beta}}\left[\begin{array}{l}
b_{1} \\
D
\end{array}\right] \xrightarrow{\left(\begin{array}{cc}
\phi & 0 \\
0 & \epsilon-\gamma \phi^{-1} \delta
\end{array}\right)}\left[\begin{array}{c}
b_{2} \\
E
\end{array}\right] \xrightarrow{\left(\begin{array}{ll}
0 & \nu
\end{array}\right)}[F]
$$

The work of Green. standard data:

The universal invariant of the left-handed trefoil is

Some functors.

http://www.math.toronto.edu/~drorbn/Talks/UQAM-051001/

4 Tu :

What is it good for?

(1) Cutting necks:

(2) Recovers the good old Khovanov theory,

$$
\begin{aligned}
\mathcal{F}(\mathfrak{o})=\epsilon: \begin{cases}1 \mapsto v_{+} & \mathcal{F}(\bigcirc)=\eta:\left\{\begin{array}{l}
v_{+} \mapsto 0 \\
v_{-} \mapsto 1
\end{array}\right. \\
\mathcal{F}(\bigcirc)=\Delta: \begin{cases}v_{+} \mapsto v_{+} \otimes v_{-}+v_{-} \otimes v_{+} \\
v_{-} \mapsto v_{-} \otimes v_{-}\end{cases} & \mathcal{F}(\circ)=m: \begin{cases}v_{+} \otimes v_{-} \mapsto v_{-} & v_{+} \otimes v_{+} \mapsto v_{+} \\
v_{-} \otimes v_{+} \mapsto v_{-} & v_{-} \otimes v_{-} \mapsto 0 .\end{cases} \end{cases}
\end{aligned}
$$

(3) Trivially extends to tangles.
(4) Well suited to prove invariance for cobordisms.
(5) Recovers Lee's theory,

$$
\Delta:\left\{\begin{array}{l}
v_{+} \mapsto v_{+} \otimes v_{-}+v_{-} \otimes v_{+} \\
v_{-} \mapsto v_{-} \otimes v_{-}+v_{+} \otimes v_{+}
\end{array} \quad m: \begin{cases}v_{+} \otimes v_{-} \mapsto v_{-} & v_{+} \otimes v_{+} \mapsto v_{+} \\
v_{-} \otimes v_{+} \mapsto v_{-} & v_{-} \otimes v_{-} \mapsto v_{+}\end{cases}\right.
$$

(6) Leads to a new theory (over $\mathbb{Z} / 2$ and with $\operatorname{deg} h=-2$),

$$
\Delta:\left\{\begin{array}{l}
v_{+} \mapsto v_{+} \otimes v_{-}+v_{-} \otimes v_{+}+h v_{+} \otimes v_{+} \\
v_{-} \mapsto v_{-} \otimes v_{-}
\end{array} \quad m: \begin{cases}v_{+} \otimes v_{-} \mapsto v_{-} & v_{+} \otimes v_{+} \mapsto v_{+} \\
v_{-} \otimes v_{+} \mapsto v_{-} & v_{-} \otimes v_{-} \mapsto h v_{-}\end{cases}\right.
$$

(7) Trivially extends to knots on surfaces.
(8) Non-trivially recovers Khovanov's c,

$$
\begin{array}{ll}
\epsilon: \begin{cases}1 \mapsto v_{+} & \eta:\left\{\begin{array}{l}
v_{+} \mapsto 0 \\
v_{-} \mapsto-c
\end{array}\right.\end{cases} \\
\Delta: \begin{cases}v_{+} \mapsto v_{+} \otimes v_{-}+v_{-} \otimes v_{+}+c v_{-} \otimes v_{-} \\
v_{-} \mapsto v_{-} \otimes v_{-}\end{cases} & m: \begin{cases}v_{+} \otimes v_{-} \mapsto v_{-} & v_{+} \otimes v_{+} \mapsto v_{+} \\
v_{-} \otimes v_{+} \mapsto v_{-} & v_{-} \otimes v_{-} \mapsto 0 .\end{cases}
\end{array}
$$

(Added June 29, 2004: what appeared to work didn't quite. The recovery of Khovanov's c remains open).
"God created the knots, all else in topology is the work of man."
Leopold Kronecker (modified)
URL: http://www.math.toronto.edu/~drorbn/papers/Cobordism (and see the 'GWU'' handout)
Date: May 30, 2004.

More at http://www.math.toronto.edu/~drorbn/Talks/GWU-050213/

A Quick Reference Guide to Khovanov's Categorification of the Jones Polynomial Dror Bar-Natan, June 12, 2002

The Kauffman Bracket: $\langle\emptyset\rangle=1 ; \quad\langle\bigcirc L\rangle=\left(q+q^{-1}\right)\langle L\rangle ; \quad\langle\lambda\rangle=\langle\underset{0-\text { smoothing }}{\asymp}\rangle-q\left\langle_{1-\text { smoothing }}\right\rangle($.
The Jones Polynomial: $\hat{J}(L)=(-1)^{n_{-}} q^{n_{+}-2 n_{-}}\langle L\rangle$, where (n_{+}, n_{-}) count ($\left.久, \chi^{*}\right)$ crossings.
Khovanov's construction: $\llbracket L \rrbracket$ - a chain complex of graded \mathbb{Z}-modules;

$$
\begin{aligned}
& \llbracket \emptyset \rrbracket=0 \rightarrow \underset{\text { height } 0}{\mathbb{Z}} \rightarrow 0 ; \quad \llbracket \bigcirc L \rrbracket=V \otimes \llbracket L \rrbracket ; \quad \llbracket \times \rrbracket=\text { Flatten }(0 \rightarrow \underset{\text { height } 0}{\llbracket \smile \rrbracket} \rightarrow \underset{\text { height } 1}{\llbracket!} \rightarrow\{1\} \rightarrow 0) \\
& \mathcal{H}(L)=\mathcal{H}\left(\mathcal{C}(L)=\llbracket L \rrbracket\left[-n_{-}\right]\left\{n_{+}-2 n_{-}\right\}\right)
\end{aligned}
$$

Example:

$$
\upharpoonright \quad q^{-2}+1+q^{2}-q^{6} \underset{\left(\text { with }\left(n_{+}, n_{-}\right)=(3,0)\right)}{\stackrel{\cdot(-1)^{n}-q^{n}+{ }^{-2 n_{-}}}{ }} \quad q+q^{3}+q^{5}-q^{9}
$$

Theorem 1. The graded Euler characteristic of $\mathcal{C}(L)$ is $\hat{J}(L)$.
Theorem 2. The homology $\mathcal{H}(L)$ is a link invariant and thus so is $K h_{\mathbb{F}}(L):=\sum_{r} t^{r} q \operatorname{dim} \mathcal{H}_{\mathbb{F}}^{r}(\mathcal{C}(L))$ over any field \mathbb{F}.
Theorem 3. $\mathcal{H}(\mathcal{C}(L))$ is strictly stronger than $\hat{J}(L): \mathcal{H}\left(\mathcal{C}\left(\overline{5}_{1}\right)\right) \neq \mathcal{H}\left(\mathcal{C}\left(10_{132}\right)\right)$ whereas $\hat{J}\left(\overline{5}_{1}\right)=\hat{J}\left(10_{132}\right)$.
Conjecture 1. $K h_{\mathbb{Q}}(L)=q^{s-1}\left(1+q^{2}+\left(1+t q^{4}\right) K h^{\prime}\right)$ and $K h_{\mathbb{F}_{2}}(L)=q^{s-1}\left(1+q^{2}\right)\left(1+\left(1+t q^{2}\right) K h^{\prime}\right)$ for even $s=s(L)$ and non-negative-coefficients laurent polynomial $K h^{\prime}=K h^{\prime}(L)$.
Conjecture 2. For alternating knots s is the signature and $K h^{\prime}$ depends only on $t q^{2}$.
References. Khovanov's arXiv:math.QA/9908171 and arXiv:math.QA/0103190 and DBN's
http://www.ma.huji.ac.il/~drorbn/papers/Categorification/.
More at http://www.math.toronto.edu/~drorbn/Talks/UWO-040213/

Edges: All fillings of $I \times(I)=$
Where does it live? In $\operatorname{Kom}(\operatorname{Mat}(\langle\operatorname{Cob}\rangle /\{S, T, 4 T u\})) /$ homotopy :

Kom: Complexes Cob: Cobordisms

<...>: Formal lin. comb. Mat: Matrices
S :

Jones/Kauffman?

A TQFT takes it to a
complex whose graded
$V^{\otimes 3} \longrightarrow\left(V^{\otimes 2} \oplus V^{\otimes 2} \oplus V^{\otimes 2}\right)\{1\} \longrightarrow(V \oplus V \oplus V)\{2\} \longrightarrow V^{\otimes 2}\{3\}$

Euler characteristic is the Jones polynomial.
The key point:

$$
\begin{aligned}
\longrightarrow & V=\left\langle v_{+}, v_{-}\right\rangle, \quad \operatorname{deg} v_{ \pm}= \pm 1 \\
& q-\operatorname{dim} V=q+q^{-1}
\end{aligned}
$$

Why is it interesting?

1. It is stronger than the Jones polynomial.
2. It is less understood than the Jones polynomial:
a. Does it have a topological interpretation?
b. Does it have a "physical" interpretation?
c. Does it also work for other quantum invariants?
d. Does it work for manifolds and for knots in manifolds?
e. Is there a relation with finite-type invariants?
f. Does it work for "virtual knots"?
3. Jacobsson, Khovanov: It is a functor!!! (from knots and cobordisms to complexes and morphisms)
See
http://www.math.toronto.edu/~drorbn/papers/Cobordism
 for $\mathrm{R}-\mathrm{II}$ and $\mathrm{R}-\mathrm{III}$)

A functor?

[^0]: ${ }^{1}$ Truly, we need the same for any number of input SPQ's that are divided into two groups, "multiply in the first step" and "multiply in the second step". But there's no added difficulty here, only an added notational complexity.
 ${ }^{2}$ Aren't we sassy? We picked " 6 " for the name of the product of " 2 " and " 3 ".

[^1]: 2010 Mathematics Subject Classification. Primary 57M25.
 Published Bull. Amer. Math. Soc. 50 (2013) 685-690. TEX at http://drorbn.net/AcademicPensieve/2013-01/CDMReview/, copyleft at http://www.math.toronto.edu/~drorbn/Copyleft/. This review was written while I was a guest at the Newton Institute, in Cambridge, UK. I wish to thank N. Bar-Natan, I. Halacheva, and P. Lee for comments and suggestions.

[^2]: ${ }^{1}$ Partially self-plagiarized from [BN2].
 ${ }^{2}$ Keep this apart from invariants of knots whose values are polynomials, such as the Alexander or the Jones polynomial. A posteriori related, these are a priori entirely different.
 ${ }^{3}$ As common in the knot theory literature, in the formulas that follow a picture such as $\times \times \cdot m \cdot \times \mathbb{V}$ indicates "some knot having m double points and a further (right-handed) crossing". Furthermore, when two such pictures appear within the same formula, it is to be understood that the parts of the knots (or diagrams) involved outside of the displayed pictures are to be taken as the same.

[^3]: ${ }^{4}$ This requirement can easily be relaxed.

[^4]: (3 "God created the knots, all else in "God created the knots, all else in
 topology is the work of mortals."
 Leopold Kronecker (modified)

[^5]: http://www.math.toronto.edu/~drorbn/papers/Cobordism/ http://www.math.toronto.edu/~drorbn/papers/FastKh/ http://www.math.toronto.edu/~drorbn/Talks/Hamburg-1208/

[^6]: "God created the knots, all else in topology is the work of mortals." Leopold Kronecker (modified)

[^7]: 4. 3 "God created the knots, all else in topology is the work of mortals."
 Leopold Kronecker (modified)
