© | Dror Bar-Natan: Publications: WKO:  < > 


Speaker: Karene Chu

width: 400 720 ogg/wClips-120314_400.ogg orig/wClips-120314.mpg
Videography by Zsuzsanna Dancso troubleshooting

Notes on wClips-120314:    [edit, refresh]

Section 3.6 - the relation with Lie algebras.


Announcements. small circle, UofT, LDT Blog (also here). Email Dror to join our mailing list!

Resources. How to use this site, Dror's notebook, blackboard shots.

The wClips

Date Links
Jan 11, 2012 dbnvp 120111-1: Introduction.
dbnvp 120111-2: Section 2.1 - v-Braids.
Jan 18, 2012 dbnvp 120118-1: An introduction to this web site.
dbnvp 120118-2: Section 2.2 - w-Braids by generators and relations and as flying rings.
dbnvp 120118-3: Section 2.2 - w-Braids - other drawing conventions, "wens".
Jan 25, 2012 dbnvp 120125-1: Section 2.2.3 - basis conjugating automorphisms of F_n.
dbnvp 120125-2: A very quick introduction to finite type invariants in the "u" case.
Feb 1, 2012 dbnvp 120201: Section 2.3 - finite type invariants of v- and w-braids, arrow diagrams, 6T, TC and 4T relations, expansions / universal finite type invariants.
Feb 8, 2012 dbnvp 120208: Review of u,v, and w braids and of Section 2.3.
Feb 15, 2012 dbnvp 120215: Section 2.5 - mostly compatibilities of Z^w, also injectivity and uniqueness of Z^w.
Feb 22, 2012 dbnvp 120222: Section 2.5.5, \alpha:{\mathcal A}^u\to{\mathcal A}^v, and Section 3.1 (partially), the definition of v- and w-knots.
Feb 29, 2012 dbnvp 120229: Sections 3.1-3.4: v-Knots and w-Knots: Definitions, framings, finite type invariants, dimensions, and the expansion in the w case.
Mar 7, 2012 dbnvp 120307: Section 3.5: Jacobi diagrams and the bracket-rise theorem.
Mar 14, 2012 dbnvp 120314: Section 3.6 - the relation with Lie algebras.
Mar 21, 2012 dbnvp 120321: Section 4 - Algebraic Structures.
Mar 28, 2012 Out-of-sequence not-on-tape we watched the video of Talks: GWU-1203.
Apr 4, 2012 dbnvp 120404: Section 3.7 - The Alexander Theorem (statement).
Apr 18, 2012 dbnvp 120418: Aside on the Euler trick, the differential of \exp, and the BCH formula.
Apr 25, 2012 dbnvp 120425: Section 3.8, a disorganized lecture towards the proof of the Alexander theorem.
May 2, 2012 dbnvp 120502: Section 4: Algebraic structures (review), circuit algebras, v- and w-tangles.
May 10, 2012 dbnvp 120510: Sections 5.1 and 5.2: tangles, their projectivization and its relationship with Alekseev-Torossian spaces.
May 23, 2012 dbnvp 120523: Section 5.2: Proof of the relationship with A-T spaces.
May 30, 2012 dbnvp 120530: Interpreting {\mathcal A}^w(\uparrow_n) as a universal space of invariant tangential differential operators.
wClips Seminar Group Photo
Group photo on January 11, 2012: DBN, ZD, Stephen Morgan, Lucy Zhang, Iva Halacheva, David Li-Bland, Sam Selmani, Oleg Chterental, Peter Lee.
Managed by dbnvp: Click "Comment on h:mm:ss" below the video to add a comment on a specific time.

0:00:00 [edit] Blackboard shots by Zsuzsanna Dancso.

Sorry, for this wClip we've used a different video camera than the usual (the usual one was in dbnvp Washington), and there are several bugs in this page as a result. --Drorbn 21:45, 20 March 2012 (EDT)

0:04:47 [edit] No need to forget about the algebra structure - this is an algebra isomorphism, and even a bialgebra isomorphism. --Drorbn 18:38, 19 March 2012 (EDT)
0:11:34 [edit] It is great to know the relationship with Lie bialgebras, as it is extremely relevant for the study of ${\mathcal A}^v$. Yet it is also good to know that $I{\mathfrak g}$ has a much simpler definition, that avoids some of the complexity. Namely, $I{\mathfrak g}$ is the semi-direct product ${\mathfrak g}^\star\rtimes{\mathfrak g}$, where ${\mathfrak g}$ acts on its dual ${\mathfrak g}^\star$ using the coadjoint action. The metric on $I{\mathfrak g}$ need not ever be explicitly used, yet it is the metric associated with the a norm on $I{\mathfrak g}$, which is simply the contraction map of ${\mathfrak g}^\star$ and ${\mathfrak g}$. This definition appears roughly starting at minute 44:00 of this video. --Drorbn 20:30, 19 March 2012 (EDT)