© | Dror Bar-Natan: Classes: 2013-14: AKT: | < > |

width: 400 720 |
download ogg/AKT-140303_400.ogg |

Videography by Iva Halacheva | troubleshooting |

# | Week of... | Notes and Links |
---|---|---|

1 | Jan 6 | About This Class (PDF). Monday: Course introduction, knots and Reidemeister moves, knot colourings. Tricolourability without Diagrams Wednesday: The Gauss linking number combinatorially and as an integral. Friday: The Schroedinger equation and path integrals. Friday Introduction (the quantum pendulum) |

2 | Jan 13 | Homework Assignment 1. Monday: The Kauffman bracket and the Jones polynomial. Wednesday: Self-linking using swaddling. Friday: Euler-Lagrange problems, Gaussian integration, volumes of spheres. |

3 | Jan 20 | Homework Assignment 2. Monday: The definition of finite-type and some examples. Wednesday: The self-linking number and framings. Friday: Integrating a polynomial times a Gaussian. Class Photo. |

4 | Jan 27 | Homework Assignment 3. Monday: Chord diagrams and weight systems. Wednesday: Swaddling maps and framings, general configuration space integrals. Friday: Some analysis of . |

5 | Feb 3 | Homework Assignment 4. Monday: 4T, the Fundamental Theorem and universal finite type invariants. The Fulton-MacPherson Compactification (PDF). Wednesday: The Fulton-MacPherson Compactification, Part I. Friday: More on pushforwards, , and . |

6 | Feb 10 | Homework Assignment 5. Monday: The bracket-rise theorem and the invariance principle. Wednesday: The Fulton-MacPherson Compactification, Part II. Friday: Gauge fixing, the beginning of Feynman diagrams. |

R | Feb 17 | Reading Week. |

7 | Feb 24 | Monday: A review of Lie algebras. Wednesday: Graph cohomology and . Friday: More on Feynman diagrams, beginning of gauge theory. From Gaussian Integration to Feynman Diagrams (PDF). |

8 | Mar 3 | Homework Assignment 6 (PDF) Monday: Lie algebraic weight systems. Wednesday: Graph cohomology and the construction of . Graph Cohomology and Configuration Space Integrals (PDF) Friday: Gauge invariance, Chern-Simons, holonomies. Mar 9 is the last day to drop this class. |

9 | Mar 10 | Homework Assignment 7 (PDF) Monday: The weight system. Wednesday: The universal property, hidden faces. Friday: Insolubility of the quintic, naive expectations for CS perturbation theory. |

10 | Mar 17 | Homework Assignment 8 (PDF) Monday: and PBW. Wednesday: The anomaly. Friday: Faddeev-Popov, part I. Gaussian Integration, Determinants, Feynman Diagrams (PDF). |

11 | Mar 24 | Homework Assignment 9 (PDF) Monday: is a bi-algebra. Wednesday: Understanding and fixing the anomaly. Friday: class cancelled. |

12 | Mar 31 | Monday, Wednesday: class cancelled. Friday: A Monday class: back to expansions. |

E | Apr 7 | Monday: A Friday class on what we mostly didn't have time to do. |

Add your name / see who's in! | ||

Dror's Notebook | ||

refresh

panel Managed by dbnvp: Video frame grabs associated with new comments are queued and depending on load may take a very long time. Hit "refresh panel" until you are bored...

panel Managed by dbnvp: Video frame grabs associated with new comments are queued and depending on load may take a very long time. Hit "refresh panel" until you are bored...

For the second antisymmetry relation (i.e., the one with last two indices exchanged), we use the fact the metric is invariant. A metric for any finite-dimensional Lie algebra is invariant

Then, with the fact that the metric is symmetric, we write this relation in terms of structural coeffiecnt .

Thus, this shows the antisymmetry relations of . Then, . Similarly, it shows . Thus, the cyclic relation follows.