© | Dror Bar-Natan: Academic Pensieve: Blackboard Shots: 10_327:
101104-142342: Hours 22-23: Compactness in products and in metric spaces.
Random
newer
older
up

cycle text mode
10_327-{ hide text
  101206-150423: Hour 35: Baire spaces and no-where differentiable functions (9).
  101206-150418: Hour 35: Baire spaces and no-where differentiable functions (8).
  101206-150412: Hour 35: Baire spaces and no-where differentiable functions (7).
  101206-144618: Hour 35: Baire spaces and no-where differentiable functions (6).
  101206-144612: Hour 35: Baire spaces and no-where differentiable functions (5).
  101206-144606: Hour 35: Baire spaces and no-where differentiable functions (4).
  101206-142921: Hour 35: Baire spaces and no-where differentiable functions (3).
  101206-142915: Hour 35: Baire spaces and no-where differentiable functions (2).
  101206-142909: Hour 35: Baire spaces and no-where differentiable functions.
  101202-154652: Hours 33-34: Compactness and completeness (14).
  101202-154646: Hours 33-34: Compactness and completeness (13).
  101202-153823: Hours 33-34: Compactness and completeness (12).
  101202-153817: Hours 33-34: Compactness and completeness (11).
  101202-153811: Hours 33-34: Compactness and completeness (10).
  101202-151220: Hours 33-34: Compactness and completeness (9).
  101202-151214: Hours 33-34: Compactness and completeness (8).
  101202-145103: Hours 33-34: Compactness and completeness (7).
  101202-145056: Hours 33-34: Compactness and completeness (6).
  101202-145050: Hours 33-34: Compactness and completeness (5).
  101202-144001: Hours 33-34: Compactness and completeness (4).
  101202-143935: Hours 33-34: Compactness and completeness (3).
  101202-142107: Hours 33-34: Compactness and completeness (2).
  101202-142101: Hours 33-34: Compactness and completeness.
  101129-150200: Hour 32: Compactness in metric spaces (9).
  101129-150153: Hour 32: Compactness in metric spaces (8).
  101129-150147: Hour 32: Compactness in metric spaces (7).
  101129-144510: Hour 32: Compactness in metric spaces (6).
  101129-144504: Hour 32: Compactness in metric spaces (5).
  101129-144458: Hour 32: Compactness in metric spaces (4).
  101129-142555: Hour 32: Compactness in metric spaces (3).
  101129-142550: Hour 32: Compactness in metric spaces (2).
  101129-142544: Hour 32: Compactness in metric spaces.
  101125-155612: Hours 30-31: Tietze's theorem (14).
  101125-155606: Hours 30-31: Tietze's theorem (13).
  101125-155447: Hours 30-31: Tietze's theorem (12).
  101125-153349: Hours 30-31: Tietze's theorem (11).
  101125-153342: Hours 30-31: Tietze's theorem (10).
  101125-153332: Hours 30-31: Tietze's theorem (9).
  101125-151406: Hours 30-31: Tietze's theorem (8).
  101125-151357: Hours 30-31: Tietze's theorem (7).
  101125-144921: Hours 30-31: Tietze's theorem (6).
  101125-144915: Hours 30-31: Tietze's theorem (5).
  101125-144909: Hours 30-31: Tietze's theorem (4).
  101125-142115: Hours 30-31: Tietze's theorem (3).
  101125-142109: Hours 30-31: Tietze's theorem (2).
  101125-142103: Hours 30-31: Tietze's theorem.
  101125-131208: A hint for HW7 problem 9.
  101122-150129: Hour 29: A completely regular space is a subset of a cube (6).
  101122-150123: Hour 29: A completely regular space is a subset of a cube (5).
  101122-150117: Hour 29: A completely regular space is a subset of a cube (4).
  101122-143604: Hour 29: A completely regular space is a subset of a cube (3).
  101122-143557: Hour 29: A completely regular space is a subset of a cube (2).
  101122-143551: Hour 29: A completely regular space is a subset of a cube.
  101118-160029: Hours 27-28: Normal spaces and Urysohn's lemma (12).
  101118-160022: Hours 27-28: Normal spaces and Urysohn's lemma (11).
  101118-160005: Hours 27-28: Normal spaces and Urysohn's lemma (10).
  101118-151403: Hours 27-28: Normal spaces and Urysohn's lemma (9).
  101118-151352: Hours 27-28: Normal spaces and Urysohn's lemma (8).
  101118-144900: Hours 27-28: Normal spaces and Urysohn's lemma (7).
  101118-144853: Hours 27-28: Normal spaces and Urysohn's lemma (6).
  101118-143820: Hours 27-28: Normal spaces and Urysohn's lemma (5). (more...)
  101118-143813: Hours 27-28: Normal spaces and Urysohn's lemma (4).
  101118-142441: Hours 27-28: Normal spaces and Urysohn's lemma (3).
  101118-142436: Hours 27-28: Normal spaces and Urysohn's lemma (2).
  101118-142430: Hours 27-28: Normal spaces and Urysohn's lemma.
  101115-150131: Hour 26: Generalized limits (7).
  101115-145315: Hour 26: Generalized limits (6).
  101115-145308: Hour 26: Generalized limits (5).
  101115-145303: Hour 26: Generalized limits (4).
  101115-143652: Hour 26: Generalized limits (3).
  101115-143646: Hour 26: Generalized limits (2).
  101115-143641: Hour 26: Generalized limits.
  101111-160248: Hours 24-25: Tychonoff and a taste of Stone-Cech (15).
  101111-160241: Hours 24-25: Tychonoff and a taste of Stone-Cech (14).
  101111-155348: Hours 24-25: Tychonoff and a taste of Stone-Cech (13).
  101111-154757: Hours 24-25: Tychonoff and a taste of Stone-Cech (12).
  101111-154750: Hours 24-25: Tychonoff and a taste of Stone-Cech (11).
  101111-154742: Hours 24-25: Tychonoff and a taste of Stone-Cech (10).
  101111-152804: Hours 24-25: Tychonoff and a taste of Stone-Cech (9).
  101111-152757: Hours 24-25: Tychonoff and a taste of Stone-Cech (8).
  101111-152752: Hours 24-25: Tychonoff and a taste of Stone-Cech (7).
  101111-145526: Hours 24-25: Tychonoff and a taste of Stone-Cech (6).
  101111-145518: Hours 24-25: Tychonoff and a taste of Stone-Cech (5).
  101111-145512: Hours 24-25: Tychonoff and a taste of Stone-Cech (4).
  101111-143201: Hours 24-25: Tychonoff and a taste of Stone-Cech (3).
  101111-143155: Hours 24-25: Tychonoff and a taste of Stone-Cech (2).
  101111-143150: Hours 24-25: Tychonoff and a taste of Stone-Cech.
  101104-155757: Hours 22-23: Compactness in products and in metric spaces (18).
  101104-155746: Hours 22-23: Compactness in products and in metric spaces (17).
  101104-155738: Hours 22-23: Compactness in products and in metric spaces (16).
  101104-154358: Hours 22-23: Compactness in products and in metric spaces (15).
  101104-154352: Hours 22-23: Compactness in products and in metric spaces (14).
  101104-154347: Hours 22-23: Compactness in products and in metric spaces (13).
  101104-153321: Hours 22-23: Compactness in products and in metric spaces (12).
  101104-153315: Hours 22-23: Compactness in products and in metric spaces (11).
  101104-153310: Hours 22-23: Compactness in products and in metric spaces (10).
  101104-150945: Hours 22-23: Compactness in products and in metric spaces (9).
  101104-150937: Hours 22-23: Compactness in products and in metric spaces (8).
  101104-150927: Hours 22-23: Compactness in products and in metric spaces (7).
  101104-144119: Hours 22-23: Compactness in products and in metric spaces (6).
  101104-144114: Hours 22-23: Compactness in products and in metric spaces (5).
  101104-144107: Hours 22-23: Compactness in products and in metric spaces (4).
  101104-142355: Hours 22-23: Compactness in products and in metric spaces (3).
  101104-142348: Hours 22-23: Compactness in products and in metric spaces (2).
  101104-142342: Hours 22-23: Compactness in products and in metric spaces.
  101101-145431: Hour 21: Compact is closed and bounded, max values (8).
  101101-145425: Hour 21: Compact is closed and bounded, max values (7).
  101101-145420: Hour 21: Compact is closed and bounded, max values (6).
  101101-144322: Hour 21: Compact is closed and bounded, max values (5).
  101101-144316: Hour 21: Compact is closed and bounded, max values (4).
  101101-142729: Hour 21: Compact is closed and bounded, max values (3).
  101101-142722: Hour 21: Compact is closed and bounded, max values (2).
  101101-142717: Hour 21: Compact is closed and bounded, max values.
  101025-145931: Hour 18: Compactness of [0,1] (10).
  101025-145412: Hour 18: Compactness of [0,1] (9).
  101025-145407: Hour 18: Compactness of [0,1] (8).
  101025-145402: Hour 18: Compactness of [0,1] (7).
  101025-143522: Hour 18: Compactness of [0,1] (6).
  101025-143517: Hour 18: Compactness of [0,1] (5).
  101025-143512: Hour 18: Compactness of [0,1] (4).
  101025-142144: Hour 18: Compactness of [0,1] (3).
  101025-142138: Hour 18: Compactness of [0,1] (2).
  101025-142133: Hour 18: Compactness of [0,1].
  101021-160212: Hours 16-17: Connectedness, path-connectedness, products (17).
  101021-160201: Hours 16-17: Connectedness, path-connectedness, products (16).
  101021-155331: Hours 16-17: Connectedness, path-connectedness, products (15).
  101021-155326: Hours 16-17: Connectedness, path-connectedness, products (14).
  101021-155320: Hours 16-17: Connectedness, path-connectedness, products (13).
  101021-153758: Hours 16-17: Connectedness, path-connectedness, products (12).
  101021-153752: Hours 16-17: Connectedness, path-connectedness, products (11).
  101021-153746: Hours 16-17: Connectedness, path-connectedness, products (10).
  101021-151532: Hours 16-17: Connectedness, path-connectedness, products (9).
  101021-151527: Hours 16-17: Connectedness, path-connectedness, products (8).
  101021-151521: Hours 16-17: Connectedness, path-connectedness, products (7).
  101021-144636: Hours 16-17: Connectedness, path-connectedness, products (6).
  101021-144631: Hours 16-17: Connectedness, path-connectedness, products (5).
  101021-144624: Hours 16-17: Connectedness, path-connectedness, products (4).
  101021-143336: Hours 16-17: Connectedness, path-connectedness, products (3).
  101021-143331: Hours 16-17: Connectedness, path-connectedness, products (2).
  101021-143325: Hours 16-17: Connectedness, path-connectedness, products. (more...)
  101018-150814: Hour 15: Connectedness in R (11).
  101018-150802: Hour 15: Connectedness in R (10).
  101018-145237: Hour 15: Connectedness in R (9).
  101018-145231: Hour 15: Connectedness in R (8).
  101018-145226: Hour 15: Connectedness in R (7).
  101018-143926: Hour 15: Connectedness in R (6).
  101018-143921: Hour 15: Connectedness in R (5).
  101018-143914: Hour 15: Connectedness in R (4).
  101018-141842: Hour 15: Connectedness in R (3).
  101018-141836: Hour 15: Connectedness in R (2).
  101018-141830: Hour 15: Connectedness in R.
  101014-161227: Hours 13-14: Metric spaces, sequencial closures, various products (16).
  101014-160029: Hours 13-14: Metric spaces, sequencial closures, various products (15).
  101014-155102: Hours 13-14: Metric spaces, sequencial closures, various products (14).
  101014-155057: Hours 13-14: Metric spaces, sequencial closures, various products (13).
  101014-152903: Hours 13-14: Metric spaces, sequencial closures, various products (12).
  101014-152858: Hours 13-14: Metric spaces, sequencial closures, various products (11).
  101014-152852: Hours 13-14: Metric spaces, sequencial closures, various products (10).
  101014-145913: Hours 13-14: Metric spaces, sequencial closures, various products (9).
  101014-145907: Hours 13-14: Metric spaces, sequencial closures, various products (8).
  101014-145900: Hours 13-14: Metric spaces, sequencial closures, various products (7).
  101014-144558: Hours 13-14: Metric spaces, sequencial closures, various products (6).
  101014-144553: Hours 13-14: Metric spaces, sequencial closures, various products (5).
  101014-144548: Hours 13-14: Metric spaces, sequencial closures, various products (4).
  101014-142719: Hours 13-14: Metric spaces, sequencial closures, various products (3).
  101014-142713: Hours 13-14: Metric spaces, sequencial closures, various products (2).
  101014-142707: Hours 13-14: Metric spaces, sequencial closures, various products.
  101007-160238: Hours 11-12: The box and the product topologies, metric spaces (15).
  101007-160232: Hours 11-12: The box and the product topologies, metric spaces (14).
  101007-160224: Hours 11-12: The box and the product topologies, metric spaces (13).
  101007-154817: Hours 11-12: The box and the product topologies, metric spaces (12).
  101007-154811: Hours 11-12: The box and the product topologies, metric spaces (11).
  101007-154804: Hours 11-12: The box and the product topologies, metric spaces (10).
  101007-152848: Hours 11-12: The box and the product topologies, metric spaces (9).
  101007-152842: Hours 11-12: The box and the product topologies, metric spaces (8).
  101007-152836: Hours 11-12: The box and the product topologies, metric spaces (7).
  101007-145418: Hours 11-12: The box and the product topologies, metric spaces (6).
  101007-145412: Hours 11-12: The box and the product topologies, metric spaces (5).
  101007-145406: Hours 11-12: The box and the product topologies, metric spaces (4).
  101007-143300: Hours 11-12: The box and the product topologies, metric spaces (3).
  101007-143255: Hours 11-12: The box and the product topologies, metric spaces (2).
  101007-143249: Hours 11-12: The box and the product topologies, metric spaces.
  101004-150154: Hour 10: The axiom of choice and infinite product spaces (6).
  101004-145302: Hour 10: The axiom of choice and infinite product spaces (5).
  101004-145256: Hour 10: The axiom of choice and infinite product spaces (4).
  101004-143150: Hour 10: The axiom of choice and infinite product spaces (3).
  101004-143144: Hour 10: The axiom of choice and infinite product spaces (2).
  101004-143138: Hour 10: The axiom of choice and infinite product spaces.
  100930-160134: Hours 8-9: Separation axioms (12).
  100930-155431: Hours 8-9: Separation axioms (11).
  100930-155417: Hours 8-9: Separation axioms (10).
  100930-154237: Hours 8-9: Separation axioms (9).
  100930-154229: Hours 8-9: Separation axioms (8).
  100930-153416: Hours 8-9: Separation axioms (7).
  100930-153407: Hours 8-9: Separation axioms (6).
  100930-145752: Hours 8-9: Separation axioms (5).
  100930-145746: Hours 8-9: Separation axioms (4).
  100930-143647: Hours 8-9: Separation axioms (3).
  100930-143631: Hours 8-9: Separation axioms (2).
  100930-143624: Hours 8-9: Separation axioms.
  100927-150035: Hour 7: The Cantor Set, Closures (9).
  100927-150030: Hour 7: The Cantor Set, Closures (8).
  100927-150024: Hour 7: The Cantor Set, Closures (7).
  100927-144059: Hour 7: The Cantor Set, Closures (6).
  100927-144052: Hour 7: The Cantor Set, Closures (5).
  100927-144046: Hour 7: The Cantor Set, Closures (4).
  100927-142710: Hour 7: The Cantor Set, Closures (3).
  100927-142704: Hour 7: The Cantor Set, Closures (2).
  100927-142655: Hour 7: The Cantor Set, Closures.
  100923-155827: Hours 5-6: Products, Subspaces, Closed Sets (14).
  100923-155821: Hours 5-6: Products, Subspaces, Closed Sets (13).
  100923-155812: Hours 5-6: Products, Subspaces, Closed Sets (12).
  100923-154754: Hours 5-6: Products, Subspaces, Closed Sets (11).
  100923-154747: Hours 5-6: Products, Subspaces, Closed Sets (10).
  100923-153713: Hours 5-6: Products, Subspaces, Closed Sets (9).
  100923-152224: Hours 5-6: Products, Subspaces, Closed Sets (8).
  100923-152216: Hours 5-6: Products, Subspaces, Closed Sets (7).
  100923-150741: Hours 5-6: Products, Subspaces, Closed Sets (6).
  100923-145401: Hours 5-6: Products, Subspaces, Closed Sets (5).
  100923-145356: Hours 5-6: Products, Subspaces, Closed Sets (4).
  100923-143415: Hours 5-6: Products, Subspaces, Closed Sets (3).
  100923-143405: Hours 5-6: Products, Subspaces, Closed Sets (2).
  100923-143358: Hours 5-6: Products, Subspaces, Closed Sets.
  100920-145838: Hour 4: Bases (9).
  100920-145831: Hour 4: Bases (8).
  100920-145823: Hour 4: Bases (7).
  100920-144614: Hour 4: Bases (6).
  100920-144603: Hour 4: Bases (5).
  100920-142955: Hour 4: Bases (4).
  100920-142946: Hour 4: Bases (3).
  100920-142938: Hour 4: Bases (2).
  100920-141211: Hour 4: Bases. (more...)
  100916-155901: Hours 2-3: topologies, continuity, bases (15).
  100916-155414: Hours 2-3: topologies, continuity, bases (14).
  100916-155406: Hours 2-3: topologies, continuity, bases (13).
  100916-155401: Hours 2-3: topologies, continuity, bases (12).
  100916-153251: Hours 2-3: topologies, continuity, bases (11).
  100916-153246: Hours 2-3: topologies, continuity, bases (10).
  100916-153240: Hours 2-3: topologies, continuity, bases (9).
  100916-151018: Hours 2-3: topologies, continuity, bases (8).
  100916-151007: Hours 2-3: topologies, continuity, bases (7).
  100916-145130: Hours 2-3: topologies, continuity, bases (6).
  100916-145122: Hours 2-3: topologies, continuity, bases (5).
  100916-145117: Hours 2-3: topologies, continuity, bases (4).
  100916-143834: Hours 2-3: topologies, continuity, bases (3).
  100916-143824: Hours 2-3: topologies, continuity, bases (2).
  100916-143818: Hours 2-3: topologies, continuity, bases.
  100913-145848: Hour 1: Continuity and open sets (5). (more...)
  100913-144833: Hour 1: Continuity and open sets (4).
  100913-143313: Hour 1: Continuity and open sets (3).
  100913-143305: Hour 1: Continuity and open sets (2).
  100913-143258: Hour 1: Continuity and open sets.
}
10_327 is 2010 MAT 327 - Introduction to Topology.

Notes for BBS/10_327-101104-142342.jpg:    [edit]