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Shifted Partial Quadratics, their Pushforwards, and Signature Invariants for Tangles http://drorbn.net/ge23 Efﬁ
Abstract. Following a general discussion of the co- |! ashaev’s-Conjeeture [Ka]
mputation of zombians of unfinished columbaria (with R S&3Liu’s Theorem [Li].
examples), I will tell you about my recent joint work —_ =n @A Partial Quadratic (PQ) on V is a quadratic Q defined only on
w/ Jessica Liu on what we feel is the “textbook” exten- i a subspace Dy C V. We add PQs with Dy .o, = Do, N Dy,.
sion of knot signatures to tangles, which for unknown Given a linear ¢y: V — W and a PQ Q on W, there is an obvious
reasons, is not in any of the textbooks that we know. Jessica Liu pullback y*Q, aPQon V.

N ) ~ e . Q Theorem 1. Given a linear ¢: V — W and a PQ Q on V, there is
= N e | ﬁ V. a unique pushforward PQ ¢.Q on W such that for every PQ U on
\ mage.

For knots, g, = 20777

W, ov(Q + ¢*U) = Okerg(Qlierg) + ow(U + ¢.0).
(If you must, D(¢.Q) = ¢p(anng(D(Q) N ker ¢)) and (4. Q)(w) = O(v),

luarla in an East éﬁ;éy Cemete Jacobian, Hamiltonian, Z(:mls;ci:nWhere viss.t. ¢(v) = w and Q(v, rad Qlierg) = 0). /1/ twts ~ f’ o Q

Prior Art on signatures for tangles / braids. Gambaudo |Gist of the Proof. . 14

and Ghys [GG], Cimasoni and Conway [CC], Conway [Co], ) tl . 0: ol o

Merz [Me]. All define signatures of tangles / braids by first clo- A B rsol\r;/ghl 0 _'4514' L

sing them to links and then work hard to derive composition pro- ? o ‘ol c

perties. BT U T

Why Tangles? e Faster! - W, w o | CT|\U+F |

* Conceptually clearer proofs of invariance .. an(‘l/ the quadratic F' =: ¢..Q is well-defined only 6

(and of skein relations). v Exactly what we want, if the Zombian is the signature!

e Often fun and consequential: M2 42 4 N o V: The full space of faces. W | w

o The Jones Polynomial ~» The Temperley-Lieb Algebra. W: The boundary, made of gaps. _u A W

° Khovanov Homology ~» “Unfinished complexes”, complexes |y, he known parts. .
ma categqry. i Q U: The part yet unknown. = face, -

o The Kontsechh Integral 8 FEEFEE 1, (O + ¢*(U)): The overall Zombian. " ;‘gpl W U
~» Associators. l‘é - sopepey - /Q) 0(Qlkerp): An internal bit. U + ¢.Q: A boundary bit.

° Hﬁfp:A?zi’.t?pe D, EM popagey L/\_J IAnd so our ZPUC is the pair S = (09(Qlkerg), ¢+ Q).

Zombies: FrepikeomiA Shifted Partial Quadratic (SPQ) on V is a pair S = (s €
7, Q a PQ on V). addition also adds the shifts, pullbacks keep the
shifts, yet ¢.S = (5 + Oker¢(Qlierg)> $+Q) and o(S) = s + o(Q).
Theorem 1° (Reciprocity). Given ¢: V — W, for SPQs S on
V and U on W we have oy (S + ¢*U) = ow(U + ¢.S) (and this
characterizes ¢..5 ). Note. y* is additive but ¢, is not.
Theorem 2. y* and ¢, are functorial. Yy<w

& Theorem 3. “The pullback of a pushforward scene is #y .7 {»
a pushforward scene”: If, on the right, 8 and ¢ are ar- V Vi Z

[Example / Exercise. Compute the determinant 5 - -
of a II:)OO x 1,000 matrixpin which 50 entries /7Y V'=EQB,y) = Ve W=i(v,w): Bv =yw}and prand v
’ ’ jare the obvious projections, then y*B, = v,u*.

are not yet given‘ Columbarium near Asse

Computing Zombians of Unfinished Columbaria.

e Must be no slower than for finished ones.

e Future zombies must be able to complete the
computation.

e Future zombies must not even know the size &2 & fuki 8 &
of the task that today’s zombies were facing.

e We must be able to extend to ZPUCs, Zombie [
Processed Unfinished Columbaria!

'Homework / Research Projects. ¢ What with ZPUCs? e Use . 82 __(SPQS /4 743 )
this to get an Alexander tangle invariant. : Definition. S|\8: 8= {on (g } st f
Reminders. {knots} =3 {matrices / quadratic forms} —s—lgn—m—ri : X 51; Ve
PR e —— o, T Theorem 4. {S(c.:ychc sets)} s a gl Pty 3 bl 4,
f 3 N planar algebra, with compositions 82t ’
Q") 'f R _ SIS = $PWHE, S, where | 8,2
/ - [ A=A - -l - 0-__ Wp: (fi) = (gqi) maps every face of D fs D
9 4 ) O—0_+s : i N g6
; ':) 0 to the sum of the input gaps adjacent to Connection Diagram
. it and ¢”: (f;) — (g;) maps every face to the sum of the output

. _ _ el - T/2v s )
With |w[ = 1,7=1—-w,r =t +1,v=Re(w), and u = Re(w'’?): gaps adjacent to it. So forour D, Yp: fi = g, fo > 831+814+824+833

X Tristram-Levine  (7L) ' Kashaev  (Kas) D
i, jik=l —r =t 2 F\i s = g2, fo o gL fs > gi3+ga, fo > 83, 1 - gn+gn and ¢7:

! ! v ou 1 u\i
|

ALY S U Eo A U A U AR L jlie gL o 8486 370, far g3, s 0, fo - g5, f1 - 84

- i =17 = ! = -

! \] o 0 L LA | 1w v ulkiTheorem 5. TL and Kas, defined on [
A0 NAd o S t 0 -t 0)J1 +S=w 1 u 1)I > e ! =

———o—- - - - e I G g - IX and X as before, extend to planar : B S

X ijamt | ro -t =2t t\i, v u 1 wuyi b . | z 2z
NV 70 7 ofj w1l ou 1 jalge ra morphisms {tangles} — {S}. = 3 =

r j } A=\ o 4 il | A==11 .  ulkRestricted to l?qﬂfsg = oy, and Kas = 0 gg. |
NG =0 e o o)t 1w 1) (ks <

This version updates and corrects http://drorbn.net/ge23/PQ.pd{
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Implementation (sources: http://drorbn.net/icerm23/
ap). I like it most when the implementation matches the math
perfectly. We failed here.

Once[<< KnotTheory ];

Loading KnotTheory™ version
of February 2, 2020, 10:53:45.2097.
Read more at http://katlas.org/wiki/KnotTheory.

Utilities. The step function, algebraic numbers, canonical forms.
6[x_]1 /; NumericQ[x] := UnitStep[x]
w2[v_][p_] :=Module[{q = Expand[p], n, c},
If[q===9,0,
c = Coefficient[q, w, n = Exponent[q, w]];
cv'+w2[v][q-c (w+w'1)"]]];
sign[&_] := Module[{n, d, v, p, rs, e, k},
{n, d} = NumeratorDenominator[&];
(n, dy /= wExponent[n,w]/2+Exponent[n,w,Min]/2;
p = Factor [w2[v]@enxw2[v]ed /. v 4u?-2];
rs = Solve[p == @, u, Reals];
If[rs === {}, Sign[p/.u-e],
rs = Union@ (u /. rs);
Sign|[ (-1)“=FPenentI-Ul coefficient[p, u, e]] +Sum[
k=0;
While[ (d = RootReduce[dy,,+i}P /. U > T]) =
If[EvenQ[k], @, 2Sign[d]] *6[u-r],
{r, rs}l]

0];

]
]

SetAttributes[B, Orderless];
CF[b B] := RotateLeft[#, Firste@eOrdering[#] - 1] & /@
DeleteCases[b, {}]
CF[& ] :=Module[{¥s = UnioneCases[&, ¥_|¥_, =]},
Total|CoefficientRules[&, ¥s] /.
(ps_ — c_) = Factor[c] « Times e@ ys"] |
CFI{}] ={};
CF[c List] :
Module[ {¥s = Unione@Cases[C, ¥ , =], ¥},
CF /@DeleteCases[0] [
RowReduce [Table[d,r, {r, ¢}, {¥, ¥5}]1.¥s] ]
(&))"
r_Rule*

“*, c_Complex = c*};

=8/ ¥ vV, wow
= {r, r}
RulesOf[y; +rest_.] :=
CF[PQ[C , g 1] :=Module[{nC =CF[C]},
PQ[nC, CF[g /. Union @@ RulesOf /@nc]] 1]

CF[Zy, [o , Pq_1] :=Z¢crpy[o, CF[pq]]

(yi » -rest)*;

Pretty-Printing.
Format[Z, s[o , PQ[C_, g_]1] :=Module[{¥s},
¥S =y~ &/@Joineeb;
Column[{TraditionalForme o,
TableForm[Join[
Prepend[""] /@ Table[TraditionalForm[&.r],
{r, ¢}, {c, ¥s}l,
{Prepend[""] [
Join ee@
(b/. {L,m __
{DisplayForm@RowBox [ {" (", L}],
m, DisplayForm@RowBox[{r, ")"}1}) /.
i_Integer :»y; 1},
MapThread [Prepend,
{Table[TraditionalForm[d,,.q], {r, ¥s*},
{c, ¥s}1, ¥s"}]
1, TableAlignments - Center]
}, Center] 1;

s} >

The Face-Centric Core.
Zps [01_, PQ[C1_, q1_]11@®32p; [02_, PQ[C2_, gq2_]1] ~:=
CF@Zj0in(b1,021 [01 + 02, PQ[c1 €2, q1 +q2]];

GT for Gap Touch: fi @

3 @ZBgli___,i,ri___ Y, __,d_,ri__ alas
PQ[C’_: qg_1]1 :=
CF@Zg((ri,Li,7,ri,L7,i},bs1 [Os PRIC U {¥i - ¥j}s 911

cor-don < (xsrdn)

N THEpRpeDICTIONARY

1, 1. Aline of people, military posts, or ships stationed around
an area to enclose or guard it: a police cordon.

2. Arope, line, tape, or similar border stretched around an

area, usually by the police, indicating that access is

restricted.
use ¢, to kill its row and
dp¢, #0 column, drop a (01) summand
N 10

¢=0,1#0 use Atokill g, let s += sign(4)
¢»=0,1=0 append 0 to Creg.

Cordon; @Zgr¢1i__ i ,ri___3,bs.__100.> PRIC_ ,q_]11 =
Module[{¢ = 8,,C, A = 85, ,4.9, No = 0, NG, nq, p},
{p} = FirstPosition[ (# =!=90) & /@ ¢, True, {0}];
{nc, nq} = Which|[
p>0, {C¢,q} /. (yi»-cIpl/olpl)" /.
A=1=0, (no+=sign[A];
{esar. (vi»>-(85,9) /X)) /. (vi»>0)"}),
r===0, {cU{85,9}s9/- (vi>0)'}];
CF@Zgmoste(ri,Li},bs] [NT,
PQ[NC, nql /. (Yiaste(ri,Li} = YFirste(ri,li}) ] ]

(¥vi»0)",
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9,

Strand Operations. ¢ for contract, mc for magnetic contract: Reidemeister 3.
R3L = PD[X_3,5,4,-15 X-3,7,6,-5>

o al__1:=

t // GTj,rirste(ri,Liy // Cordon; X e,0,8,-413 \ y
R3R = PD[X_3,5,4,-25 X_4,6,8,-15

Ci ,j @t :Bprqui i ,ri___},{___ i

Ci ,j@t:tZgry i 5, 4, [__1:= Cordon;et

1N

X.5,7,9,-615

Ci ,j @ :32g¢5, ,iy, 1[__1 :=Cordon;et
{TL@R3L == TL@R3R, Kas@R3L == Kas@R3R}

Ci ,j@t:tZgry 5., 3, [__1:= Cordon;et

Ci,j @t:Zgi, ,i3, 1[__] :=Cordon;et {True, True}

mc[&s ] :=&8//. Kas@R3L
20(u-1)-20(u+l)-2

t : ZB[{___)".-,J___}J{___:j,x___})___] [——] | (v-3 Y7 ( YzJ ( 2) RE] RS Y-2)
ZB[{___, Uopil o _To__ 1] [__] | ZB[{j_,___, 1}, 1 [__] /; V3 i:zl‘?f,,zl QZ“:‘“;:_L Y 1{2u¢1w - !2u—1z‘:2m1w T 2u 1‘2.,,1‘ ,2:‘:"‘%211\
1+ j =0 > Ci,j@t 7 ,2‘;‘::’;:1\ \zi‘f\u::_lﬁ ‘ZZ‘:\UTZT_L BYE 1«2um T2 1\2?“‘1\ T 2u 1\1\2uw]\
The CI'OSSin Yo Teu 1\1x2u‘1: in‘:yu‘zzijl‘ 2:21‘“22:431 ‘zz‘:‘uzzzl,l; " 2w 1v1\zum " 2u 12“1“‘1‘

gS (and empty Strands)‘ = B 2u B 1 u (4u?-3) 202 (4u?-3) u(4u?-3) N 1
8 (2u-1) (2us+1) (2u-1) (2us+1) (2u-1) (2u-l) (2u-1) (2u-1) (20-1) (20-1) (2u-1) (2us1)
KaseP; ,; :=CF@3g((i,j);[0, PQ[{}, @1]; ey R ey rrr ey S e SR I, L
TL@P; ; := CF@3g((i,5); [0, PQ[{}, O]] Ve ol o e sl i)

Kas[x :X[1 , T , kR , L 1] :=

—_ Reidemeister 2. 56
KaS@I'F[POSitiVGQ[X] N X—i,j,k,—LJ X—j,k,L,—i]; _
_ 5 TL@PD[X-2,4,3,-1: X-4,5,5,-3] _
Kas[(x:X|X)fs”] :=Modu1e[{v=2u -1, p, ¥s, m}, 0

¥S =¥z &/@{fs}; p= (x===X); 1 0 -1 2] 2
Vvud1lu Vvud1lu (Y-2 Y6 s Y-1)
ulul ulul Y-2 7] 7] %] %]
m=I-F[ID"1uvu"-1uvu:|‘; Ye 0 ) ) )
ulul ulul s 0 0 %] 0
Y-1 0 0 0 0

CF@Zg( sy [IF[P, -1, 11, PQL{}, ¥s*.m.¥vs]]] -
{TL@PD[X_3,4,3,-15 X_4,6,5,-3] = GTs5, ,@TL@PD[P_; 5, P_; ],

TLIx:X[1_, J_,k_, L_]] := Kas@PD[X_;,4,3,-15 X-4,6,5,-3] == GTs,_,@Kas@PD[P_; s, P_; 6]}

TL@If[PositiveQ[X] N X—i,j,k,—L.’ Y—j,k,l.,—i];

_ {True, True}

TL[(X DX | x)fs__] i= Module[{t =1-w, r, ys, m},
r=t+t*; ys=vy,&/@{fs};

Reidemeister 1. k
m=1If [X === X,

{TL@PD [X_3’3,2,_1] == TL@P—I,ZJ

KaS@PD[X_3,3,2,_1] == KaS@P_llz}
-r -t 2t t* r -t -2t* t*

“t* @ t* o “t* @ t* @ I {True, True}
E)

3

2 2
] =
A 1
2t* t -r -t* -2t t r -t A Knot
t o -t o t @ -t o _
f = TLSig[Knot[8, 5]]
CF@Zg ()1 [0, PRL{}, ¥s*.m.vs]]] J3 3
T ERCI PP RN
Evaluation on Tangles and Knots. 2 2
Kas[K_] := Fold[mc[#1®#2] &, Zg(; [0, PQ[{}, @11, 20[u- ©-0.630.. | +26[u- De.630...

List ee (Kas /@PDeK)];
KasSig[K ] := Expand[Kas [K] [1] / 2] Plot[f, {u, -1, 1}]

TLIK ] :=
Fold[mc[#1®#2] &, Zg[; [0, PQ[{}, @11,
Listee (TL /@PDeK)] /.
e[c_+u] /; Abs[c] 21 6[c];
TLSig[K 1 := TL[K][1]




The Conway-Kinoshita-
Terasaka Tangles.

e Il

[foucro
AvAICADLE

Conway Kinoshita Terasaka

T1= PD[i—6,2,7,—13 X_2,8,3,-7> 9

X_8,4,9,-3> X_11,6,12,-55

3 58
X_a,11,5,-10] 3 11 s 12 s
T2 = PD[X-5,2,7,-1: X_2,8,3,-7» I 2 [ 2
X 6 \\ \/
X_8,4,9,-35 X_12,6,13,-5» /7 12 7 3

X_4,12,5,-115 X_10,15,11,-14» X-15,1e,15,-9]3

Column@{TL[T1], Kas[T1]}

—Za(u—‘TE) +26(u+ﬁ) -1

(¥-10 Yo Y1 Y12)
Y-10 0 1-w 2} w-1
- w-1 20 w1 2w
e w w?-wi1 w w2l
Y1 %) w-1 %) 1-w
. w1 2w ‘
12 ) w2l
ﬁ) 1
2
(¥-10 Y1 Y12)
Y 10 2 (u-1) (u+1) “2(u-1) (u+1) (4u?-3) 0
_ _ 1
Vs 4 2 (au?3) 0 2 (au?-3)
Y -2 (u-1) (u+1) (4u?-3) 0 2 (u-1) (u+1) (4u-3) 0
. o1 1
REE e 2 (4u?-3) o 2 (4u?-3)
Column@{TL[T2], Kas[T2]}
0
(v-14 Y16 Y-1 Y13)
Y-1a ) 1-w 0 w-1
v w-1 N 2 (w12 _ w1 2 (w-1)20
1 w 30350230+ w 303502301
Y1 [} w-1 2] 1-w
- _w-l 2 (w12 w-1 _ 2 (w12
13 w W*-3034502 3041 w W*-3034502-30s1
1
(v-1a Y16 Y1 Y13)
Fas 5 (-16ut+28u7-13) 0 2 (16u* - 2807 +13) 0
— _2(u-1) (us1) 2 (u-1) (u+1)
V16 e 16 u?-28 u?+13 o 16 u?-28 u?+13
Yo 2 (16u* - 28u% +13) 0 2 (-16u* v 2807 - 13) 0
Y13 o 2 (u-1) (uz‘l; 0 _2(u-1) (us1)

16 u?-28 u?+13 16 u?-28 u?+13

Examples with non-trivial co-
dimension.
Bl = PD[X—S,Z,S,—1: X_g,3,9,-2>

14 )7 [4A\/8
YR, 11 13

X_11,4,12,-35 X_12,10,13,-95

— 5 10 )3
X.13,7,14,-6 ] 5 6 1
2 11 2
B2 = PD[X_s5,2,6,-15 X-9,3,10,-25 N5 s 1 Ns o

X_10,7,11,-65 X_12,4,13,-35 X_13,8,14,- 7]

Columne {TL[B1], Kas[B1]}

]
1 ) -1 ) 2 ) -2 )
© o
] ) -1 : ] -1 1

(v-11 Ya Y1e Y7 Y14 Y Y-s Y-8)
Y11 ] ] 0 ] ] ] ] [’
Va ) ) ) ) = ) - )
V1o ) ) ) -t o = e
- (w-1)2 (w-1)2
V7 0 ) [ ) 3 ] -de ]
Y14 2] - ((w-1) w) w-1 (w-1) [} —ed %1 [}
Y (] ] ] ] w-1 ] 1-w [}
< w-1 w-1)2
Y-s %] (w-1) 1-w (w-1) 1-w W 2]

w
Y-8 2] ] ] 0 ] ] 0 ]
0

1 ] -1 [’ 1 0 -1 0

(v-11 Ya Y10 Y7 Y14 Y1 Y-5 Y-8)
Y1 (] ] ] ] ] ] (] ]
Va 2] 2] 2] -1 -u 2] u 1
V1o ] ] 2] -u 1-2u? 0 2ut-1 u
Y7 0 -1 -u 203 -u -1 0 1
Y14 0 -u 1-2u -u -1 -u -2 (u-1) (u+1) u
Y 0 ] ] -1 -u [} u 1
Y5 0 u 2u% - 0 -2 (u-1) (u+1) u 4u?-3 0
Y- ] 1 u 1 u 1 ] 1-2u?

Columne {TL[B2], Kas[B2]}

]
(Y22 Ya Y8 Y1 Y1 Y Y5 Y9l
2i1? 2w 2w

Y12 v-1 2(w-1) 7 ) 7
_ 1 w1
Va = [ = 0 [ ) [ [
20 : 1 203 20 21 200-2) w1
Vs 1-0 — 3 0 7
. 2w? 1 o2 3wa? 2) w1 2w 202w
V1a e 2 e 2
N 2 1 2
1 -2 (w-1) e 2(w-1)w w-1) 2w-1 1 = 2 (w-1)2
¥ [ [ [ [ w-1 0 1-w °
2
Vs 2(w-1) 0 2w-1w 2(w-1w 2 (w-1) =t 1 1) 2u-1
- 1 G2 201 o 2 2o 21)? 2 swa?
Yo [ - ) -
20(u-L)-26(u+B)
2 2
3 3 3 )
1 2 o 2u 1 2u o 20
(v12 ve v Y1 m va Vs vs)
T 0 [ [ [ 0 ) [ )
20-1) 2ue) 2021 221 1 201 2ua 1 sutsula
Vs [ s ‘ s o 2 (s T T aals
_ 221 221 1 1
i 221 ) 22 - X
s ° < 2w-1) (w1 o~ 0 = [ =
1 221 2221) (164 16421 8uf 10021 1
¥ 0 v f2wta) a6 -
1 T : o s PR 2u(as) a? (4l
i ° ] [ [ 0 0 [ )
N 2u1) u1 1 _stwaa o sttt B 10021 160t15:21
T W (4u 3 20 2 (a3 P 20 (@423 prarr
1 1 80t 1021 2 W) 2uty @ua suteuta
Vs 0 Zu a3, e Zu (a3 e Zu (a3 B 2u(au? 3
. o 8621 2 1 o 166t 16021 B 621 3205 st 30021
o v b P 20223 au? (a3

Roughly, det(A) is “det on ker”,

A B
AR 3 e 5>
CA™' Bis “a pushforward of (C U) .

A B\ day (I A7'B 1 I A"'B
cC U c U 0 U-CA'B)

A B\ _ 1
so det (C U) = det(A)det(U — CA™'B). (what if 14-17)

Questions. 1. Does this have a topological meaning? 2. Is the-
re a version of the Kashaev Conjecture for tangles? 3. Find all
solutions of R123 in our “algebra”. 4. Braids and the Burau re-
presentation. 5. Recover the work in “Prior Art”. 6. Are there
any concordance properties? 7. What is the “SPQ group”? 8. The
jumping points of signatures are the roots of the Alexander poly-
nomial. Does this generalize to tangles? 9. Which of the three
Cordon cases is the most common? 10. Are there interesting e-
xamples of tangles for which rels is non-trivial? 11. Is the pg
part determined by I'-calculus? 12. Is the pg part determined by
finite type invariants? 13. Does it work with closed components
/ links? 14. Strand-doubling formulas? 15. A multivariable ver-
sion? 16. Mutation invariance? 17. Ribbon knots? 18. Are there
“face-virtual knots”? 19. Does the pushforward story extend to
ranks? To formal Gaussian measures? To super Gaussian measu-
res?
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Some Rigor. (Exercises hints and partial solutions at end)
Exercise 1. Show that if two SPQ’s S| and S, on V satisfy
o(S1+ U) = 0(S, + U) for every quadratic U on V, then they
have the same shifts and the same domains.

Exercise 2. Show that if two full quadratics Q; and Q; satisfy
o(Q1 + U) = 0(Q, + U) for every U, then Q| = Q.

Proof of Theorem 1°. Fix W and consider triples (V,S,¢: V —
W) where S = (s, D, Q) is an SPQ on V. Say that two triples are
“push-equivalent”, (V1, S 1, ¢1) ~ (V2, 52, ¢») if for every quadra-
tic U on W,

ov,(S1+¢1U) = ov,(S2 + 95 U).

~>Given our (V, S, ¢), we need to show:

. L LA g
1. There is an SPQ S’ on W such that (V, S, ¢) ~ (W, S’,I).
2.1fW, 8", 1) ~(W,S”,) then ' =S".
Property 2 is easy (Exercises 1, 2). Property 1 follows from the
following three claims, each of which is easy.
Claim 1. If ve ker¢ N D(S), and A := Q(v) # 0, then (V, S, ¢) ~
: (=) ®0(,-)

(V/<v>, (s + sign(), Vi, 0 - S EL ),¢/<v>).
So WlOg Qlkerq} =0 (meaning’ Q|ker¢>®ker¢> =0). a
Claim 2. If Qlkerg = 0 and v € ker¢ N D(S), let V' = ker Q(v, —)
and then (V. S,¢) ~ (V' S|y, dlv) s0 wlog Qlvekerpkergov = 0.

O
Claim 3. If Qlygkerg+kergev = 0 then S = ¢*S’ for some SPQ S’
on im ¢ and then (V, S, ¢) ~ (W, S’, ). oo
Proof of Theorem 2. The functoriality of pullbacks needs no

proof. Now assume V) N Vi L V, and that S is an SPQ on
Vo. Then for every SPQ U on V, we have, using reciprocity three
times, that o(B.a.S + U) = o(a.S + *U) = o(S + *B*U) =
(S + (Ba)*U) = o((Ba).S + U). Hence B.a.S = (Ba).S.

Definition. A commutative square as on the right is Y<w
called admissible if y*B. = v.u*. w7y
Lemmal. fV=W=Y=ZandB=y=u=v= V?Z

I, the square is admissible. O

Lemma 2. The following are equivalent:

1. A square as above is admissible.

2. The Pairing Condition holds. Namely, YLWa4s,

if §1 is an SPQ on V (write S| + V) ' V7
and S, + W, then o(u*S| + v*S»y) = Sll—V?Z
O_(B*Sl +7*SZ)~

3. The square is mirror admissible: 8"y, = u.v*. Yy Lw
Proof. Using Exercises 1 and 2 below, and then u-  #} x {v
sing reciprocity on both sides, we have VS| y*B.S | = 4 ya Z

Vil'S1 e VS IVS20(y"B:S1 + S2) = ovu'S1 + S2) e
VS1VS20(B:S1 + ¥.S2) = o(u*S1 + v*S,), and thus 1 & 2.
But the condition in 2 is symmetric under 8 < vy, u <> v, so also

2 3. o
Lemma 3. If the first diagram below is admissible, then so is the
second. Y+ w Yy =W O
w7y R P
Vv 7 z Vv = ZoF

Lemma 4. A pushforward by an inclusion is the do nothing o-
peration (though note that the pushforward via an inclusion of
a fully defined quadratic retains its domain of definition, which

now may become partial). O
Lemma 5. For any linear ¢: V — W, the dia- V—_>VecC
gram on the right is admissible, where ¢ deno- ¢y -7 Ygel
tes the inclusion maps. W—WeaC

Proof. Follows easily from Lemma 4. O

Definition. If § is an SPQ with domain D and quadratic Q, the
radical of § is the radical of Q considered as a fully-defined qua-
dratic on D. Namely, rad S :={u € D: Vv € D, Q(u,v) = 0}.
Lemma 6. Always, ¢(radS) C rad ¢..S.

Proof. Pick w € ¢(rad §') and repeat the proof of Theorem 1° but
now considering quadruples (V, S, ¢, v), where (V, S, ¢) are as be-
fore and v € rad S satisfies ¢(v) = w. Clearly our initial triple
(V, S, ¢) can be extended to such a quadruple, and it is easy to
repeat the steps of the proof of Theorem 1’ extending everything
to such quadruples. O
We have to acknowledge that our proof of Lemma 6 is ugly. We
wish we had a cleaner one.

Exercise 3. Show that if two SPQ’s S| and S, on V & A satisfy
A cradS;and o(S| + *U) = o(S, + n*U) for every quadratic
UonV,wheren: V&A — V is the projection, then S| = 5.
Exercise 4. Show thatif ¢: V — W is surjective and Q is a qua-
dratic on W, then o (Q) = (¢* Q).

Exercise 5. Show that always, ¢.¢*S = S|im¢.

LF:mma 7. For ar.ly hgear ¢:.V.—> W, the V@CLWGBC
diagram on the right is admissible, where af T B
¢* = ¢ ® I and a and B denote the proje- Vv w
ction maps.

Proof. Let S be an SPQ on V. Clearly C C g*¢.S. Also,
C c rada*S so by Lemma 6, C = ¢*(C) C ¢*(rada*S) C
rad ¢ a*S. Hence using Exercise 3, it is enough to show that
o(@fa*S + BU) = o(B¢.S + B*U) for every U on W. Inde-

ed, r(¢a*S + BU) L oB.otarS + U) 2 oS + U) L

(¢S +U) 2 0B (¢S +U)) 2 o(8°¢.S +B°U), using (1) reci-
procity, (2) the commutativity of the diagram and the functoriality

of pushing, (3) Exercise 5, (4) Exercise 4, and (5) the additivity

of pullbacks. o
Lemma 8. If the first diagram below is admissible, then so are
the other two. Y =W Yo E2Lw Y2 wer
w TNy ety T Ny wh 7 el
1% 3 Z VoFE S Z Vv ot ZoF

Proof. In the diagram
YOE=Y—>W—=We&F

port T 7y 7
VEBE—R>VT>Z"—L>ZEBF,

with 7 marking projections and ¢ inclusions, the left square is a-
dmissible by Lemma 7, the middle square by assumption, and the
right square by Lemma 5. Along with the functoriality of pushfo-
rwards this shows the admissibility of both the left and the right
1 x 2 subrectangles, and these are the diagrams we wanted. O

Proof of Theorem 3. Decompo- AG®E®F —A®COF
seZ = A®B&C® D, where ¥ T ¥
A =imBNimy,imB =A® B, A®B®E—->A®BaCoD

andimy = A®C. Write V ~A®B®Ewithf=1onA®B



yet3=0onE,and write W ~ A@C® F withy=IonA&C
yety=0on F. ThenY =V &, W =~ A® E & F and our square
is as shown on the right, with all maps equal to / on like-named
summands and equal to 0 on non-like-named summands. But this
diagram is admissable: build it up using Lemma 1 for the A’s, and
then Lemma 8 for E and C, and then again Lemma 8 along with
the mirror property of Lemma 2 for B and F, and then Lemma 3
for D. |
To prove Theorem 4, given three' SPQ’s Sy, S5, and S3, w-
e need to show that planar-multiplying them in two steps, first
using a planar connection diagram D; (I for Inner) to yield
S¢ = S(D;)(S2,S53) and then using a second planar connection
diagram Dy (O for Outer) to yield S(Dp)(S1,S6), gives the sa-
me answer as multiplying them all at once using the composition
planar connection diagram Dp = Dy o¢ D; (B for Big) to yield
S(Dg)(S1,52,53).2 An example should help:

In this example, if you ignore the dotted green line (marked “6”),
you see the planar connection diagram Dp, which has three inputs
(1,2,3) and a single output, the cycle 0. If you only look inside the
green line, you see Dy, with inputs 2 and 3 and an output cycle 6.
If you ignore the inside of 6 you see D¢, with inputs 1 and 6 and
output cycle 0.

Let Fp (Big Faces) de-
note the vector space
whose basis are the fa-
ces of Dp, let F; (Inner
Faces) be the space of
faces of Dy, and let Fp
(Outer Faces) be the space of faces of Dg. Let G, G2, G3, Gg,
and Gy be the spaces of gaps (edges) along the cycles 1,2,3,6, and
0, respectively. Let & = ¥p, and ¢ = ¢P# be the maps defining
S(Dp)andlety = yp,and 6 = #P0 be the maps defining S(Dy).
Further, let @ == yp,: F;1 - G2 ®G3 and 8 = ¢D’: F; — Gg be
the maps defining S(Dy), and let @, = [ ® a and B* := [ & B be
the extensions of @ and S by an identity on an extra factor of G,
so that By = Ig, ® S(Dy). Let u map any big face to the sum
of G gaps around it, plus the sum of the inner faces it contains.
Let v map any big face to the sum of the outer faces it contains. It
is easy to see that the master diagram (M D) shown on the right,
made of all of these spaces and maps, is commutative.

(MD) Go
¢

bs

Fp —V>F0

e b

G1EBG2@G3~$G1@F1;+>G1@G(,

Claim. The bottom right square of (M D) Fg—2—=Fp
is an equalizer square, namely Fp = 7z %4
EQ(B*,v). Hence v.u* = y*B7. GioF; =G oGe

Proof. A big face (an element of F'p) is a sum of outer faces f, and
a sum of inner faces f;, and it has a boundary g; on input cycle 1,
such that the boundary of the outer pieces f, is equal to the boun-
dary of the inner pieces f; plus g;. That matches perfectly with the
definition of the equalizer: EQ(B*,y) = {(g1, fi, fo): B (g1, f;) =
Yo} = {81, fis fo) - v(fo) = (81, BUD)}- O

Proof of Theorem 4. With notation as above, with the example
above (which is general enough), and with the claim above, and
also using functoriality, we have S(Dp) = ¢.¢* = d.v.u'a’ =
5.y Biay = S(Do) o (I, ® S(Dy)), as required. O
Proof of Theorem 5. We need to verify the Reidemeister mo-
ves and that was done in the computational sectionm, and the
statement about the restriction to knots, which is easy: simply
assemble an n-crossing knot using an n-input planar connection
diagram, and the formulas clearly match. ]

Further Homework.

Exercise 6. By taking U = 0 in the reciprocity statement, prove
that always o(¢.S) = o(S). But that seems wrong, if ¢ = O.
What saves the day?

Exercise 7. By taking S = 0 in the reciprocity statement, frove
that always o(¢*U) = o(U). But wait, this is nonsense! What
went wrong?

Exercise 8. When are diagrams as on the Y =0 Y-W
right equalizer diagrams? What then do ‘V/ } ‘W/ 8

we learn from Theorem 3?
Exercise 9. There are 11 types or irreducible commutative squa-

res: 1-0, 0=1, 0=0, 0=0, 1=1, O=1, O=1,
2N 2N 2 T 2 S SR N L A L A L
0=-0 0=0 1=0 O0=1 0=0 0=1 0=1

0=0,0=1, 1=1,and 1= 1. Show that pushing commutes

Vo oy oty iy

1-1 1=1 1=0 1=1

with pulling for all but four of them. Compare with the statement
of Theorem 3.
Exercise 10. Prove that a square is admissible iff it is an equilizer
square, with an additional direct summand A added to the Y term,
and with the maps p and v extended by 0 on A.
Exercise 11. Given a quadratic Q on a space V, let  be the pro-
jection V — V/rad(Q) and show that 7,.Q = Q/ rad(Q), with the
obvious definition for the latter.
Solutions / Hints.
-0 ot Jor 1ud sno Yo aisrob sy mi 10109v 8 01O .1 101 IniH
adt 1owol 10 9eist lliw 1sdi ) 101 9ulsv 2vo9gstivo a8 9Asd 1o
.9TUISMZIR
.0 = 1Q bas Isnogsib 2i |Q ODOIW .C 101 10iH
Sk = (B)Q ditw 3 Jenisgs s 3293 o1 dgwons 211 .¢ 10t 3niH
.(¥)oei 2,010 nsq “fhide” odT .0 101 10iH
brs) “ i o 0™ 2ids1bsup \niving odi 23 0 1°m2i 2.4 .V 10t iniH
.(avirosjwe 2i § 1 (U)o = (U*y)o basbai

1 10 00 10 . a L
.01 DOB <[ <01 0o 918 2n0iq90xs odT € 101 1niH

!Truly, we need the same for any number of input SPQ’s that are divided into two groups, “multiply in the first step” and “multiply in the second step”. But

there’s no added difficulty here, only an added notational complexity.

2Aren’t we sassy? We picked “6” for the name of the product of “2” and “3”.
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