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Abstract. Following joint work with Itai Bar-Natan, Iva Halache-
va, and Nancy Scherich, I will show that the Best Known Time

on a typical knot with 7 crossings is roughly equal to n%/?, which
is roughly the square root of what I believe was the standard be-
lief before, namely about n¢.

(BKT) to compute a typical Finite Type Invariant (FTI) of type d |

My Primary Interest. Strong, fast, homomorphic knot and tan-
gle invariants. wef/Nara, wef/Kyoto, wef/Tokyo

Conventions. e n := {1,2,...,n}. e For complexity estimates we
ignore constant and logarithmic terms: n* ~ 2023d!(log n)n>.

A Key Preliminary. Let Q C
n’ be an enumerated subset, with
1 < g=10| < n Intime ~ ¢
we can set up a lookup table of
size ~ g so that we will be able |
to compute |Q N R| in time ~ 1,
for any rectangle R C n’.

[Fails. e Count after R is prese-
nted. e Make a lookup table of
|Q N R| counts for all R’s.

&

" "The [GPV] Theorem. A knot invariant is fi-

. *
for some w € G,

nite type of type d iff it is of the form w o ¢4

Goussarov-Polyak-Viro
.’le & is easy; = is hard and IMHO not well understood.

® .4 1s not an invariants and not every w gives an invariant!

"‘lo The theory of finite type invariants is very rich. Many knot
invariants factor through finite type invariants, and it is possible
that they separate knots.

Unfail. Make a restricted loo-
kup table of the form

{ dyadic |Q ﬂ Rl }

e Make the table by running
through x € @, and for each
one increment by 1 only the
entries for dyadic R > x (or
create such an entry, if it di-
dn’t exist already). This takes
q - (logy n)' ~ g ops. - : :
e Entries for empty dyadic R’s are not needed and not created
e Using standard sorting techniques, access takes log, g ~ 1 ops.
e A general R is a union of at most (2log, n)’ ~ 1 dyadic ones,
so counting |Q N R| takes ~ 1 ops.

(Generalization. Without changing the conclusion, replace
counts |Q N R| with summations 3 6, where 8: n’ — V is suppor-
ted on a sparse Q, takes values in a vector space V withdimV ~ 1,
and in some basis, all of its coefficients are “easy”.

- (g3

\Gauss Diagrams.
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~e We need a fast algorithm to compute @4!

*.* . Our Main Theorem. On an n-arrow Gauss diagram, ¢, can be
* computed in time ~ n/4/?1,

. Proof. With d = p + [ (p for “put”, [ for “lookup”), pick p arrows
" “iand look up in how many ways the remaining / can be placed in

~—planar projections are better

between the legs of the first p:

Fd
A: 3 3
[To reconstruct D = P#,L from P and L we need a non-decreasing

“placement function” A: 2/ — 2p + 1.
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Define g : 2n* — G, by

L if (Ly,...,Ly) are the ends of some L C G

0 otherwise

(Ll,---,Lzz)H{

and now ¢,4(G) —( ) Z Z P#, Z Oc
pe(G) rrgmsaine \1Pao-1.Pa)
can be computed in time ~ n” + n'. Now take p = [d/2]. O
Question ([BBHS], wef/
Fields). = For computations,

Definitions. Let G = Q(Gauss Diagrams), with G, / G<4 the

diagrams with exactly / at most d arrows. Let 940 G — Ga be Byt are yarn balls better than  Length L n crossings  length [

G D=2Dandlet = . iecti i ~ L[A13y9

wa ) $<d = Die<d Pe planar projections (here likely n ~ L*/°)1 ‘ References.
DcG, |D|=d De(%) o,
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than braids (as likely [ ~ n*/?).
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