===== recycled on Sat Aug 10 11:22:23 EDT 2019 by drorbn on Ubuntu-on-X2 ====== Using the pairing \[ \langle z_i^m,\zeta_j^n \rangle = \left.\partial_{\zeta_i}^m\zeta_j^n\right|_{\zeta_A\to 0} = \delta_{ij}\delta_{mn}n!, \] we get a map \begin{multline*} \calD\colon\Hom(\bbQ\llbracket z_A\rrbracket\to\bbQ\llbracket z_B\rrbracket) \cong\bbQ\llbracket z_A\rrbracket^*\otimes\bbQ\llbracket z_B\rrbracket \\ \cong\bbQ\llbracket \zeta_A\rrbracket\otimes\bbQ\llbracket z_B\rrbracket \cong\bbQ\llbracket \zeta_A,z_B \rrbracket \end{multline*} ===== recycled on Sat Aug 10 11:22:27 EDT 2019 by drorbn on Ubuntu-on-X2 ====== {\bf Example.} $\calD(id\colon\bbQ\llbracket z\rrbracket\to\bbQ\llbracket z\rrbracket)=\bbe^{\zeta z}$. Indeed, \[ \langle z^n, \bbe^{\zeta z}\rangle = \left\langle z^n, \sum_m\frac{(\zeta z)^m}{m!}\right\rangle = \sum_m\frac{z^m}{m!}\delta_{mn}n! = z^n. \] ===== recycled on Sat Aug 10 11:23:48 EDT 2019 by drorbn on Ubuntu-on-X2 ====== {\bf\red Other GDOs.} {\bf Claim.} If $L\colon\bbQ\llbracket z_A\rrbracket\to\bbQ\llbracket z_B\rrbracket$ is linear, then $\calD(L)=L\left(\bbe^{\sum_{i\in A}\zeta_i z_i}\right)$.\hfill\text{{\bf Proof.} Exercise.}